Identifier
-
Mp00179:
Integer partitions
—to skew partition⟶
Skew partitions
Mp00189: Skew partitions —rotate⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000993: Integer partitions ⟶ ℤ
Values
[3,1] => [[3,1],[]] => [[3,3],[2]] => [2] => 1
[2,1,1] => [[2,1,1],[]] => [[2,2,2],[1,1]] => [1,1] => 2
[4,1] => [[4,1],[]] => [[4,4],[3]] => [3] => 1
[3,1,1] => [[3,1,1],[]] => [[3,3,3],[2,2]] => [2,2] => 2
[2,1,1,1] => [[2,1,1,1],[]] => [[2,2,2,2],[1,1,1]] => [1,1,1] => 3
[5,1] => [[5,1],[]] => [[5,5],[4]] => [4] => 1
[4,2] => [[4,2],[]] => [[4,4],[2]] => [2] => 1
[4,1,1] => [[4,1,1],[]] => [[4,4,4],[3,3]] => [3,3] => 2
[3,2,1] => [[3,2,1],[]] => [[3,3,3],[2,1]] => [2,1] => 1
[3,1,1,1] => [[3,1,1,1],[]] => [[3,3,3,3],[2,2,2]] => [2,2,2] => 3
[2,2,1,1] => [[2,2,1,1],[]] => [[2,2,2,2],[1,1]] => [1,1] => 2
[2,1,1,1,1] => [[2,1,1,1,1],[]] => [[2,2,2,2,2],[1,1,1,1]] => [1,1,1,1] => 4
[6,1] => [[6,1],[]] => [[6,6],[5]] => [5] => 1
[5,2] => [[5,2],[]] => [[5,5],[3]] => [3] => 1
[5,1,1] => [[5,1,1],[]] => [[5,5,5],[4,4]] => [4,4] => 2
[4,2,1] => [[4,2,1],[]] => [[4,4,4],[3,2]] => [3,2] => 1
[4,1,1,1] => [[4,1,1,1],[]] => [[4,4,4,4],[3,3,3]] => [3,3,3] => 3
[3,3,1] => [[3,3,1],[]] => [[3,3,3],[2]] => [2] => 1
[3,2,2] => [[3,2,2],[]] => [[3,3,3],[1,1]] => [1,1] => 2
[3,2,1,1] => [[3,2,1,1],[]] => [[3,3,3,3],[2,2,1]] => [2,2,1] => 2
[3,1,1,1,1] => [[3,1,1,1,1],[]] => [[3,3,3,3,3],[2,2,2,2]] => [2,2,2,2] => 4
[2,2,1,1,1] => [[2,2,1,1,1],[]] => [[2,2,2,2,2],[1,1,1]] => [1,1,1] => 3
[2,1,1,1,1,1] => [[2,1,1,1,1,1],[]] => [[2,2,2,2,2,2],[1,1,1,1,1]] => [1,1,1,1,1] => 5
[7,1] => [[7,1],[]] => [[7,7],[6]] => [6] => 1
[6,2] => [[6,2],[]] => [[6,6],[4]] => [4] => 1
[6,1,1] => [[6,1,1],[]] => [[6,6,6],[5,5]] => [5,5] => 2
[5,3] => [[5,3],[]] => [[5,5],[2]] => [2] => 1
[5,2,1] => [[5,2,1],[]] => [[5,5,5],[4,3]] => [4,3] => 1
[5,1,1,1] => [[5,1,1,1],[]] => [[5,5,5,5],[4,4,4]] => [4,4,4] => 3
[4,3,1] => [[4,3,1],[]] => [[4,4,4],[3,1]] => [3,1] => 1
[4,2,2] => [[4,2,2],[]] => [[4,4,4],[2,2]] => [2,2] => 2
[4,2,1,1] => [[4,2,1,1],[]] => [[4,4,4,4],[3,3,2]] => [3,3,2] => 2
[4,1,1,1,1] => [[4,1,1,1,1],[]] => [[4,4,4,4,4],[3,3,3,3]] => [3,3,3,3] => 4
[3,3,1,1] => [[3,3,1,1],[]] => [[3,3,3,3],[2,2]] => [2,2] => 2
[3,2,2,1] => [[3,2,2,1],[]] => [[3,3,3,3],[2,1,1]] => [2,1,1] => 1
[3,2,1,1,1] => [[3,2,1,1,1],[]] => [[3,3,3,3,3],[2,2,2,1]] => [2,2,2,1] => 3
[3,1,1,1,1,1] => [[3,1,1,1,1,1],[]] => [[3,3,3,3,3,3],[2,2,2,2,2]] => [2,2,2,2,2] => 5
[2,2,2,1,1] => [[2,2,2,1,1],[]] => [[2,2,2,2,2],[1,1]] => [1,1] => 2
[2,2,1,1,1,1] => [[2,2,1,1,1,1],[]] => [[2,2,2,2,2,2],[1,1,1,1]] => [1,1,1,1] => 4
[2,1,1,1,1,1,1] => [[2,1,1,1,1,1,1],[]] => [[2,2,2,2,2,2,2],[1,1,1,1,1,1]] => [1,1,1,1,1,1] => 6
[8,1] => [[8,1],[]] => [[8,8],[7]] => [7] => 1
[7,2] => [[7,2],[]] => [[7,7],[5]] => [5] => 1
[7,1,1] => [[7,1,1],[]] => [[7,7,7],[6,6]] => [6,6] => 2
[6,3] => [[6,3],[]] => [[6,6],[3]] => [3] => 1
[6,2,1] => [[6,2,1],[]] => [[6,6,6],[5,4]] => [5,4] => 1
[5,3,1] => [[5,3,1],[]] => [[5,5,5],[4,2]] => [4,2] => 1
[5,2,2] => [[5,2,2],[]] => [[5,5,5],[3,3]] => [3,3] => 2
[5,2,1,1] => [[5,2,1,1],[]] => [[5,5,5,5],[4,4,3]] => [4,4,3] => 2
[4,4,1] => [[4,4,1],[]] => [[4,4,4],[3]] => [3] => 1
[4,3,2] => [[4,3,2],[]] => [[4,4,4],[2,1]] => [2,1] => 1
[4,3,1,1] => [[4,3,1,1],[]] => [[4,4,4,4],[3,3,1]] => [3,3,1] => 2
[4,2,2,1] => [[4,2,2,1],[]] => [[4,4,4,4],[3,2,2]] => [3,2,2] => 1
[4,2,1,1,1] => [[4,2,1,1,1],[]] => [[4,4,4,4,4],[3,3,3,2]] => [3,3,3,2] => 3
[3,3,2,1] => [[3,3,2,1],[]] => [[3,3,3,3],[2,1]] => [2,1] => 1
[3,3,1,1,1] => [[3,3,1,1,1],[]] => [[3,3,3,3,3],[2,2,2]] => [2,2,2] => 3
[3,2,2,2] => [[3,2,2,2],[]] => [[3,3,3,3],[1,1,1]] => [1,1,1] => 3
[3,2,2,1,1] => [[3,2,2,1,1],[]] => [[3,3,3,3,3],[2,2,1,1]] => [2,2,1,1] => 2
[3,2,1,1,1,1] => [[3,2,1,1,1,1],[]] => [[3,3,3,3,3,3],[2,2,2,2,1]] => [2,2,2,2,1] => 4
[3,1,1,1,1,1,1] => [[3,1,1,1,1,1,1],[]] => [[3,3,3,3,3,3,3],[2,2,2,2,2,2]] => [2,2,2,2,2,2] => 6
[2,2,2,1,1,1] => [[2,2,2,1,1,1],[]] => [[2,2,2,2,2,2],[1,1,1]] => [1,1,1] => 3
[2,2,1,1,1,1,1] => [[2,2,1,1,1,1,1],[]] => [[2,2,2,2,2,2,2],[1,1,1,1,1]] => [1,1,1,1,1] => 5
[2,1,1,1,1,1,1,1] => [[2,1,1,1,1,1,1,1],[]] => [[2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1]] => [1,1,1,1,1,1,1] => 7
[9,1] => [[9,1],[]] => [[9,9],[8]] => [8] => 1
[8,2] => [[8,2],[]] => [[8,8],[6]] => [6] => 1
[7,3] => [[7,3],[]] => [[7,7],[4]] => [4] => 1
[7,2,1] => [[7,2,1],[]] => [[7,7,7],[6,5]] => [6,5] => 1
[6,4] => [[6,4],[]] => [[6,6],[2]] => [2] => 1
[6,3,1] => [[6,3,1],[]] => [[6,6,6],[5,3]] => [5,3] => 1
[6,2,2] => [[6,2,2],[]] => [[6,6,6],[4,4]] => [4,4] => 2
[5,4,1] => [[5,4,1],[]] => [[5,5,5],[4,1]] => [4,1] => 1
[5,3,2] => [[5,3,2],[]] => [[5,5,5],[3,2]] => [3,2] => 1
[5,3,1,1] => [[5,3,1,1],[]] => [[5,5,5,5],[4,4,2]] => [4,4,2] => 2
[5,2,2,1] => [[5,2,2,1],[]] => [[5,5,5,5],[4,3,3]] => [4,3,3] => 1
[4,4,2] => [[4,4,2],[]] => [[4,4,4],[2]] => [2] => 1
[4,4,1,1] => [[4,4,1,1],[]] => [[4,4,4,4],[3,3]] => [3,3] => 2
[4,3,3] => [[4,3,3],[]] => [[4,4,4],[1,1]] => [1,1] => 2
[4,3,2,1] => [[4,3,2,1],[]] => [[4,4,4,4],[3,2,1]] => [3,2,1] => 1
[4,3,1,1,1] => [[4,3,1,1,1],[]] => [[4,4,4,4,4],[3,3,3,1]] => [3,3,3,1] => 3
[4,2,2,2] => [[4,2,2,2],[]] => [[4,4,4,4],[2,2,2]] => [2,2,2] => 3
[4,2,2,1,1] => [[4,2,2,1,1],[]] => [[4,4,4,4,4],[3,3,2,2]] => [3,3,2,2] => 2
[3,3,3,1] => [[3,3,3,1],[]] => [[3,3,3,3],[2]] => [2] => 1
[3,3,2,2] => [[3,3,2,2],[]] => [[3,3,3,3],[1,1]] => [1,1] => 2
[3,3,2,1,1] => [[3,3,2,1,1],[]] => [[3,3,3,3,3],[2,2,1]] => [2,2,1] => 2
[3,3,1,1,1,1] => [[3,3,1,1,1,1],[]] => [[3,3,3,3,3,3],[2,2,2,2]] => [2,2,2,2] => 4
[3,2,2,2,1] => [[3,2,2,2,1],[]] => [[3,3,3,3,3],[2,1,1,1]] => [2,1,1,1] => 1
[3,2,2,1,1,1] => [[3,2,2,1,1,1],[]] => [[3,3,3,3,3,3],[2,2,2,1,1]] => [2,2,2,1,1] => 3
[3,2,1,1,1,1,1] => [[3,2,1,1,1,1,1],[]] => [[3,3,3,3,3,3,3],[2,2,2,2,2,1]] => [2,2,2,2,2,1] => 5
[2,2,2,2,1,1] => [[2,2,2,2,1,1],[]] => [[2,2,2,2,2,2],[1,1]] => [1,1] => 2
[2,2,2,1,1,1,1] => [[2,2,2,1,1,1,1],[]] => [[2,2,2,2,2,2,2],[1,1,1,1]] => [1,1,1,1] => 4
[2,2,1,1,1,1,1,1] => [[2,2,1,1,1,1,1,1],[]] => [[2,2,2,2,2,2,2,2],[1,1,1,1,1,1]] => [1,1,1,1,1,1] => 6
[2,1,1,1,1,1,1,1,1] => [[2,1,1,1,1,1,1,1,1],[]] => [[2,2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1,1]] => [1,1,1,1,1,1,1,1] => 8
[5,5,1] => [[5,5,1],[]] => [[5,5,5],[4]] => [4] => 1
[5,4,2] => [[5,4,2],[]] => [[5,5,5],[3,1]] => [3,1] => 1
[5,4,1,1] => [[5,4,1,1],[]] => [[5,5,5,5],[4,4,1]] => [4,4,1] => 2
[5,3,3] => [[5,3,3],[]] => [[5,5,5],[2,2]] => [2,2] => 2
[5,3,2,1] => [[5,3,2,1],[]] => [[5,5,5,5],[4,3,2]] => [4,3,2] => 1
[5,2,2,2] => [[5,2,2,2],[]] => [[5,5,5,5],[3,3,3]] => [3,3,3] => 3
[4,4,2,1] => [[4,4,2,1],[]] => [[4,4,4,4],[3,2]] => [3,2] => 1
[4,4,1,1,1] => [[4,4,1,1,1],[]] => [[4,4,4,4,4],[3,3,3]] => [3,3,3] => 3
[4,3,3,1] => [[4,3,3,1],[]] => [[4,4,4,4],[3,1,1]] => [3,1,1] => 1
[4,3,2,2] => [[4,3,2,2],[]] => [[4,4,4,4],[2,2,1]] => [2,2,1] => 2
>>> Load all 145 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The multiplicity of the largest part of an integer partition.
Map
to skew partition
Description
The partition regarded as a skew partition.
Map
inner shape
Description
The inner shape of a skew partition.
Map
rotate
Description
The rotation of a skew partition.
This is the skew partition obtained by rotating the diagram by 180 degrees. Equivalently, given a skew partition $\lambda/\mu$, its rotation $(\lambda/\mu)^\natural$ is the skew partition with cells $\{(a-i, b-j)| (i, j) \in \lambda/\mu\}$, where $b$ and $a$ are the first part and the number of parts of $\lambda$ respectively.
This is the skew partition obtained by rotating the diagram by 180 degrees. Equivalently, given a skew partition $\lambda/\mu$, its rotation $(\lambda/\mu)^\natural$ is the skew partition with cells $\{(a-i, b-j)| (i, j) \in \lambda/\mu\}$, where $b$ and $a$ are the first part and the number of parts of $\lambda$ respectively.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!