Identifier
Values
[1] => [1,0,1,0] => [(1,2),(3,4)] => [2,1,4,3] => 1
[2] => [1,1,0,0,1,0] => [(1,4),(2,3),(5,6)] => [3,4,2,1,6,5] => 2
[1,1] => [1,0,1,1,0,0] => [(1,2),(3,6),(4,5)] => [2,1,5,6,4,3] => 2
[2,1] => [1,0,1,0,1,0] => [(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => 1
[2,2] => [1,1,0,0,1,1,0,0] => [(1,4),(2,3),(5,8),(6,7)] => [3,4,2,1,7,8,6,5] => 2
[3,2,1] => [1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => 1
[4,3,2,1] => [1,0,1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => 1
[5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of stack-sorts needed to sort a permutation.
A permutation is (West) $t$-stack sortable if it is sortable using $t$ stacks in series.
Let $W_t(n,k)$ be the number of permutations of size $n$
with $k$ descents which are $t$-stack sortable. Then the polynomials $W_{n,t}(x) = \sum_{k=0}^n W_t(n,k)x^k$
are symmetric and unimodal.
We have $W_{n,1}(x) = A_n(x)$, the Eulerian polynomials. One can show that $W_{n,1}(x)$ and $W_{n,2}(x)$ are real-rooted.
Precisely the permutations that avoid the pattern $231$ have statistic at most $1$, see [3]. These are counted by $\frac{1}{n+1}\binom{2n}{n}$ (OEIS:A000108). Precisely the permutations that avoid the pattern $2341$ and the barred pattern $3\bar 5241$ have statistic at most $2$, see [4]. These are counted by $\frac{2(3n)!}{(n+1)!(2n+1)!}$ (OEIS:A000139).
Map
non-nesting-exceedence permutation
Description
The fixed-point-free permutation with deficiencies given by the perfect matching, no alignments and no inversions between exceedences.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Map
to tunnel matching
Description
Sends a Dyck path of semilength n to the noncrossing perfect matching given by matching an up-step with the corresponding down-step.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.