Identifier
-
Mp00044:
Integer partitions
—conjugate⟶
Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00280: Binary words —path rowmotion⟶ Binary words
St000326: Binary words ⟶ ℤ
Values
[1] => [1] => 10 => 11 => 1
[2] => [1,1] => 110 => 111 => 1
[1,1] => [2] => 100 => 011 => 2
[3] => [1,1,1] => 1110 => 1111 => 1
[2,1] => [2,1] => 1010 => 1101 => 1
[1,1,1] => [3] => 1000 => 0011 => 3
[4] => [1,1,1,1] => 11110 => 11111 => 1
[3,1] => [2,1,1] => 10110 => 11011 => 1
[2,2] => [2,2] => 1100 => 0111 => 2
[2,1,1] => [3,1] => 10010 => 01101 => 2
[1,1,1,1] => [4] => 10000 => 00011 => 4
[5] => [1,1,1,1,1] => 111110 => 111111 => 1
[4,1] => [2,1,1,1] => 101110 => 110111 => 1
[3,2] => [2,2,1] => 11010 => 11101 => 1
[3,1,1] => [3,1,1] => 100110 => 011011 => 2
[2,2,1] => [3,2] => 10100 => 11001 => 1
[2,1,1,1] => [4,1] => 100010 => 001101 => 3
[1,1,1,1,1] => [5] => 100000 => 000011 => 5
[6] => [1,1,1,1,1,1] => 1111110 => 1111111 => 1
[5,1] => [2,1,1,1,1] => 1011110 => 1101111 => 1
[4,2] => [2,2,1,1] => 110110 => 111011 => 1
[4,1,1] => [3,1,1,1] => 1001110 => 0110111 => 2
[3,3] => [2,2,2] => 11100 => 01111 => 2
[3,2,1] => [3,2,1] => 101010 => 110101 => 1
[3,1,1,1] => [4,1,1] => 1000110 => 0011011 => 3
[2,2,2] => [3,3] => 11000 => 00111 => 3
[2,2,1,1] => [4,2] => 100100 => 011001 => 2
[2,1,1,1,1] => [5,1] => 1000010 => 0001101 => 4
[1,1,1,1,1,1] => [6] => 1000000 => 0000011 => 6
[7] => [1,1,1,1,1,1,1] => 11111110 => 11111111 => 1
[6,1] => [2,1,1,1,1,1] => 10111110 => 11011111 => 1
[5,2] => [2,2,1,1,1] => 1101110 => 1110111 => 1
[5,1,1] => [3,1,1,1,1] => 10011110 => 01101111 => 2
[4,3] => [2,2,2,1] => 111010 => 111101 => 1
[4,2,1] => [3,2,1,1] => 1010110 => 1101011 => 1
[4,1,1,1] => [4,1,1,1] => 10001110 => 00110111 => 3
[3,3,1] => [3,2,2] => 101100 => 110011 => 1
[3,2,2] => [3,3,1] => 110010 => 011101 => 2
[3,2,1,1] => [4,2,1] => 1001010 => 0110101 => 2
[3,1,1,1,1] => [5,1,1] => 10000110 => 00011011 => 4
[2,2,2,1] => [4,3] => 101000 => 110001 => 1
[2,2,1,1,1] => [5,2] => 1000100 => 0011001 => 3
[2,1,1,1,1,1] => [6,1] => 10000010 => 00001101 => 5
[1,1,1,1,1,1,1] => [7] => 10000000 => 00000011 => 7
[8] => [1,1,1,1,1,1,1,1] => 111111110 => 111111111 => 1
[7,1] => [2,1,1,1,1,1,1] => 101111110 => 110111111 => 1
[6,2] => [2,2,1,1,1,1] => 11011110 => 11101111 => 1
[6,1,1] => [3,1,1,1,1,1] => 100111110 => 011011111 => 2
[5,3] => [2,2,2,1,1] => 1110110 => 1111011 => 1
[5,2,1] => [3,2,1,1,1] => 10101110 => 11010111 => 1
[5,1,1,1] => [4,1,1,1,1] => 100011110 => 001101111 => 3
[4,4] => [2,2,2,2] => 111100 => 011111 => 2
[4,3,1] => [3,2,2,1] => 1011010 => 1101101 => 1
[4,2,2] => [3,3,1,1] => 1100110 => 0111011 => 2
[4,2,1,1] => [4,2,1,1] => 10010110 => 01101011 => 2
[4,1,1,1,1] => [5,1,1,1] => 100001110 => 000110111 => 4
[3,3,2] => [3,3,2] => 110100 => 111001 => 1
[3,3,1,1] => [4,2,2] => 1001100 => 0110011 => 2
[3,2,2,1] => [4,3,1] => 1010010 => 1100101 => 1
[3,2,1,1,1] => [5,2,1] => 10001010 => 00110101 => 3
[3,1,1,1,1,1] => [6,1,1] => 100000110 => 000011011 => 5
[2,2,2,2] => [4,4] => 110000 => 000111 => 4
[2,2,2,1,1] => [5,3] => 1001000 => 0110001 => 2
[2,2,1,1,1,1] => [6,2] => 10000100 => 00011001 => 4
[2,1,1,1,1,1,1] => [7,1] => 100000010 => 000001101 => 6
[1,1,1,1,1,1,1,1] => [8] => 100000000 => 000000011 => 8
[7,2] => [2,2,1,1,1,1,1] => 110111110 => 111011111 => 1
[7,1,1] => [3,1,1,1,1,1,1] => 1001111110 => 0110111111 => 2
[6,3] => [2,2,2,1,1,1] => 11101110 => 11110111 => 1
[6,2,1] => [3,2,1,1,1,1] => 101011110 => 110101111 => 1
[5,4] => [2,2,2,2,1] => 1111010 => 1111101 => 1
[5,3,1] => [3,2,2,1,1] => 10110110 => 11011011 => 1
[5,2,2] => [3,3,1,1,1] => 11001110 => 01110111 => 2
[5,2,1,1] => [4,2,1,1,1] => 100101110 => 011010111 => 2
[5,1,1,1,1] => [5,1,1,1,1] => 1000011110 => 0001101111 => 4
[4,4,1] => [3,2,2,2] => 1011100 => 1100111 => 1
[4,3,2] => [3,3,2,1] => 1101010 => 1110101 => 1
[4,3,1,1] => [4,2,2,1] => 10011010 => 01101101 => 2
[4,2,2,1] => [4,3,1,1] => 10100110 => 11001011 => 1
[4,2,1,1,1] => [5,2,1,1] => 100010110 => 001101011 => 3
[4,1,1,1,1,1] => [6,1,1,1] => 1000001110 => 0000110111 => 5
[3,3,3] => [3,3,3] => 111000 => 001111 => 3
[3,3,2,1] => [4,3,2] => 1010100 => 1101001 => 1
[3,3,1,1,1] => [5,2,2] => 10001100 => 00110011 => 3
[3,2,2,2] => [4,4,1] => 1100010 => 0011101 => 3
[3,2,2,1,1] => [5,3,1] => 10010010 => 01100101 => 2
[3,2,1,1,1,1] => [6,2,1] => 100001010 => 000110101 => 4
[3,1,1,1,1,1,1] => [7,1,1] => 1000000110 => 0000011011 => 6
[2,2,2,2,1] => [5,4] => 1010000 => 1100001 => 1
[2,2,2,1,1,1] => [6,3] => 10001000 => 00110001 => 3
[2,2,1,1,1,1,1] => [7,2] => 100000100 => 000011001 => 5
[2,1,1,1,1,1,1,1] => [8,1] => 1000000010 => 0000001101 => 7
[1,1,1,1,1,1,1,1,1] => [9] => 1000000000 => 0000000011 => 9
[7,3] => [2,2,2,1,1,1,1] => 111011110 => 111101111 => 1
[6,4] => [2,2,2,2,1,1] => 11110110 => 11111011 => 1
[6,3,1] => [3,2,2,1,1,1] => 101101110 => 110110111 => 1
[6,2,2] => [3,3,1,1,1,1] => 110011110 => 011101111 => 2
[5,5] => [2,2,2,2,2] => 1111100 => 0111111 => 2
[5,4,1] => [3,2,2,2,1] => 10111010 => 11011101 => 1
[5,3,2] => [3,3,2,1,1] => 11010110 => 11101011 => 1
[5,3,1,1] => [4,2,2,1,1] => 100110110 => 011011011 => 2
>>> Load all 263 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The position of the first one in a binary word after appending a 1 at the end.
Regarding the binary word as a subset of $\{1,\dots,n,n+1\}$ that contains $n+1$, this is the minimal element of the set.
Regarding the binary word as a subset of $\{1,\dots,n,n+1\}$ that contains $n+1$, this is the minimal element of the set.
Map
path rowmotion
Description
Return the rowmotion of the binary word, regarded as a lattice path.
Consider the binary word of length $n$ as a lattice path with $n$ steps, where a 1 corresponds to an up step and a 0 corresponds to a down step.
This map returns the path whose peaks are the valleys of the original path with an up step appended.
Consider the binary word of length $n$ as a lattice path with $n$ steps, where a 1 corresponds to an up step and a 0 corresponds to a down step.
This map returns the path whose peaks are the valleys of the original path with an up step appended.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!