Your data matches 78 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001659: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 2
[1,1]
=> 2
[3]
=> 3
[2,1]
=> 1
[1,1,1]
=> 3
[4]
=> 4
[3,1]
=> 2
[2,2]
=> 2
[2,1,1]
=> 2
[1,1,1,1]
=> 4
[5]
=> 5
[4,1]
=> 3
[3,2]
=> 4
[3,1,1]
=> 4
[2,2,1]
=> 4
[2,1,1,1]
=> 3
[1,1,1,1,1]
=> 5
[6]
=> 6
[5,1]
=> 4
[4,2]
=> 6
[4,1,1]
=> 6
[3,3]
=> 6
[3,2,1]
=> 1
[3,1,1,1]
=> 6
[2,2,2]
=> 6
[2,2,1,1]
=> 6
[2,1,1,1,1]
=> 4
[1,1,1,1,1,1]
=> 6
[7]
=> 7
[6,1]
=> 5
[5,2]
=> 8
[5,1,1]
=> 8
[4,3]
=> 9
[4,2,1]
=> 2
[4,1,1,1]
=> 9
[3,3,1]
=> 2
[3,2,2]
=> 2
[3,2,1,1]
=> 2
[3,1,1,1,1]
=> 8
[2,2,2,1]
=> 9
[2,2,1,1,1]
=> 8
[2,1,1,1,1,1]
=> 5
[1,1,1,1,1,1,1]
=> 7
Description
The number of ways to place as many non-attacking rooks as possible on a Ferrers board.
Mp00179: Integer partitions to skew partitionSkew partitions
St001660: Skew partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> [[1],[]]
=> 1
[2]
=> [[2],[]]
=> 2
[1,1]
=> [[1,1],[]]
=> 2
[3]
=> [[3],[]]
=> 3
[2,1]
=> [[2,1],[]]
=> 1
[1,1,1]
=> [[1,1,1],[]]
=> 3
[4]
=> [[4],[]]
=> 4
[3,1]
=> [[3,1],[]]
=> 2
[2,2]
=> [[2,2],[]]
=> 2
[2,1,1]
=> [[2,1,1],[]]
=> 2
[1,1,1,1]
=> [[1,1,1,1],[]]
=> 4
[5]
=> [[5],[]]
=> 5
[4,1]
=> [[4,1],[]]
=> 3
[3,2]
=> [[3,2],[]]
=> 4
[3,1,1]
=> [[3,1,1],[]]
=> 4
[2,2,1]
=> [[2,2,1],[]]
=> 4
[2,1,1,1]
=> [[2,1,1,1],[]]
=> 3
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 5
[6]
=> [[6],[]]
=> 6
[5,1]
=> [[5,1],[]]
=> 4
[4,2]
=> [[4,2],[]]
=> 6
[4,1,1]
=> [[4,1,1],[]]
=> 6
[3,3]
=> [[3,3],[]]
=> 6
[3,2,1]
=> [[3,2,1],[]]
=> 1
[3,1,1,1]
=> [[3,1,1,1],[]]
=> 6
[2,2,2]
=> [[2,2,2],[]]
=> 6
[2,2,1,1]
=> [[2,2,1,1],[]]
=> 6
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> 4
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> 6
[7]
=> [[7],[]]
=> 7
[6,1]
=> [[6,1],[]]
=> 5
[5,2]
=> [[5,2],[]]
=> 8
[5,1,1]
=> [[5,1,1],[]]
=> 8
[4,3]
=> [[4,3],[]]
=> 9
[4,2,1]
=> [[4,2,1],[]]
=> 2
[4,1,1,1]
=> [[4,1,1,1],[]]
=> 9
[3,3,1]
=> [[3,3,1],[]]
=> 2
[3,2,2]
=> [[3,2,2],[]]
=> 2
[3,2,1,1]
=> [[3,2,1,1],[]]
=> 2
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> 8
[2,2,2,1]
=> [[2,2,2,1],[]]
=> 9
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> 8
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> 5
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> 7
Description
The number of ways to place as many non-attacking rooks as possible on a skew Ferrers board.
Matching statistic: St000531
Mp00179: Integer partitions to skew partitionSkew partitions
Mp00185: Skew partitions cell posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St000531: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> [[1],[]]
=> ([],1)
=> [1]
=> 1
[2]
=> [[2],[]]
=> ([(0,1)],2)
=> [2]
=> 2
[1,1]
=> [[1,1],[]]
=> ([(0,1)],2)
=> [2]
=> 2
[3]
=> [[3],[]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[2,1]
=> [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> [2,1]
=> 1
[1,1,1]
=> [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[4]
=> [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[3,1]
=> [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> 2
[2,2]
=> [[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> 2
[1,1,1,1]
=> [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[5]
=> [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[4,1]
=> [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> [4,1]
=> 3
[3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 4
[3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> 4
[2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 4
[2,1,1,1]
=> [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> [4,1]
=> 3
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[6]
=> [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 6
[5,1]
=> [[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> [5,1]
=> 4
[4,2]
=> [[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> [4,2]
=> 6
[4,1,1]
=> [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> [4,2]
=> 6
[3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 6
[3,2,1]
=> [[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> [3,2,1]
=> 1
[3,1,1,1]
=> [[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> [4,2]
=> 6
[2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 6
[2,2,1,1]
=> [[2,2,1,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> [4,2]
=> 6
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> [5,1]
=> 4
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 6
[7]
=> [[7],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> 7
[6,1]
=> [[6,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> [6,1]
=> 5
[5,2]
=> [[5,2],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> [5,2]
=> 8
[5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> [5,2]
=> 8
[4,3]
=> [[4,3],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> [4,3]
=> 9
[4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> [4,2,1]
=> 2
[4,1,1,1]
=> [[4,1,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> [4,3]
=> 9
[3,3,1]
=> [[3,3,1],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> [4,2,1]
=> 2
[3,2,2]
=> [[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> [4,2,1]
=> 2
[3,2,1,1]
=> [[3,2,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> [4,2,1]
=> 2
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> [5,2]
=> 8
[2,2,2,1]
=> [[2,2,2,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> [4,3]
=> 9
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> [5,2]
=> 8
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> [6,1]
=> 5
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> 7
Description
The leading coefficient of the rook polynomial of an integer partition. Let $m$ be the minimum of the number of parts and the size of the first part of an integer partition $\lambda$. Then this statistic yields the number of ways to place $m$ non-attacking rooks on the Ferrers board of $\lambda$.
Matching statistic: St000718
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00026: Dyck paths to ordered treeOrdered trees
Mp00046: Ordered trees to graphGraphs
St000718: Graphs ⟶ ℤResult quality: 25% values known / values provided: 25%distinct values known / distinct values provided: 67%
Values
[1]
=> [1,0]
=> [[]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[2]
=> [1,0,1,0]
=> [[],[]]
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,1]
=> [1,1,0,0]
=> [[[]]]
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[3]
=> [1,0,1,0,1,0]
=> [[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 4 = 3 + 1
[2,1]
=> [1,0,1,1,0,0]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 5 = 4 + 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 1
[2,2]
=> [1,1,1,0,0,0]
=> [[[[]]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 5 = 4 + 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 3 + 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 4 + 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 4 + 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [[[[]],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 4 + 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 3 + 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 7 = 6 + 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[],[[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 4 + 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 6 + 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [[],[],[],[[],[]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 6 + 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 6 + 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1 + 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [[],[],[[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 6 + 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 6 + 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[[[]],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 6 + 1
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [[],[[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 4 + 1
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[[],[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 7 = 6 + 1
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 7 + 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[],[],[[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? = 5 + 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 8 + 1
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[],[],[],[],[[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 8 + 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[],[[[],[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 9 + 1
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [[],[],[[[]],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 2 + 1
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [[],[],[],[[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ? = 9 + 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 2 + 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 2 + 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 2 + 1
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [[],[],[[],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 8 + 1
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[[[]]],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 9 + 1
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[[[]],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 8 + 1
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [[],[[],[],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? = 5 + 1
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[[],[],[],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 7 + 1
Description
The largest Laplacian eigenvalue of a graph if it is integral. This statistic is undefined if the largest Laplacian eigenvalue of the graph is not integral. Various results are collected in Section 3.9 of [1]
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00207: Standard tableaux horizontal strip sizesInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001645: Graphs ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 78%
Values
[1]
=> [[1]]
=> [1] => ([],1)
=> 1
[2]
=> [[1,2]]
=> [2] => ([],2)
=> ? = 2
[1,1]
=> [[1],[2]]
=> [1,1] => ([(0,1)],2)
=> 2
[3]
=> [[1,2,3]]
=> [3] => ([],3)
=> ? = 3
[2,1]
=> [[1,3],[2]]
=> [1,2] => ([(1,2)],3)
=> ? = 1
[1,1,1]
=> [[1],[2],[3]]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[4]
=> [[1,2,3,4]]
=> [4] => ([],4)
=> ? = 4
[3,1]
=> [[1,3,4],[2]]
=> [1,3] => ([(2,3)],4)
=> ? = 2
[2,2]
=> [[1,2],[3,4]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
[2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[5]
=> [[1,2,3,4,5]]
=> [5] => ([],5)
=> ? = 5
[4,1]
=> [[1,3,4,5],[2]]
=> [1,4] => ([(3,4)],5)
=> ? = 3
[3,2]
=> [[1,2,5],[3,4]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? = 4
[3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 4
[2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[6]
=> [[1,2,3,4,5,6]]
=> [6] => ([],6)
=> ? = 6
[5,1]
=> [[1,3,4,5,6],[2]]
=> [1,5] => ([(4,5)],6)
=> ? = 4
[4,2]
=> [[1,2,5,6],[3,4]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 6
[4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? = 6
[3,3]
=> [[1,2,3],[4,5,6]]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 6
[3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[7]
=> [[1,2,3,4,5,6,7]]
=> [7] => ([],7)
=> ? = 7
[6,1]
=> [[1,3,4,5,6,7],[2]]
=> [1,6] => ([(5,6)],7)
=> ? = 5
[5,2]
=> [[1,2,5,6,7],[3,4]]
=> [2,5] => ([(4,6),(5,6)],7)
=> ? = 8
[5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ? = 8
[4,3]
=> [[1,2,3,7],[4,5,6]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 9
[4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 9
[3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 8
[2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 9
[2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 8
[2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
Description
The pebbling number of a connected graph.
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00103: Dyck paths peeling mapDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 67%
Values
[1]
=> [1,0]
=> [1,0]
=> [1,0]
=> 0 = 1 - 1
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 3 - 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 1 - 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 3 - 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 2 - 1
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ? = 2 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 2 - 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ? = 3 - 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ? = 4 - 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ? = 3 - 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ? = 5 - 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 5 = 6 - 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 4 - 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> ? = 6 - 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 6 - 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 4 - 1
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 6 - 1
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> 6 = 7 - 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 5 - 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 8 - 1
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> ? = 8 - 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> ? = 9 - 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 8 - 1
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 8 - 1
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5 - 1
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 7 - 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000028
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
St000028: Permutations ⟶ ℤResult quality: 14% values known / values provided: 14%distinct values known / distinct values provided: 22%
Values
[1]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 1
[2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => 2
[1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => ? = 3
[2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => ? = 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [5,6,7,8,4,3,2,1,10,9] => ? = 4
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => ? = 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => ? = 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,7,8,9,10,6,5,4,3] => ? = 4
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6),(11,12)]
=> [6,7,8,9,10,5,4,3,2,1,12,11] => ? = 5
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [4,6,7,3,8,5,2,1,10,9] => ? = 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => ? = 4
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => ? = 4
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => ? = 4
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,6,8,9,5,10,7,4,3] => ? = 3
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,8,9,10,11,12,7,6,5,4,3] => ? = 5
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,14)]
=> [7,8,9,10,11,12,6,5,4,3,2,1,14,13] => ? = 6
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7),(11,12)]
=> [5,7,8,9,4,10,6,3,2,1,12,11] => ? = 4
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [4,5,7,3,2,8,6,1,10,9] => ? = 6
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [3,6,2,7,8,5,4,1,10,9] => ? = 6
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [4,5,6,3,2,1,9,10,8,7] => ? = 6
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,6,7,9,5,4,10,8,3] => ? = 6
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [3,4,2,1,8,9,10,7,6,5] => ? = 6
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,5,8,4,9,10,7,6,3] => ? = 6
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> [2,1,7,9,10,11,6,12,8,5,4,3] => ? = 4
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,9,10,11,12,13,14,8,7,6,5,4,3] => ? = 6
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,16)]
=> [8,9,10,11,12,13,14,7,6,5,4,3,2,1,16,15] => ? = 7
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,6),(7,8),(13,14)]
=> [6,8,9,10,11,5,12,7,4,3,2,1,14,13] => ? = 5
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8),(11,12)]
=> [5,6,8,9,4,3,10,7,2,1,12,11] => ? = 8
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)]
=> [4,7,8,3,9,10,6,5,2,1,12,11] => ? = 8
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [4,5,6,3,2,1,8,7,10,9] => ? = 9
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => ? = 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,6,7,8,5,4,3,10,9] => ? = 9
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [3,5,2,6,4,1,9,10,8,7] => ? = 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => ? = 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => ? = 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> [2,1,7,8,10,11,6,5,12,9,4,3] => ? = 8
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,8,9,10,7,6,5] => ? = 9
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)]
=> [2,1,6,9,10,5,11,12,8,7,4,3] => ? = 8
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,8,10,11,12,13,7,14,9,6,5,4,3] => ? = 5
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10)]
=> [2,1,10,11,12,13,14,15,16,9,8,7,6,5,4,3] => ? = 7
Description
The number of stack-sorts needed to sort a permutation. A permutation is (West) $t$-stack sortable if it is sortable using $t$ stacks in series. Let $W_t(n,k)$ be the number of permutations of size $n$ with $k$ descents which are $t$-stack sortable. Then the polynomials $W_{n,t}(x) = \sum_{k=0}^n W_t(n,k)x^k$ are symmetric and unimodal. We have $W_{n,1}(x) = A_n(x)$, the Eulerian polynomials. One can show that $W_{n,1}(x)$ and $W_{n,2}(x)$ are real-rooted. Precisely the permutations that avoid the pattern $231$ have statistic at most $1$, see [3]. These are counted by $\frac{1}{n+1}\binom{2n}{n}$ ([[OEIS:A000108]]). Precisely the permutations that avoid the pattern $2341$ and the barred pattern $3\bar 5241$ have statistic at most $2$, see [4]. These are counted by $\frac{2(3n)!}{(n+1)!(2n+1)!}$ ([[OEIS:A000139]]).
Matching statistic: St000141
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
St000141: Permutations ⟶ ℤResult quality: 14% values known / values provided: 14%distinct values known / distinct values provided: 22%
Values
[1]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 1
[2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => 2
[1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => ? = 3
[2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => ? = 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [5,6,7,8,4,3,2,1,10,9] => ? = 4
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => ? = 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => ? = 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,7,8,9,10,6,5,4,3] => ? = 4
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6),(11,12)]
=> [6,7,8,9,10,5,4,3,2,1,12,11] => ? = 5
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [4,6,7,3,8,5,2,1,10,9] => ? = 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => ? = 4
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => ? = 4
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => ? = 4
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,6,8,9,5,10,7,4,3] => ? = 3
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,8,9,10,11,12,7,6,5,4,3] => ? = 5
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,14)]
=> [7,8,9,10,11,12,6,5,4,3,2,1,14,13] => ? = 6
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7),(11,12)]
=> [5,7,8,9,4,10,6,3,2,1,12,11] => ? = 4
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [4,5,7,3,2,8,6,1,10,9] => ? = 6
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [3,6,2,7,8,5,4,1,10,9] => ? = 6
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [4,5,6,3,2,1,9,10,8,7] => ? = 6
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,6,7,9,5,4,10,8,3] => ? = 6
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [3,4,2,1,8,9,10,7,6,5] => ? = 6
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,5,8,4,9,10,7,6,3] => ? = 6
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> [2,1,7,9,10,11,6,12,8,5,4,3] => ? = 4
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,9,10,11,12,13,14,8,7,6,5,4,3] => ? = 6
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,16)]
=> [8,9,10,11,12,13,14,7,6,5,4,3,2,1,16,15] => ? = 7
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,6),(7,8),(13,14)]
=> [6,8,9,10,11,5,12,7,4,3,2,1,14,13] => ? = 5
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8),(11,12)]
=> [5,6,8,9,4,3,10,7,2,1,12,11] => ? = 8
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)]
=> [4,7,8,3,9,10,6,5,2,1,12,11] => ? = 8
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [4,5,6,3,2,1,8,7,10,9] => ? = 9
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => ? = 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,6,7,8,5,4,3,10,9] => ? = 9
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [3,5,2,6,4,1,9,10,8,7] => ? = 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => ? = 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => ? = 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> [2,1,7,8,10,11,6,5,12,9,4,3] => ? = 8
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,8,9,10,7,6,5] => ? = 9
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)]
=> [2,1,6,9,10,5,11,12,8,7,4,3] => ? = 8
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,8,10,11,12,13,7,14,9,6,5,4,3] => ? = 5
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10)]
=> [2,1,10,11,12,13,14,15,16,9,8,7,6,5,4,3] => ? = 7
Description
The maximum drop size of a permutation. The maximum drop size of a permutation $\pi$ of $[n]=\{1,2,\ldots, n\}$ is defined to be the maximum value of $i-\pi(i)$.
Matching statistic: St000662
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
St000662: Permutations ⟶ ℤResult quality: 14% values known / values provided: 14%distinct values known / distinct values provided: 22%
Values
[1]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 1
[2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => 2
[1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => ? = 3
[2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => ? = 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [5,6,7,8,4,3,2,1,10,9] => ? = 4
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => ? = 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => ? = 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,7,8,9,10,6,5,4,3] => ? = 4
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6),(11,12)]
=> [6,7,8,9,10,5,4,3,2,1,12,11] => ? = 5
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [4,6,7,3,8,5,2,1,10,9] => ? = 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => ? = 4
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => ? = 4
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => ? = 4
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,6,8,9,5,10,7,4,3] => ? = 3
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,8,9,10,11,12,7,6,5,4,3] => ? = 5
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,14)]
=> [7,8,9,10,11,12,6,5,4,3,2,1,14,13] => ? = 6
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7),(11,12)]
=> [5,7,8,9,4,10,6,3,2,1,12,11] => ? = 4
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [4,5,7,3,2,8,6,1,10,9] => ? = 6
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [3,6,2,7,8,5,4,1,10,9] => ? = 6
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [4,5,6,3,2,1,9,10,8,7] => ? = 6
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,6,7,9,5,4,10,8,3] => ? = 6
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [3,4,2,1,8,9,10,7,6,5] => ? = 6
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,5,8,4,9,10,7,6,3] => ? = 6
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> [2,1,7,9,10,11,6,12,8,5,4,3] => ? = 4
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,9,10,11,12,13,14,8,7,6,5,4,3] => ? = 6
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,16)]
=> [8,9,10,11,12,13,14,7,6,5,4,3,2,1,16,15] => ? = 7
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,6),(7,8),(13,14)]
=> [6,8,9,10,11,5,12,7,4,3,2,1,14,13] => ? = 5
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8),(11,12)]
=> [5,6,8,9,4,3,10,7,2,1,12,11] => ? = 8
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)]
=> [4,7,8,3,9,10,6,5,2,1,12,11] => ? = 8
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [4,5,6,3,2,1,8,7,10,9] => ? = 9
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => ? = 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,6,7,8,5,4,3,10,9] => ? = 9
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [3,5,2,6,4,1,9,10,8,7] => ? = 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => ? = 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => ? = 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> [2,1,7,8,10,11,6,5,12,9,4,3] => ? = 8
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,8,9,10,7,6,5] => ? = 9
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)]
=> [2,1,6,9,10,5,11,12,8,7,4,3] => ? = 8
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,8,10,11,12,13,7,14,9,6,5,4,3] => ? = 5
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10)]
=> [2,1,10,11,12,13,14,15,16,9,8,7,6,5,4,3] => ? = 7
Description
The staircase size of the code of a permutation. The code $c(\pi)$ of a permutation $\pi$ of length $n$ is given by the sequence $(c_1,\ldots,c_{n})$ with $c_i = |\{j > i : \pi(j) < \pi(i)\}|$. This is a bijection between permutations and all sequences $(c_1,\ldots,c_n)$ with $0 \leq c_i \leq n-i$. The staircase size of the code is the maximal $k$ such that there exists a subsequence $(c_{i_k},\ldots,c_{i_1})$ of $c(\pi)$ with $c_{i_j} \geq j$. This statistic is mapped through [[Mp00062]] to the number of descents, showing that together with the number of inversions [[St000018]] it is Euler-Mahonian.
Matching statistic: St000891
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
St000891: Permutations ⟶ ℤResult quality: 14% values known / values provided: 14%distinct values known / distinct values provided: 22%
Values
[1]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 2 = 1 + 1
[2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => 3 = 2 + 1
[1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => 3 = 2 + 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => ? = 3 + 1
[2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 2 = 1 + 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => ? = 3 + 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [5,6,7,8,4,3,2,1,10,9] => ? = 4 + 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => ? = 2 + 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => 3 = 2 + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => ? = 2 + 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,7,8,9,10,6,5,4,3] => ? = 4 + 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6),(11,12)]
=> [6,7,8,9,10,5,4,3,2,1,12,11] => ? = 5 + 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [4,6,7,3,8,5,2,1,10,9] => ? = 3 + 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => ? = 4 + 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => ? = 4 + 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => ? = 4 + 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,6,8,9,5,10,7,4,3] => ? = 3 + 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,8,9,10,11,12,7,6,5,4,3] => ? = 5 + 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,14)]
=> [7,8,9,10,11,12,6,5,4,3,2,1,14,13] => ? = 6 + 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7),(11,12)]
=> [5,7,8,9,4,10,6,3,2,1,12,11] => ? = 4 + 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [4,5,7,3,2,8,6,1,10,9] => ? = 6 + 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [3,6,2,7,8,5,4,1,10,9] => ? = 6 + 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [4,5,6,3,2,1,9,10,8,7] => ? = 6 + 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 2 = 1 + 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,6,7,9,5,4,10,8,3] => ? = 6 + 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [3,4,2,1,8,9,10,7,6,5] => ? = 6 + 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,5,8,4,9,10,7,6,3] => ? = 6 + 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> [2,1,7,9,10,11,6,12,8,5,4,3] => ? = 4 + 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,9,10,11,12,13,14,8,7,6,5,4,3] => ? = 6 + 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,16)]
=> [8,9,10,11,12,13,14,7,6,5,4,3,2,1,16,15] => ? = 7 + 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,6),(7,8),(13,14)]
=> [6,8,9,10,11,5,12,7,4,3,2,1,14,13] => ? = 5 + 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8),(11,12)]
=> [5,6,8,9,4,3,10,7,2,1,12,11] => ? = 8 + 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)]
=> [4,7,8,3,9,10,6,5,2,1,12,11] => ? = 8 + 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [4,5,6,3,2,1,8,7,10,9] => ? = 9 + 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => ? = 2 + 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,6,7,8,5,4,3,10,9] => ? = 9 + 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [3,5,2,6,4,1,9,10,8,7] => ? = 2 + 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => ? = 2 + 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => ? = 2 + 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> [2,1,7,8,10,11,6,5,12,9,4,3] => ? = 8 + 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,8,9,10,7,6,5] => ? = 9 + 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)]
=> [2,1,6,9,10,5,11,12,8,7,4,3] => ? = 8 + 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,8,10,11,12,13,7,14,9,6,5,4,3] => ? = 5 + 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10)]
=> [2,1,10,11,12,13,14,15,16,9,8,7,6,5,4,3] => ? = 7 + 1
Description
The number of distinct diagonal sums of a permutation matrix. For example, the sums of the diagonals of the matrix $$\left(\begin{array}{rrrr} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right)$$ are $(1,0,1,0,2,0)$, so the statistic is $3$.
The following 68 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000632The jump number of the poset. St001488The number of corners of a skew partition. St000075The orbit size of a standard tableau under promotion. St000254The nesting number of a set partition. St000317The cycle descent number of a permutation. St000640The rank of the largest boolean interval in a poset. St000682The Grundy value of Welter's game on a binary word. St000864The number of circled entries of the shifted recording tableau of a permutation. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St000942The number of critical left to right maxima of the parking functions. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St001768The number of reduced words of a signed permutation. St001863The number of weak excedances of a signed permutation. St001864The number of excedances of a signed permutation. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000039The number of crossings of a permutation. St000043The number of crossings plus two-nestings of a perfect matching. St000089The absolute variation of a composition. St000173The segment statistic of a semistandard tableau. St000174The flush statistic of a semistandard tableau. St000233The number of nestings of a set partition. St000360The number of occurrences of the pattern 32-1. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000486The number of cycles of length at least 3 of a permutation. St000491The number of inversions of a set partition. St000538The number of even inversions of a permutation. St000581The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 2 is maximal. St000585The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block. St000594The number of occurrences of the pattern {{1,3},{2}} such that 1,2 are minimal, (1,3) are consecutive in a block. St000610The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal. St000613The number of occurrences of the pattern {{1,3},{2}} such that 2 is minimal, 3 is maximal, (1,3) are consecutive in a block. St000649The number of 3-excedences of a permutation. St000650The number of 3-rises of a permutation. St000652The maximal difference between successive positions of a permutation. St000710The number of big deficiencies of a permutation. St000711The number of big exceedences of a permutation. St000730The maximal arc length of a set partition. St000779The tier of a permutation. St001095The number of non-isomorphic posets with precisely one further covering relation. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001269The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation. St001402The number of separators in a permutation. St001403The number of vertical separators in a permutation. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001513The number of nested exceedences of a permutation. St001537The number of cyclic crossings of a permutation. St001549The number of restricted non-inversions between exceedances. St001623The number of doubly irreducible elements of a lattice. St001727The number of invisible inversions of a permutation. St001728The number of invisible descents of a permutation. St001816Eigenvalues of the top-to-random operator acting on a simple module. St001822The number of alignments of a signed permutation. St001839The number of excedances of a set partition. St001840The number of descents of a set partition. St001843The Z-index of a set partition. St001862The number of crossings of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation.