Identifier
-
Mp00179:
Integer partitions
—to skew partition⟶
Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000531: Integer partitions ⟶ ℤ
Values
[1] => [[1],[]] => ([],1) => [1] => 1
[2] => [[2],[]] => ([(0,1)],2) => [2] => 2
[1,1] => [[1,1],[]] => ([(0,1)],2) => [2] => 2
[3] => [[3],[]] => ([(0,2),(2,1)],3) => [3] => 3
[2,1] => [[2,1],[]] => ([(0,1),(0,2)],3) => [2,1] => 1
[1,1,1] => [[1,1,1],[]] => ([(0,2),(2,1)],3) => [3] => 3
[4] => [[4],[]] => ([(0,3),(2,1),(3,2)],4) => [4] => 4
[3,1] => [[3,1],[]] => ([(0,2),(0,3),(3,1)],4) => [3,1] => 2
[2,2] => [[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => [3,1] => 2
[2,1,1] => [[2,1,1],[]] => ([(0,2),(0,3),(3,1)],4) => [3,1] => 2
[1,1,1,1] => [[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => [4] => 4
[5] => [[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [5] => 5
[4,1] => [[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => [4,1] => 3
[3,2] => [[3,2],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => 4
[3,1,1] => [[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5) => [3,2] => 4
[2,2,1] => [[2,2,1],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => 4
[2,1,1,1] => [[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => [4,1] => 3
[1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [5] => 5
[6] => [[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [6] => 6
[5,1] => [[5,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => [5,1] => 4
[4,2] => [[4,2],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => [4,2] => 6
[4,1,1] => [[4,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => [4,2] => 6
[3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [4,2] => 6
[3,2,1] => [[3,2,1],[]] => ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => [3,2,1] => 1
[3,1,1,1] => [[3,1,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => [4,2] => 6
[2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [4,2] => 6
[2,2,1,1] => [[2,2,1,1],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => [4,2] => 6
[2,1,1,1,1] => [[2,1,1,1,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => [5,1] => 4
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [6] => 6
[7] => [[7],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [7] => 7
[6,1] => [[6,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => [6,1] => 5
[5,2] => [[5,2],[]] => ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7) => [5,2] => 8
[5,1,1] => [[5,1,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7) => [5,2] => 8
[4,3] => [[4,3],[]] => ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7) => [4,3] => 9
[4,2,1] => [[4,2,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7) => [4,2,1] => 2
[4,1,1,1] => [[4,1,1,1],[]] => ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7) => [4,3] => 9
[3,3,1] => [[3,3,1],[]] => ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7) => [4,2,1] => 2
[3,2,2] => [[3,2,2],[]] => ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7) => [4,2,1] => 2
[3,2,1,1] => [[3,2,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7) => [4,2,1] => 2
[3,1,1,1,1] => [[3,1,1,1,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7) => [5,2] => 8
[2,2,2,1] => [[2,2,2,1],[]] => ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7) => [4,3] => 9
[2,2,1,1,1] => [[2,2,1,1,1],[]] => ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7) => [5,2] => 8
[2,1,1,1,1,1] => [[2,1,1,1,1,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => [6,1] => 5
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [7] => 7
[8] => [[8],[]] => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => [8] => 8
[7,1] => [[7,1],[]] => ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8) => [7,1] => 6
[6,2] => [[6,2],[]] => ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8) => [6,2] => 10
[6,1,1] => [[6,1,1],[]] => ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8) => [6,2] => 10
[5,3] => [[5,3],[]] => ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8) => [5,3] => 12
[5,2,1] => [[5,2,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8) => [5,2,1] => 3
[5,1,1,1] => [[5,1,1,1],[]] => ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8) => [5,3] => 12
[4,4] => [[4,4],[]] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => [5,3] => 12
[4,3,1] => [[4,3,1],[]] => ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8) => [4,3,1] => 4
[4,2,2] => [[4,2,2],[]] => ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8) => [4,3,1] => 4
[4,2,1,1] => [[4,2,1,1],[]] => ([(0,5),(0,6),(3,2),(4,1),(5,3),(5,7),(6,4),(6,7)],8) => [4,3,1] => 4
[4,1,1,1,1] => [[4,1,1,1,1],[]] => ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8) => [5,3] => 12
[3,3,2] => [[3,3,2],[]] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7)],8) => [4,3,1] => 4
[3,3,1,1] => [[3,3,1,1],[]] => ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8) => [4,3,1] => 4
[3,2,2,1] => [[3,2,2,1],[]] => ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8) => [4,3,1] => 4
[3,2,1,1,1] => [[3,2,1,1,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8) => [5,2,1] => 3
[3,1,1,1,1,1] => [[3,1,1,1,1,1],[]] => ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8) => [6,2] => 10
[2,2,2,2] => [[2,2,2,2],[]] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => [5,3] => 12
[2,2,2,1,1] => [[2,2,2,1,1],[]] => ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8) => [5,3] => 12
[2,2,1,1,1,1] => [[2,2,1,1,1,1],[]] => ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8) => [6,2] => 10
[2,1,1,1,1,1,1] => [[2,1,1,1,1,1,1],[]] => ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8) => [7,1] => 6
[1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1],[]] => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => [8] => 8
[9] => [[9],[]] => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => [9] => 9
[8,1] => [[8,1],[]] => ([(0,2),(0,8),(3,5),(4,3),(5,7),(6,4),(7,1),(8,6)],9) => [8,1] => 7
[7,2] => [[7,2],[]] => ([(0,2),(0,7),(2,8),(3,4),(4,6),(5,3),(6,1),(7,5),(7,8)],9) => [7,2] => 12
[7,1,1] => [[7,1,1],[]] => ([(0,7),(0,8),(3,4),(4,6),(5,3),(6,2),(7,5),(8,1)],9) => [7,2] => 12
[6,3] => [[6,3],[]] => ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9) => [6,3] => 15
[6,2,1] => [[6,2,1],[]] => ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9) => [6,2,1] => 4
[6,1,1,1] => [[6,1,1,1],[]] => ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9) => [6,3] => 15
[5,4] => [[5,4],[]] => ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9) => [5,4] => 16
[5,3,1] => [[5,3,1],[]] => ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9) => [5,3,1] => 6
[5,2,2] => [[5,2,2],[]] => ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9) => [5,3,1] => 6
[5,2,1,1] => [[5,2,1,1],[]] => ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9) => [5,3,1] => 6
[5,1,1,1,1] => [[5,1,1,1,1],[]] => ([(0,7),(0,8),(3,5),(4,6),(5,2),(6,1),(7,3),(8,4)],9) => [5,4] => 16
[4,4,1] => [[4,4,1],[]] => ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9) => [5,3,1] => 6
[4,3,2] => [[4,3,2],[]] => ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9) => [4,3,2] => 8
[4,3,1,1] => [[4,3,1,1],[]] => ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9) => [4,3,2] => 8
[4,2,2,1] => [[4,2,2,1],[]] => ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9) => [4,3,2] => 8
[4,2,1,1,1] => [[4,2,1,1,1],[]] => ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9) => [5,3,1] => 6
[4,1,1,1,1,1] => [[4,1,1,1,1,1],[]] => ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9) => [6,3] => 15
[3,3,3] => [[3,3,3],[]] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => [5,3,1] => 6
[3,3,2,1] => [[3,3,2,1],[]] => ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9) => [4,3,2] => 8
[3,3,1,1,1] => [[3,3,1,1,1],[]] => ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9) => [5,3,1] => 6
[3,2,2,2] => [[3,2,2,2],[]] => ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9) => [5,3,1] => 6
[3,2,2,1,1] => [[3,2,2,1,1],[]] => ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9) => [5,3,1] => 6
[3,2,1,1,1,1] => [[3,2,1,1,1,1],[]] => ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9) => [6,2,1] => 4
[3,1,1,1,1,1,1] => [[3,1,1,1,1,1,1],[]] => ([(0,7),(0,8),(3,4),(4,6),(5,3),(6,2),(7,5),(8,1)],9) => [7,2] => 12
[2,2,2,2,1] => [[2,2,2,2,1],[]] => ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9) => [5,4] => 16
[2,2,2,1,1,1] => [[2,2,2,1,1,1],[]] => ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9) => [6,3] => 15
[2,2,1,1,1,1,1] => [[2,2,1,1,1,1,1],[]] => ([(0,2),(0,7),(2,8),(3,4),(4,6),(5,3),(6,1),(7,5),(7,8)],9) => [7,2] => 12
[2,1,1,1,1,1,1,1] => [[2,1,1,1,1,1,1,1],[]] => ([(0,2),(0,8),(3,5),(4,3),(5,7),(6,4),(7,1),(8,6)],9) => [8,1] => 7
[1,1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1,1],[]] => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => [9] => 9
[10] => [[10],[]] => ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10) => [10] => 10
[9,1] => [[9,1],[]] => ([(0,2),(0,9),(3,4),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10) => [9,1] => 8
[8,2] => [[8,2],[]] => ([(0,2),(0,8),(2,9),(3,5),(4,3),(5,7),(6,4),(7,1),(8,6),(8,9)],10) => [8,2] => 14
[8,1,1] => [[8,1,1],[]] => ([(0,8),(0,9),(3,5),(4,3),(5,7),(6,4),(7,2),(8,6),(9,1)],10) => [8,2] => 14
[7,3] => [[7,3],[]] => ([(0,2),(0,7),(2,8),(3,4),(4,6),(5,3),(5,9),(6,1),(7,5),(7,8),(8,9)],10) => [7,3] => 18
>>> Load all 144 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The leading coefficient of the rook polynomial of an integer partition.
Let m be the minimum of the number of parts and the size of the first part of an integer partition λ. Then this statistic yields the number of ways to place m non-attacking rooks on the Ferrers board of λ.
Let m be the minimum of the number of parts and the size of the first part of an integer partition λ. Then this statistic yields the number of ways to place m non-attacking rooks on the Ferrers board of λ.
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition (c1−c0,c2−c1,c3−c2,…), where ck is the maximum cardinality of a union of k chains of the poset. Equivalently, this is the conjugate of the partition (a1−a0,a2−a1,a3−a2,…), where ak is the maximum cardinality of a union of k antichains of the poset.
This is the partition (c1−c0,c2−c1,c3−c2,…), where ck is the maximum cardinality of a union of k chains of the poset. Equivalently, this is the conjugate of the partition (a1−a0,a2−a1,a3−a2,…), where ak is the maximum cardinality of a union of k antichains of the poset.
Map
to skew partition
Description
The partition regarded as a skew partition.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell d is greater than a cell c if the entry in d must be larger than the entry of c in any standard Young tableau on the skew partition.
This is the poset on the cells of the Young diagram, such that a cell d is greater than a cell c if the entry in d must be larger than the entry of c in any standard Young tableau on the skew partition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!