searching the database
Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000326
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00280: Binary words —path rowmotion⟶ Binary words
St000326: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00280: Binary words —path rowmotion⟶ Binary words
St000326: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1]
=> 10 => 11 => 1
[2]
=> [1,1]
=> 110 => 111 => 1
[1,1]
=> [2]
=> 100 => 011 => 2
[3]
=> [1,1,1]
=> 1110 => 1111 => 1
[2,1]
=> [2,1]
=> 1010 => 1101 => 1
[1,1,1]
=> [3]
=> 1000 => 0011 => 3
[4]
=> [1,1,1,1]
=> 11110 => 11111 => 1
[3,1]
=> [2,1,1]
=> 10110 => 11011 => 1
[2,2]
=> [2,2]
=> 1100 => 0111 => 2
[2,1,1]
=> [3,1]
=> 10010 => 01101 => 2
[1,1,1,1]
=> [4]
=> 10000 => 00011 => 4
[5]
=> [1,1,1,1,1]
=> 111110 => 111111 => 1
[4,1]
=> [2,1,1,1]
=> 101110 => 110111 => 1
[3,2]
=> [2,2,1]
=> 11010 => 11101 => 1
[3,1,1]
=> [3,1,1]
=> 100110 => 011011 => 2
[2,2,1]
=> [3,2]
=> 10100 => 11001 => 1
[2,1,1,1]
=> [4,1]
=> 100010 => 001101 => 3
[1,1,1,1,1]
=> [5]
=> 100000 => 000011 => 5
[6]
=> [1,1,1,1,1,1]
=> 1111110 => 1111111 => 1
[5,1]
=> [2,1,1,1,1]
=> 1011110 => 1101111 => 1
[4,2]
=> [2,2,1,1]
=> 110110 => 111011 => 1
[4,1,1]
=> [3,1,1,1]
=> 1001110 => 0110111 => 2
[3,3]
=> [2,2,2]
=> 11100 => 01111 => 2
[3,2,1]
=> [3,2,1]
=> 101010 => 110101 => 1
[3,1,1,1]
=> [4,1,1]
=> 1000110 => 0011011 => 3
[2,2,2]
=> [3,3]
=> 11000 => 00111 => 3
[2,2,1,1]
=> [4,2]
=> 100100 => 011001 => 2
[2,1,1,1,1]
=> [5,1]
=> 1000010 => 0001101 => 4
[1,1,1,1,1,1]
=> [6]
=> 1000000 => 0000011 => 6
[7]
=> [1,1,1,1,1,1,1]
=> 11111110 => 11111111 => 1
[6,1]
=> [2,1,1,1,1,1]
=> 10111110 => 11011111 => 1
[5,2]
=> [2,2,1,1,1]
=> 1101110 => 1110111 => 1
[5,1,1]
=> [3,1,1,1,1]
=> 10011110 => 01101111 => 2
[4,3]
=> [2,2,2,1]
=> 111010 => 111101 => 1
[4,2,1]
=> [3,2,1,1]
=> 1010110 => 1101011 => 1
[4,1,1,1]
=> [4,1,1,1]
=> 10001110 => 00110111 => 3
[3,3,1]
=> [3,2,2]
=> 101100 => 110011 => 1
[3,2,2]
=> [3,3,1]
=> 110010 => 011101 => 2
[3,2,1,1]
=> [4,2,1]
=> 1001010 => 0110101 => 2
[3,1,1,1,1]
=> [5,1,1]
=> 10000110 => 00011011 => 4
[2,2,2,1]
=> [4,3]
=> 101000 => 110001 => 1
[2,2,1,1,1]
=> [5,2]
=> 1000100 => 0011001 => 3
[2,1,1,1,1,1]
=> [6,1]
=> 10000010 => 00001101 => 5
[1,1,1,1,1,1,1]
=> [7]
=> 10000000 => 00000011 => 7
[8]
=> [1,1,1,1,1,1,1,1]
=> 111111110 => 111111111 => 1
[6,2]
=> [2,2,1,1,1,1]
=> 11011110 => 11101111 => 1
[5,3]
=> [2,2,2,1,1]
=> 1110110 => 1111011 => 1
[5,2,1]
=> [3,2,1,1,1]
=> 10101110 => 11010111 => 1
[4,4]
=> [2,2,2,2]
=> 111100 => 011111 => 2
[4,3,1]
=> [3,2,2,1]
=> 1011010 => 1101101 => 1
Description
The position of the first one in a binary word after appending a 1 at the end.
Regarding the binary word as a subset of $\{1,\dots,n,n+1\}$ that contains $n+1$, this is the minimal element of the set.
Matching statistic: St000382
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00173: Integer compositions —rotate front to back⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00173: Integer compositions —rotate front to back⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1] => [1,1] => 1
[2]
=> [1,1,0,0,1,0]
=> [2,1] => [1,2] => 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,2] => [2,1] => 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => [1,3] => 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1] => [1,1,1] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => [3,1] => 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,4] => 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,2] => 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => [2,2] => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => [2,1,1] => 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1] => 4
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1] => [1,5] => 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => [1,1,3] => 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,2] => 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1] => 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,2,1] => 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [3,1,1] => 3
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,5] => [5,1] => 5
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1] => [1,6] => 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,1,1] => [1,1,4] => 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => [1,1,3] => 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [2,1,2] => 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [2,3] => 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1] => 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [3,1,1] => 3
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2] => 3
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [2,2,1] => 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,4,1] => [4,1,1] => 4
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,6] => [6,1] => 6
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,1] => [1,7] => 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,1,1] => [1,1,5] => 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,1] => [1,1,4] => 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,2,1] => [2,1,3] => 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,1,3] => 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,1,2] => 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1] => 3
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,2,2] => 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [2,1,2] => 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [2,1,1,1] => 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,4,1] => [4,1,1] => 4
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,3,1] => 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,3,2] => [3,2,1] => 3
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,5,1] => [5,1,1] => 5
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,7] => [7,1] => 7
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1] => [1,8] => 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,1] => [1,1,5] => 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,1] => [1,1,4] => 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,1,1,1] => [1,1,1,3] => 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,2] => [2,4] => 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,1,2] => 1
Description
The first part of an integer composition.
Matching statistic: St000907
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St000907: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St000907: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0]
=> [1,0]
=> ([],1)
=> 1
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ([],2)
=> 1
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 2
[3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([],3)
=> 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 3
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> 1
[2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> 2
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([],5)
=> 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> 2
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> 3
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([],6)
=> 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ([(0,5),(5,1),(5,2),(5,3),(5,4)],6)
=> 2
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 2
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> 3
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 3
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> 4
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([],7)
=> 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6)],7)
=> 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4),(1,5)],6)
=> 1
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ([(0,6),(6,1),(6,2),(6,3),(6,4),(6,5)],7)
=> 2
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(2,3),(2,4)],5)
=> 1
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ([(0,4),(0,5),(5,1),(5,2),(5,3)],6)
=> 1
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ([(0,5),(5,6),(6,1),(6,2),(6,3),(6,4)],7)
=> 3
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 2
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ([(0,5),(4,2),(4,3),(5,1),(5,4)],6)
=> 2
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(4,6),(5,4),(6,1),(6,2),(6,3)],7)
=> 4
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 1
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(3,2),(4,5),(5,1),(5,3)],6)
=> 3
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(3,4),(4,6),(5,3),(6,1),(6,2)],7)
=> 5
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ([],8)
=> 1
[6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> 1
[5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> ([(2,3),(2,4),(2,5)],6)
=> 1
[5,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> ([(0,5),(0,6),(6,1),(6,2),(6,3),(6,4)],7)
=> 1
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(3,4)],5)
=> 2
[4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> 1
Description
The number of maximal antichains of minimal length in a poset.
Matching statistic: St000160
St000160: Integer partitions ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 1
[1,1]
=> 2
[3]
=> 1
[2,1]
=> 1
[1,1,1]
=> 3
[4]
=> 1
[3,1]
=> 1
[2,2]
=> 2
[2,1,1]
=> 2
[1,1,1,1]
=> 4
[5]
=> 1
[4,1]
=> 1
[3,2]
=> 1
[3,1,1]
=> 2
[2,2,1]
=> 1
[2,1,1,1]
=> 3
[1,1,1,1,1]
=> 5
[6]
=> 1
[5,1]
=> 1
[4,2]
=> 1
[4,1,1]
=> 2
[3,3]
=> 2
[3,2,1]
=> 1
[3,1,1,1]
=> 3
[2,2,2]
=> 3
[2,2,1,1]
=> 2
[2,1,1,1,1]
=> 4
[1,1,1,1,1,1]
=> 6
[7]
=> 1
[6,1]
=> 1
[5,2]
=> 1
[5,1,1]
=> 2
[4,3]
=> 1
[4,2,1]
=> 1
[4,1,1,1]
=> 3
[3,3,1]
=> 1
[3,2,2]
=> 2
[3,2,1,1]
=> 2
[3,1,1,1,1]
=> 4
[2,2,2,1]
=> 1
[2,2,1,1,1]
=> 3
[2,1,1,1,1,1]
=> 5
[1,1,1,1,1,1,1]
=> 7
[8]
=> 1
[6,2]
=> 1
[5,3]
=> 1
[5,2,1]
=> 1
[4,4]
=> 2
[4,3,1]
=> 1
[5,5,3]
=> ? = 1
[4,4,4,1]
=> ? = 1
[3,3,3,3,1]
=> ? = 1
[5,5,4]
=> ? = 1
[5,5,5]
=> ? = 3
Description
The multiplicity of the smallest part of a partition.
This counts the number of occurrences of the smallest part $spt(\lambda)$ of a partition $\lambda$.
The sum $spt(n) = \sum_{\lambda \vdash n} spt(\lambda)$ satisfies the congruences
\begin{align*}
spt(5n+4) &\equiv 0\quad \pmod{5}\\\
spt(7n+5) &\equiv 0\quad \pmod{7}\\\
spt(13n+6) &\equiv 0\quad \pmod{13},
\end{align*}
analogous to those of the counting function of partitions, see [1] and [2].
Matching statistic: St000383
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
St000383: Integer compositions ⟶ ℤResult quality: 93% ●values known / values provided: 93%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
St000383: Integer compositions ⟶ ℤResult quality: 93% ●values known / values provided: 93%●distinct values known / distinct values provided: 100%
Values
[1]
=> 10 => [1,1] => [1,1] => 1
[2]
=> 100 => [1,2] => [2,1] => 1
[1,1]
=> 110 => [2,1] => [1,2] => 2
[3]
=> 1000 => [1,3] => [3,1] => 1
[2,1]
=> 1010 => [1,1,1,1] => [1,1,1,1] => 1
[1,1,1]
=> 1110 => [3,1] => [1,3] => 3
[4]
=> 10000 => [1,4] => [4,1] => 1
[3,1]
=> 10010 => [1,2,1,1] => [1,1,2,1] => 1
[2,2]
=> 1100 => [2,2] => [2,2] => 2
[2,1,1]
=> 10110 => [1,1,2,1] => [1,1,1,2] => 2
[1,1,1,1]
=> 11110 => [4,1] => [1,4] => 4
[5]
=> 100000 => [1,5] => [5,1] => 1
[4,1]
=> 100010 => [1,3,1,1] => [1,1,3,1] => 1
[3,2]
=> 10100 => [1,1,1,2] => [2,1,1,1] => 1
[3,1,1]
=> 100110 => [1,2,2,1] => [1,1,2,2] => 2
[2,2,1]
=> 11010 => [2,1,1,1] => [1,2,1,1] => 1
[2,1,1,1]
=> 101110 => [1,1,3,1] => [1,1,1,3] => 3
[1,1,1,1,1]
=> 111110 => [5,1] => [1,5] => 5
[6]
=> 1000000 => [1,6] => [6,1] => 1
[5,1]
=> 1000010 => [1,4,1,1] => [1,1,4,1] => 1
[4,2]
=> 100100 => [1,2,1,2] => [2,1,2,1] => 1
[4,1,1]
=> 1000110 => [1,3,2,1] => [1,1,3,2] => 2
[3,3]
=> 11000 => [2,3] => [3,2] => 2
[3,2,1]
=> 101010 => [1,1,1,1,1,1] => [1,1,1,1,1,1] => 1
[3,1,1,1]
=> 1001110 => [1,2,3,1] => [1,1,2,3] => 3
[2,2,2]
=> 11100 => [3,2] => [2,3] => 3
[2,2,1,1]
=> 110110 => [2,1,2,1] => [1,2,1,2] => 2
[2,1,1,1,1]
=> 1011110 => [1,1,4,1] => [1,1,1,4] => 4
[1,1,1,1,1,1]
=> 1111110 => [6,1] => [1,6] => 6
[7]
=> 10000000 => [1,7] => [7,1] => 1
[6,1]
=> 10000010 => [1,5,1,1] => [1,1,5,1] => 1
[5,2]
=> 1000100 => [1,3,1,2] => [2,1,3,1] => 1
[5,1,1]
=> 10000110 => [1,4,2,1] => [1,1,4,2] => ? = 2
[4,3]
=> 101000 => [1,1,1,3] => [3,1,1,1] => 1
[4,2,1]
=> 1001010 => [1,2,1,1,1,1] => [1,1,2,1,1,1] => 1
[4,1,1,1]
=> 10001110 => [1,3,3,1] => [1,1,3,3] => 3
[3,3,1]
=> 110010 => [2,2,1,1] => [1,2,2,1] => 1
[3,2,2]
=> 101100 => [1,1,2,2] => [2,1,1,2] => 2
[3,2,1,1]
=> 1010110 => [1,1,1,1,2,1] => [1,1,1,1,1,2] => 2
[3,1,1,1,1]
=> 10011110 => [1,2,4,1] => [1,1,2,4] => ? = 4
[2,2,2,1]
=> 111010 => [3,1,1,1] => [1,3,1,1] => 1
[2,2,1,1,1]
=> 1101110 => [2,1,3,1] => [1,2,1,3] => 3
[2,1,1,1,1,1]
=> 10111110 => [1,1,5,1] => [1,1,1,5] => ? = 5
[1,1,1,1,1,1,1]
=> 11111110 => [7,1] => [1,7] => 7
[8]
=> 100000000 => [1,8] => [8,1] => 1
[6,2]
=> 10000100 => [1,4,1,2] => [2,1,4,1] => 1
[5,3]
=> 1001000 => [1,2,1,3] => [3,1,2,1] => 1
[5,2,1]
=> 10001010 => [1,3,1,1,1,1] => [1,1,3,1,1,1] => 1
[4,4]
=> 110000 => [2,4] => [4,2] => 2
[4,3,1]
=> 1010010 => [1,1,1,2,1,1] => [1,1,1,1,2,1] => 1
[4,2,2]
=> 1001100 => [1,2,2,2] => [2,1,2,2] => 2
[4,2,1,1]
=> 10010110 => [1,2,1,1,2,1] => [1,1,2,1,1,2] => 2
[3,3,2]
=> 110100 => [2,1,1,2] => [2,2,1,1] => 1
[3,2,1,1,1]
=> 10101110 => [1,1,1,1,3,1] => [1,1,1,1,1,3] => ? = 3
[6,6]
=> 11000000 => [2,6] => [6,2] => ? = 2
[5,5,4]
=> 11010000 => [2,1,1,4] => [4,2,1,1] => ? = 1
[5,5,5]
=> 11100000 => [3,5] => [5,3] => ? = 3
Description
The last part of an integer composition.
Matching statistic: St000993
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
Mp00189: Skew partitions —rotate⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 71%
Mp00189: Skew partitions —rotate⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 71%
Values
[1]
=> [[1],[]]
=> [[1],[]]
=> []
=> ? = 1
[2]
=> [[2],[]]
=> [[2],[]]
=> []
=> ? = 1
[1,1]
=> [[1,1],[]]
=> [[1,1],[]]
=> []
=> ? = 2
[3]
=> [[3],[]]
=> [[3],[]]
=> []
=> ? = 1
[2,1]
=> [[2,1],[]]
=> [[2,2],[1]]
=> [1]
=> ? = 1
[1,1,1]
=> [[1,1,1],[]]
=> [[1,1,1],[]]
=> []
=> ? = 3
[4]
=> [[4],[]]
=> [[4],[]]
=> []
=> ? = 1
[3,1]
=> [[3,1],[]]
=> [[3,3],[2]]
=> [2]
=> 1
[2,2]
=> [[2,2],[]]
=> [[2,2],[]]
=> []
=> ? = 2
[2,1,1]
=> [[2,1,1],[]]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,1,1]
=> [[1,1,1,1],[]]
=> [[1,1,1,1],[]]
=> []
=> ? = 4
[5]
=> [[5],[]]
=> [[5],[]]
=> []
=> ? = 1
[4,1]
=> [[4,1],[]]
=> [[4,4],[3]]
=> [3]
=> 1
[3,2]
=> [[3,2],[]]
=> [[3,3],[1]]
=> [1]
=> ? = 1
[3,1,1]
=> [[3,1,1],[]]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 2
[2,2,1]
=> [[2,2,1],[]]
=> [[2,2,2],[1]]
=> [1]
=> ? = 1
[2,1,1,1]
=> [[2,1,1,1],[]]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> [[1,1,1,1,1],[]]
=> []
=> ? = 5
[6]
=> [[6],[]]
=> [[6],[]]
=> []
=> ? = 1
[5,1]
=> [[5,1],[]]
=> [[5,5],[4]]
=> [4]
=> 1
[4,2]
=> [[4,2],[]]
=> [[4,4],[2]]
=> [2]
=> 1
[4,1,1]
=> [[4,1,1],[]]
=> [[4,4,4],[3,3]]
=> [3,3]
=> 2
[3,3]
=> [[3,3],[]]
=> [[3,3],[]]
=> []
=> ? = 2
[3,2,1]
=> [[3,2,1],[]]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 1
[3,1,1,1]
=> [[3,1,1,1],[]]
=> [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 3
[2,2,2]
=> [[2,2,2],[]]
=> [[2,2,2],[]]
=> []
=> ? = 3
[2,2,1,1]
=> [[2,2,1,1],[]]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 2
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> 4
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1],[]]
=> []
=> ? = 6
[7]
=> [[7],[]]
=> [[7],[]]
=> []
=> ? = 1
[6,1]
=> [[6,1],[]]
=> [[6,6],[5]]
=> [5]
=> 1
[5,2]
=> [[5,2],[]]
=> [[5,5],[3]]
=> [3]
=> 1
[5,1,1]
=> [[5,1,1],[]]
=> [[5,5,5],[4,4]]
=> [4,4]
=> 2
[4,3]
=> [[4,3],[]]
=> [[4,4],[1]]
=> [1]
=> ? = 1
[4,2,1]
=> [[4,2,1],[]]
=> [[4,4,4],[3,2]]
=> [3,2]
=> 1
[4,1,1,1]
=> [[4,1,1,1],[]]
=> [[4,4,4,4],[3,3,3]]
=> [3,3,3]
=> 3
[3,3,1]
=> [[3,3,1],[]]
=> [[3,3,3],[2]]
=> [2]
=> 1
[3,2,2]
=> [[3,2,2],[]]
=> [[3,3,3],[1,1]]
=> [1,1]
=> 2
[3,2,1,1]
=> [[3,2,1,1],[]]
=> [[3,3,3,3],[2,2,1]]
=> [2,2,1]
=> 2
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> [[3,3,3,3,3],[2,2,2,2]]
=> [2,2,2,2]
=> 4
[2,2,2,1]
=> [[2,2,2,1],[]]
=> [[2,2,2,2],[1]]
=> [1]
=> ? = 1
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [1,1,1,1,1]
=> 5
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1,1],[]]
=> []
=> ? = 7
[8]
=> [[8],[]]
=> [[8],[]]
=> []
=> ? = 1
[6,2]
=> [[6,2],[]]
=> [[6,6],[4]]
=> [4]
=> 1
[5,3]
=> [[5,3],[]]
=> [[5,5],[2]]
=> [2]
=> 1
[5,2,1]
=> [[5,2,1],[]]
=> [[5,5,5],[4,3]]
=> [4,3]
=> 1
[4,4]
=> [[4,4],[]]
=> [[4,4],[]]
=> []
=> ? = 2
[4,3,1]
=> [[4,3,1],[]]
=> [[4,4,4],[3,1]]
=> [3,1]
=> 1
[4,2,2]
=> [[4,2,2],[]]
=> [[4,4,4],[2,2]]
=> [2,2]
=> 2
[4,2,1,1]
=> [[4,2,1,1],[]]
=> [[4,4,4,4],[3,3,2]]
=> [3,3,2]
=> 2
[3,3,2]
=> [[3,3,2],[]]
=> [[3,3,3],[1]]
=> [1]
=> ? = 1
[3,3,1,1]
=> [[3,3,1,1],[]]
=> [[3,3,3,3],[2,2]]
=> [2,2]
=> 2
[3,2,2,1]
=> [[3,2,2,1],[]]
=> [[3,3,3,3],[2,1,1]]
=> [2,1,1]
=> 1
[3,2,1,1,1]
=> [[3,2,1,1,1],[]]
=> [[3,3,3,3,3],[2,2,2,1]]
=> [2,2,2,1]
=> 3
[2,2,2,2]
=> [[2,2,2,2],[]]
=> [[2,2,2,2],[]]
=> []
=> ? = 4
[2,2,2,1,1]
=> [[2,2,2,1,1],[]]
=> [[2,2,2,2,2],[1,1]]
=> [1,1]
=> 2
[2,2,1,1,1,1]
=> [[2,2,1,1,1,1],[]]
=> [[2,2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> 4
[6,3]
=> [[6,3],[]]
=> [[6,6],[3]]
=> [3]
=> 1
[5,4]
=> [[5,4],[]]
=> [[5,5],[1]]
=> [1]
=> ? = 1
[5,3,1]
=> [[5,3,1],[]]
=> [[5,5,5],[4,2]]
=> [4,2]
=> 1
[4,4,1]
=> [[4,4,1],[]]
=> [[4,4,4],[3]]
=> [3]
=> 1
[4,3,2]
=> [[4,3,2],[]]
=> [[4,4,4],[2,1]]
=> [2,1]
=> 1
[4,3,1,1]
=> [[4,3,1,1],[]]
=> [[4,4,4,4],[3,3,1]]
=> [3,3,1]
=> 2
[4,2,2,1]
=> [[4,2,2,1],[]]
=> [[4,4,4,4],[3,2,2]]
=> [3,2,2]
=> 1
[3,3,3]
=> [[3,3,3],[]]
=> [[3,3,3],[]]
=> []
=> ? = 3
[3,3,2,1]
=> [[3,3,2,1],[]]
=> [[3,3,3,3],[2,1]]
=> [2,1]
=> 1
[3,3,1,1,1]
=> [[3,3,1,1,1],[]]
=> [[3,3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 3
[3,2,2,2]
=> [[3,2,2,2],[]]
=> [[3,3,3,3],[1,1,1]]
=> [1,1,1]
=> 3
[2,2,2,2,1]
=> [[2,2,2,2,1],[]]
=> [[2,2,2,2,2],[1]]
=> [1]
=> ? = 1
[6,4]
=> [[6,4],[]]
=> [[6,6],[2]]
=> [2]
=> 1
[5,5]
=> [[5,5],[]]
=> [[5,5],[]]
=> []
=> ? = 2
[5,4,1]
=> [[5,4,1],[]]
=> [[5,5,5],[4,1]]
=> [4,1]
=> 1
[4,4,2]
=> [[4,4,2],[]]
=> [[4,4,4],[2]]
=> [2]
=> 1
[4,4,1,1]
=> [[4,4,1,1],[]]
=> [[4,4,4,4],[3,3]]
=> [3,3]
=> 2
[4,3,3]
=> [[4,3,3],[]]
=> [[4,4,4],[1,1]]
=> [1,1]
=> 2
[4,3,2,1]
=> [[4,3,2,1],[]]
=> [[4,4,4,4],[3,2,1]]
=> [3,2,1]
=> 1
[3,3,3,1]
=> [[3,3,3,1],[]]
=> [[3,3,3,3],[2]]
=> [2]
=> 1
[2,2,2,2,2]
=> [[2,2,2,2,2],[]]
=> [[2,2,2,2,2],[]]
=> []
=> ? = 5
[6,5]
=> [[6,5],[]]
=> [[6,6],[1]]
=> [1]
=> ? = 1
[4,4,3]
=> [[4,4,3],[]]
=> [[4,4,4],[1]]
=> [1]
=> ? = 1
[3,3,3,2]
=> [[3,3,3,2],[]]
=> [[3,3,3,3],[1]]
=> [1]
=> ? = 1
[6,6]
=> [[6,6],[]]
=> [[6,6],[]]
=> []
=> ? = 2
[4,4,4]
=> [[4,4,4],[]]
=> [[4,4,4],[]]
=> []
=> ? = 3
[3,3,3,3]
=> [[3,3,3,3],[]]
=> [[3,3,3,3],[]]
=> []
=> ? = 4
[5,5,4]
=> [[5,5,4],[]]
=> [[5,5,5],[1]]
=> [1]
=> ? = 1
[5,5,5]
=> [[5,5,5],[]]
=> [[5,5,5],[]]
=> []
=> ? = 3
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St000153
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00284: Standard tableaux —rows⟶ Set partitions
Mp00080: Set partitions —to permutation⟶ Permutations
St000153: Permutations ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 100%
Mp00284: Standard tableaux —rows⟶ Set partitions
Mp00080: Set partitions —to permutation⟶ Permutations
St000153: Permutations ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 100%
Values
[1]
=> [[1]]
=> {{1}}
=> [1] => 1
[2]
=> [[1,2]]
=> {{1,2}}
=> [2,1] => 1
[1,1]
=> [[1],[2]]
=> {{1},{2}}
=> [1,2] => 2
[3]
=> [[1,2,3]]
=> {{1,2,3}}
=> [2,3,1] => 1
[2,1]
=> [[1,3],[2]]
=> {{1,3},{2}}
=> [3,2,1] => 1
[1,1,1]
=> [[1],[2],[3]]
=> {{1},{2},{3}}
=> [1,2,3] => 3
[4]
=> [[1,2,3,4]]
=> {{1,2,3,4}}
=> [2,3,4,1] => 1
[3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> [3,2,4,1] => 1
[2,2]
=> [[1,2],[3,4]]
=> {{1,2},{3,4}}
=> [2,1,4,3] => 2
[2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> [4,2,3,1] => 2
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> [1,2,3,4] => 4
[5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> [2,3,4,5,1] => 1
[4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> [3,2,4,5,1] => 1
[3,2]
=> [[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> [2,5,4,3,1] => 1
[3,1,1]
=> [[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> [4,2,3,5,1] => 2
[2,2,1]
=> [[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> [3,5,1,4,2] => 1
[2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => 3
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => 5
[6]
=> [[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => 1
[5,1]
=> [[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> [3,2,4,5,6,1] => 1
[4,2]
=> [[1,2,5,6],[3,4]]
=> {{1,2,5,6},{3,4}}
=> [2,5,4,3,6,1] => 1
[4,1,1]
=> [[1,4,5,6],[2],[3]]
=> {{1,4,5,6},{2},{3}}
=> [4,2,3,5,6,1] => 2
[3,3]
=> [[1,2,3],[4,5,6]]
=> {{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => 2
[3,2,1]
=> [[1,3,6],[2,5],[4]]
=> {{1,3,6},{2,5},{4}}
=> [3,5,6,4,2,1] => 1
[3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> {{1,5,6},{2},{3},{4}}
=> [5,2,3,4,6,1] => 3
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> {{1,2},{3,4},{5,6}}
=> [2,1,4,3,6,5] => 3
[2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> {{1,4},{2,6},{3},{5}}
=> [4,6,3,1,5,2] => 2
[2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> {{1,6},{2},{3},{4},{5}}
=> [6,2,3,4,5,1] => 4
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> {{1},{2},{3},{4},{5},{6}}
=> [1,2,3,4,5,6] => 6
[7]
=> [[1,2,3,4,5,6,7]]
=> {{1,2,3,4,5,6,7}}
=> [2,3,4,5,6,7,1] => 1
[6,1]
=> [[1,3,4,5,6,7],[2]]
=> {{1,3,4,5,6,7},{2}}
=> [3,2,4,5,6,7,1] => 1
[5,2]
=> [[1,2,5,6,7],[3,4]]
=> {{1,2,5,6,7},{3,4}}
=> [2,5,4,3,6,7,1] => ? = 1
[5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> {{1,4,5,6,7},{2},{3}}
=> [4,2,3,5,6,7,1] => 2
[4,3]
=> [[1,2,3,7],[4,5,6]]
=> {{1,2,3,7},{4,5,6}}
=> [2,3,7,5,6,4,1] => ? = 1
[4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> {{1,3,6,7},{2,5},{4}}
=> [3,5,6,4,2,7,1] => ? = 1
[4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> {{1,5,6,7},{2},{3},{4}}
=> [5,2,3,4,6,7,1] => 3
[3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> {{1,3,4},{2,6,7},{5}}
=> [3,6,4,1,5,7,2] => ? = 1
[3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> {{1,2,7},{3,4},{5,6}}
=> [2,7,4,3,6,5,1] => ? = 2
[3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> {{1,4,7},{2,6},{3},{5}}
=> [4,6,3,7,5,2,1] => ? = 2
[3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> {{1,6,7},{2},{3},{4},{5}}
=> [6,2,3,4,5,7,1] => 4
[2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> {{1,3},{2,5},{4,7},{6}}
=> [3,5,1,7,2,6,4] => ? = 1
[2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> {{1,5},{2,7},{3},{4},{6}}
=> [5,7,3,4,1,6,2] => ? = 3
[2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> {{1,7},{2},{3},{4},{5},{6}}
=> [7,2,3,4,5,6,1] => ? = 5
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> {{1},{2},{3},{4},{5},{6},{7}}
=> [1,2,3,4,5,6,7] => 7
[8]
=> [[1,2,3,4,5,6,7,8]]
=> {{1,2,3,4,5,6,7,8}}
=> [2,3,4,5,6,7,8,1] => 1
[6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> {{1,2,5,6,7,8},{3,4}}
=> [2,5,4,3,6,7,8,1] => ? = 1
[5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> {{1,2,3,7,8},{4,5,6}}
=> [2,3,7,5,6,4,8,1] => ? = 1
[5,2,1]
=> [[1,3,6,7,8],[2,5],[4]]
=> {{1,3,6,7,8},{2,5},{4}}
=> [3,5,6,4,2,7,8,1] => ? = 1
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> {{1,2,3,4},{5,6,7,8}}
=> [2,3,4,1,6,7,8,5] => 2
[4,3,1]
=> [[1,3,4,8],[2,6,7],[5]]
=> {{1,3,4,8},{2,6,7},{5}}
=> [3,6,4,8,5,7,2,1] => ? = 1
[4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> {{1,2,7,8},{3,4},{5,6}}
=> [2,7,4,3,6,5,8,1] => ? = 2
[4,2,1,1]
=> [[1,4,7,8],[2,6],[3],[5]]
=> {{1,4,7,8},{2,6},{3},{5}}
=> [4,6,3,7,5,2,8,1] => ? = 2
[3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> {{1,2,5},{3,4,8},{6,7}}
=> [2,5,4,8,1,7,6,3] => ? = 1
[3,3,1,1]
=> [[1,4,5],[2,7,8],[3],[6]]
=> {{1,4,5},{2,7,8},{3},{6}}
=> [4,7,3,5,1,6,8,2] => ? = 2
[3,2,2,1]
=> [[1,3,8],[2,5],[4,7],[6]]
=> {{1,3,8},{2,5},{4,7},{6}}
=> [3,5,8,7,2,6,4,1] => ? = 1
[3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> {{1,5,8},{2,7},{3},{4},{6}}
=> [5,7,3,4,8,6,2,1] => ? = 3
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> {{1,2},{3,4},{5,6},{7,8}}
=> [2,1,4,3,6,5,8,7] => 4
[2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> {{1,4},{2,6},{3,8},{5},{7}}
=> [4,6,8,1,5,2,7,3] => ? = 2
[2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> {{1,6},{2,8},{3},{4},{5},{7}}
=> [6,8,3,4,5,1,7,2] => ? = 4
[6,3]
=> [[1,2,3,7,8,9],[4,5,6]]
=> {{1,2,3,7,8,9},{4,5,6}}
=> [2,3,7,5,6,4,8,9,1] => ? = 1
[5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> {{1,2,3,4,9},{5,6,7,8}}
=> [2,3,4,9,6,7,8,5,1] => ? = 1
[5,3,1]
=> [[1,3,4,8,9],[2,6,7],[5]]
=> {{1,3,4,8,9},{2,6,7},{5}}
=> [3,6,4,8,5,7,2,9,1] => ? = 1
[4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> {{1,3,4,5},{2,7,8,9},{6}}
=> [3,7,4,5,1,6,8,9,2] => ? = 1
[4,3,2]
=> [[1,2,5,9],[3,4,8],[6,7]]
=> {{1,2,5,9},{3,4,8},{6,7}}
=> [2,5,4,8,9,7,6,3,1] => ? = 1
[4,3,1,1]
=> [[1,4,5,9],[2,7,8],[3],[6]]
=> {{1,4,5,9},{2,7,8},{3},{6}}
=> [4,7,3,5,9,6,8,2,1] => ? = 2
[4,2,2,1]
=> [[1,3,8,9],[2,5],[4,7],[6]]
=> {{1,3,8,9},{2,5},{4,7},{6}}
=> [3,5,8,7,2,6,4,9,1] => ? = 1
[3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> {{1,2,3},{4,5,6},{7,8,9}}
=> [2,3,1,5,6,4,8,9,7] => ? = 3
[3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8],[7]]
=> {{1,3,6},{2,5,9},{4,8},{7}}
=> [3,5,6,8,9,1,7,4,2] => ? = 1
[3,3,1,1,1]
=> [[1,5,6],[2,8,9],[3],[4],[7]]
=> {{1,5,6},{2,8,9},{3},{4},{7}}
=> [5,8,3,4,6,1,7,9,2] => ? = 3
[3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> {{1,2,9},{3,4},{5,6},{7,8}}
=> [2,9,4,3,6,5,8,7,1] => ? = 3
[2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> {{1,3},{2,5},{4,7},{6,9},{8}}
=> [3,5,1,7,2,9,4,8,6] => ? = 1
[6,4]
=> [[1,2,3,4,9,10],[5,6,7,8]]
=> {{1,2,3,4,9,10},{5,6,7,8}}
=> [2,3,4,9,6,7,8,5,10,1] => ? = 1
[5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> {{1,2,3,4,5},{6,7,8,9,10}}
=> [2,3,4,5,1,7,8,9,10,6] => ? = 2
[5,4,1]
=> [[1,3,4,5,10],[2,7,8,9],[6]]
=> {{1,3,4,5,10},{2,7,8,9},{6}}
=> [3,7,4,5,10,6,8,9,2,1] => ? = 1
[4,4,2]
=> [[1,2,5,6],[3,4,9,10],[7,8]]
=> {{1,2,5,6},{3,4,9,10},{7,8}}
=> [2,5,4,9,6,1,8,7,10,3] => ? = 1
[4,4,1,1]
=> [[1,4,5,6],[2,8,9,10],[3],[7]]
=> {{1,4,5,6},{2,8,9,10},{3},{7}}
=> [4,8,3,5,6,1,7,9,10,2] => ? = 2
[4,3,3]
=> [[1,2,3,10],[4,5,6],[7,8,9]]
=> {{1,2,3,10},{4,5,6},{7,8,9}}
=> [2,3,10,5,6,4,8,9,7,1] => ? = 2
[4,3,2,1]
=> [[1,3,6,10],[2,5,9],[4,8],[7]]
=> {{1,3,6,10},{2,5,9},{4,8},{7}}
=> [3,5,6,8,9,10,7,4,2,1] => ? = 1
[3,3,3,1]
=> [[1,3,4],[2,6,7],[5,9,10],[8]]
=> {{1,3,4},{2,6,7},{5,9,10},{8}}
=> [3,6,4,1,9,7,2,8,10,5] => ? = 1
[3,3,2,2]
=> [[1,2,7],[3,4,10],[5,6],[8,9]]
=> {{1,2,7},{3,4,10},{5,6},{8,9}}
=> [2,7,4,10,6,5,1,9,8,3] => ? = 2
[2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> {{1,2},{3,4},{5,6},{7,8},{9,10}}
=> [2,1,4,3,6,5,8,7,10,9] => 5
[6,5]
=> [[1,2,3,4,5,11],[6,7,8,9,10]]
=> ?
=> ? => ? = 1
[5,5,1]
=> [[1,3,4,5,6],[2,8,9,10,11],[7]]
=> ?
=> ? => ? = 1
[4,4,3]
=> [[1,2,3,7],[4,5,6,11],[8,9,10]]
=> {{1,2,3,7},{4,5,6,11},{8,9,10}}
=> ? => ? = 1
[4,4,2,1]
=> [[1,3,6,7],[2,5,10,11],[4,9],[8]]
=> {{1,3,6,7},{2,5,10,11},{4,9},{8}}
=> ? => ? = 1
[4,3,3,1]
=> [[1,3,4,11],[2,6,7],[5,9,10],[8]]
=> {{1,3,4,11},{2,6,7},{5,9,10},{8}}
=> ? => ? = 1
[3,3,3,2]
=> [[1,2,5],[3,4,8],[6,7,11],[9,10]]
=> {{1,2,5},{3,4,8},{6,7,11},{9,10}}
=> ? => ? = 1
[6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> {{1,2,3,4,5,6},{7,8,9,10,11,12}}
=> [2,3,4,5,6,1,8,9,10,11,12,7] => ? = 2
[5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ?
=> ? => ? = 1
Description
The number of adjacent cycles of a permutation.
This is the number of cycles of the permutation of the form (i,i+1,i+2,...i+k) which includes the fixed points (i).
Matching statistic: St000910
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000910: Posets ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 100%
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000910: Posets ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 100%
Values
[1]
=> [[1]]
=> [1] => ([],1)
=> ? = 1
[2]
=> [[1,2]]
=> [1,2] => ([(0,1)],2)
=> 1
[1,1]
=> [[1],[2]]
=> [2,1] => ([],2)
=> 2
[3]
=> [[1,2,3]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[2,1]
=> [[1,2],[3]]
=> [3,1,2] => ([(1,2)],3)
=> 1
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => ([],3)
=> 3
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> 1
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> 2
[2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(2,3)],4)
=> 2
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => ([],4)
=> 4
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> 1
[3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> 1
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 2
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 1
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => ([(3,4)],5)
=> 3
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => ([],5)
=> 5
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> 1
[4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,5),(1,3),(4,2),(5,4)],6)
=> 1
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(2,3),(3,5),(5,4)],6)
=> 2
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => ([(0,5),(1,4),(4,2),(5,3)],6)
=> 2
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(1,3),(2,4),(4,5)],6)
=> 1
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => ([(3,4),(4,5)],6)
=> 3
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => ([(0,5),(1,4),(2,3)],6)
=> 3
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => ([(2,5),(3,4)],6)
=> 2
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => ([(4,5)],6)
=> 4
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => ([],6)
=> 6
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 1
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7)
=> ? = 1
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => ([(0,6),(1,3),(4,5),(5,2),(6,4)],7)
=> ? = 1
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ([(2,6),(4,5),(5,3),(6,4)],7)
=> ? = 2
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => ([(0,5),(1,6),(4,3),(5,4),(6,2)],7)
=> ? = 1
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ([(1,6),(2,4),(5,3),(6,5)],7)
=> ? = 1
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ([(3,4),(4,6),(6,5)],7)
=> 3
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ([(1,6),(2,5),(5,3),(6,4)],7)
=> ? = 1
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ([(0,5),(1,4),(2,6),(6,3)],7)
=> ? = 2
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ([(2,4),(3,5),(5,6)],7)
=> ? = 2
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ([(4,5),(5,6)],7)
=> 4
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ([(1,6),(2,5),(3,4)],7)
=> ? = 1
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ([(3,6),(4,5)],7)
=> 3
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ([(5,6)],7)
=> 5
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ([],7)
=> 7
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [1,2,3,4,5,6,7,8] => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 1
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [7,8,1,2,3,4,5,6] => ([(0,7),(1,3),(4,6),(5,4),(6,2),(7,5)],8)
=> ? = 1
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [6,7,8,1,2,3,4,5] => ([(0,7),(1,6),(4,5),(5,3),(6,4),(7,2)],8)
=> ? = 1
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [8,6,7,1,2,3,4,5] => ([(1,7),(2,4),(5,6),(6,3),(7,5)],8)
=> ? = 1
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => ([(0,7),(1,6),(4,2),(5,3),(6,4),(7,5)],8)
=> ? = 2
[4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> [8,5,6,7,1,2,3,4] => ([(1,6),(2,7),(5,4),(6,5),(7,3)],8)
=> ? = 1
[4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> [7,8,5,6,1,2,3,4] => ([(0,5),(1,4),(2,7),(6,3),(7,6)],8)
=> ? = 2
[4,2,1,1]
=> [[1,2,3,4],[5,6],[7],[8]]
=> [8,7,5,6,1,2,3,4] => ([(2,4),(3,5),(5,6),(6,7)],8)
=> ? = 2
[3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [7,8,4,5,6,1,2,3] => ([(0,5),(1,7),(2,6),(6,3),(7,4)],8)
=> ? = 1
[3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => ([(2,5),(3,4),(4,6),(5,7)],8)
=> ? = 2
[3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [8,6,7,4,5,1,2,3] => ([(1,5),(2,4),(3,6),(6,7)],8)
=> ? = 1
[3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => ([(3,5),(4,6),(6,7)],8)
=> ? = 3
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ([(0,7),(1,6),(2,5),(3,4)],8)
=> ? = 4
[2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ([(2,7),(3,6),(4,5)],8)
=> ? = 2
[2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ([(4,7),(5,6)],8)
=> ? = 4
[6,3]
=> [[1,2,3,4,5,6],[7,8,9]]
=> [7,8,9,1,2,3,4,5,6] => ([(0,8),(1,7),(4,6),(5,4),(6,3),(7,5),(8,2)],9)
=> ? = 1
[5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> [6,7,8,9,1,2,3,4,5] => ([(0,7),(1,8),(4,5),(5,2),(6,3),(7,6),(8,4)],9)
=> ? = 1
[5,3,1]
=> [[1,2,3,4,5],[6,7,8],[9]]
=> [9,6,7,8,1,2,3,4,5] => ([(1,8),(2,7),(5,6),(6,4),(7,5),(8,3)],9)
=> ? = 1
[4,4,1]
=> [[1,2,3,4],[5,6,7,8],[9]]
=> [9,5,6,7,8,1,2,3,4] => ([(1,8),(2,7),(5,3),(6,4),(7,5),(8,6)],9)
=> ? = 1
[4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> [8,9,5,6,7,1,2,3,4] => ([(0,5),(1,7),(2,8),(6,3),(7,4),(8,6)],9)
=> ? = 1
[4,3,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9]]
=> [9,8,5,6,7,1,2,3,4] => ([(2,7),(3,8),(6,5),(7,6),(8,4)],9)
=> ? = 2
[4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,1,2,3,4] => ([(1,6),(2,5),(3,8),(7,4),(8,7)],9)
=> ? = 1
[3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [7,8,9,4,5,6,1,2,3] => ([(0,8),(1,7),(2,6),(6,3),(7,4),(8,5)],9)
=> ? = 3
[3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9]]
=> [9,7,8,4,5,6,1,2,3] => ([(1,6),(2,8),(3,7),(7,4),(8,5)],9)
=> ? = 1
[3,3,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9]]
=> [9,8,7,4,5,6,1,2,3] => ([(3,6),(4,5),(5,7),(6,8)],9)
=> ? = 3
[3,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9]]
=> [8,9,6,7,4,5,1,2,3] => ([(0,7),(1,6),(2,5),(3,8),(8,4)],9)
=> ? = 3
[2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,3,4,1,2] => ([(1,8),(2,7),(3,6),(4,5)],9)
=> ? = 1
[6,4]
=> [[1,2,3,4,5,6],[7,8,9,10]]
=> [7,8,9,10,1,2,3,4,5,6] => ([(0,8),(1,9),(4,6),(5,4),(6,3),(7,2),(8,7),(9,5)],10)
=> ? = 1
[5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> [6,7,8,9,10,1,2,3,4,5] => ([(0,9),(1,8),(4,6),(5,7),(6,2),(7,3),(8,4),(9,5)],10)
=> ? = 2
[5,4,1]
=> [[1,2,3,4,5],[6,7,8,9],[10]]
=> [10,6,7,8,9,1,2,3,4,5] => ([(1,8),(2,9),(5,6),(6,3),(7,4),(8,7),(9,5)],10)
=> ? = 1
[4,4,2]
=> [[1,2,3,4],[5,6,7,8],[9,10]]
=> [9,10,5,6,7,8,1,2,3,4] => ([(0,9),(1,8),(2,5),(6,3),(7,4),(8,6),(9,7)],10)
=> ? = 1
[4,4,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10]]
=> [10,9,5,6,7,8,1,2,3,4] => ([(2,9),(3,8),(6,4),(7,5),(8,6),(9,7)],10)
=> ? = 2
[4,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10]]
=> [8,9,10,5,6,7,1,2,3,4] => ([(0,9),(1,8),(2,7),(6,5),(7,6),(8,3),(9,4)],10)
=> ? = 2
[4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> [10,8,9,5,6,7,1,2,3,4] => ([(1,6),(2,8),(3,9),(7,4),(8,5),(9,7)],10)
=> ? = 1
[3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10]]
=> [10,7,8,9,4,5,6,1,2,3] => ([(1,9),(2,8),(3,7),(7,4),(8,5),(9,6)],10)
=> ? = 1
[3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> [9,10,7,8,4,5,6,1,2,3] => ([(0,7),(1,6),(2,9),(3,8),(8,4),(9,5)],10)
=> ? = 2
[2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> [9,10,7,8,5,6,3,4,1,2] => ([(0,9),(1,8),(2,7),(3,6),(4,5)],10)
=> ? = 5
[6,5]
=> [[1,2,3,4,5,6],[7,8,9,10,11]]
=> ? => ?
=> ? = 1
[5,5,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11]]
=> ? => ?
=> ? = 1
Description
The number of maximal chains of minimal length in a poset.
Matching statistic: St000773
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000773: Graphs ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 71%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000773: Graphs ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 71%
Values
[1]
=> 10 => [1,2] => ([(1,2)],3)
=> 1
[2]
=> 100 => [1,3] => ([(2,3)],4)
=> 1
[1,1]
=> 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[3]
=> 1000 => [1,4] => ([(3,4)],5)
=> 1
[2,1]
=> 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1]
=> 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4]
=> 10000 => [1,5] => ([(4,5)],6)
=> 1
[3,1]
=> 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,2]
=> 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[2,1,1]
=> 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1]
=> 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[5]
=> 100000 => [1,6] => ([(5,6)],7)
=> 1
[4,1]
=> 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[3,2]
=> 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[3,1,1]
=> 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[2,2,1]
=> 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,1,1,1]
=> 101110 => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,1,1,1,1]
=> 111110 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[6]
=> 1000000 => [1,7] => ([(6,7)],8)
=> ? = 1
[5,1]
=> 1000010 => [1,5,2] => ([(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[4,2]
=> 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[4,1,1]
=> 1000110 => [1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[3,3]
=> 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[3,2,1]
=> 101010 => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[3,1,1,1]
=> 1001110 => [1,3,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,2,2]
=> 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,2,1,1]
=> 110110 => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[2,1,1,1,1]
=> 1011110 => [1,2,1,1,1,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,1,1,1]
=> 1111110 => [1,1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[7]
=> 10000000 => [1,8] => ([(7,8)],9)
=> ? = 1
[6,1]
=> 10000010 => [1,6,2] => ([(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
[5,2]
=> 1000100 => [1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[5,1,1]
=> 10000110 => [1,5,1,2] => ([(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
[4,3]
=> 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[4,2,1]
=> 1001010 => [1,3,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[4,1,1,1]
=> 10001110 => [1,4,1,1,2] => ([(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3
[3,3,1]
=> 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[3,2,2]
=> 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[3,2,1,1]
=> 1010110 => [1,2,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[3,1,1,1,1]
=> 10011110 => [1,3,1,1,1,2] => ([(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 4
[2,2,2,1]
=> 111010 => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[2,2,1,1,1]
=> 1101110 => [1,1,2,1,1,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,1,1,1,1,1]
=> 10111110 => [1,2,1,1,1,1,2] => ([(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5
[1,1,1,1,1,1,1]
=> 11111110 => [1,1,1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7
[8]
=> 100000000 => [1,9] => ([(8,9)],10)
=> ? = 1
[6,2]
=> 10000100 => [1,5,3] => ([(2,8),(3,8),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
[5,3]
=> 1001000 => [1,3,4] => ([(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[5,2,1]
=> 10001010 => [1,4,2,2] => ([(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
[4,4]
=> 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 2
[4,3,1]
=> 1010010 => [1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[4,2,2]
=> 1001100 => [1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[4,2,1,1]
=> 10010110 => [1,3,2,1,2] => ([(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
[3,3,2]
=> 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[3,3,1,1]
=> 1100110 => [1,1,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[3,2,2,1]
=> 1011010 => [1,2,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[3,2,1,1,1]
=> 10101110 => [1,2,2,1,1,2] => ([(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3
[2,2,2,2]
=> 111100 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[2,2,2,1,1]
=> 1110110 => [1,1,1,2,1,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,1,1,1,1]
=> 11011110 => [1,1,2,1,1,1,2] => ([(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 4
[6,3]
=> 10001000 => [1,4,4] => ([(3,8),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
[5,4]
=> 1010000 => [1,2,5] => ([(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[5,3,1]
=> 10010010 => [1,3,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
[4,4,1]
=> 1100010 => [1,1,4,2] => ([(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[4,3,2]
=> 1010100 => [1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[4,3,1,1]
=> 10100110 => [1,2,3,1,2] => ([(1,7),(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
[4,2,2,1]
=> 10011010 => [1,3,1,2,2] => ([(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
[3,3,3]
=> 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[3,3,2,1]
=> 1101010 => [1,1,2,2,2] => ([(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[3,3,1,1,1]
=> 11001110 => [1,1,3,1,1,2] => ([(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3
[3,2,2,2]
=> 1011100 => [1,2,1,1,3] => ([(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,2,2,2,1]
=> 1111010 => [1,1,1,1,2,2] => ([(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[6,4]
=> 10010000 => [1,3,5] => ([(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
[5,5]
=> 1100000 => [1,1,6] => ([(5,6),(5,7),(6,7)],8)
=> ? = 2
[5,4,1]
=> 10100010 => [1,2,4,2] => ([(1,8),(2,8),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
[4,4,2]
=> 1100100 => [1,1,3,3] => ([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[4,4,1,1]
=> 11000110 => [1,1,4,1,2] => ([(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
[4,3,3]
=> 1011000 => [1,2,1,4] => ([(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[4,3,2,1]
=> 10101010 => [1,2,2,2,2] => ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
[3,3,3,1]
=> 1110010 => [1,1,1,3,2] => ([(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[3,3,2,2]
=> 1101100 => [1,1,2,1,3] => ([(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,2,2,2]
=> 1111100 => [1,1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
Description
The multiplicity of the largest Laplacian eigenvalue in a graph.
Matching statistic: St001232
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 86%
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 86%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ? = 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> ? = 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? = 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> ? = 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? = 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 3
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? = 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? = 3
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 4
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? = 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 3
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? = 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ? = 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? = 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 4
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 3
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 5
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 7
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> ? = 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? = 2
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? = 2
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ? = 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? = 2
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ? = 1
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 3
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4
[2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 4
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> ? = 1
[5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
[5,3,1]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1
[4,4,1]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 1
[4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 2
[4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? = 1
[3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 2
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 5
[4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3
[3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 4
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
The following 3 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!