Your data matches 36 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000378: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 2
[1,1]
=> 1
[3]
=> 2
[2,1]
=> 3
[1,1,1]
=> 1
[4]
=> 2
[3,1]
=> 4
[2,2]
=> 3
[2,1,1]
=> 2
[1,1,1,1]
=> 1
[5]
=> 2
[4,1]
=> 3
[3,2]
=> 5
[3,1,1]
=> 4
[2,2,1]
=> 3
[2,1,1,1]
=> 2
[1,1,1,1,1]
=> 1
[6]
=> 2
[5,1]
=> 3
[4,2]
=> 5
[4,1,1]
=> 4
[3,3]
=> 4
[3,2,1]
=> 6
[3,1,1,1]
=> 3
[2,2,2]
=> 3
[2,2,1,1]
=> 2
[2,1,1,1,1]
=> 2
[1,1,1,1,1,1]
=> 1
[7]
=> 2
[6,1]
=> 3
[5,2]
=> 4
[5,1,1]
=> 3
[4,3]
=> 5
[4,2,1]
=> 7
[4,1,1,1]
=> 4
[3,3,1]
=> 6
[3,2,2]
=> 5
[3,2,1,1]
=> 4
[3,1,1,1,1]
=> 3
[2,2,2,1]
=> 3
[2,2,1,1,1]
=> 2
[2,1,1,1,1,1]
=> 2
[1,1,1,1,1,1,1]
=> 1
[8]
=> 2
[7,1]
=> 3
[6,2]
=> 4
[6,1,1]
=> 3
[5,3]
=> 5
[5,2,1]
=> 5
Description
The diagonal inversion number of an integer partition. The dinv of a partition is the number of cells $c$ in the diagram of an integer partition $\lambda$ for which $\operatorname{arm}(c)-\operatorname{leg}(c) \in \{0,1\}$. See also exercise 3.19 of [2]. This statistic is equidistributed with the length of the partition, see [3].
Mp00323: Integer partitions Loehr-Warrington inverseInteger partitions
St000010: Integer partitions ⟶ ℤResult quality: 38% values known / values provided: 62%distinct values known / distinct values provided: 38%
Values
[1]
=> [1]
=> 1
[2]
=> [1,1]
=> 2
[1,1]
=> [2]
=> 1
[3]
=> [2,1]
=> 2
[2,1]
=> [1,1,1]
=> 3
[1,1,1]
=> [3]
=> 1
[4]
=> [2,2]
=> 2
[3,1]
=> [1,1,1,1]
=> 4
[2,2]
=> [2,1,1]
=> 3
[2,1,1]
=> [3,1]
=> 2
[1,1,1,1]
=> [4]
=> 1
[5]
=> [3,2]
=> 2
[4,1]
=> [3,1,1]
=> 3
[3,2]
=> [1,1,1,1,1]
=> 5
[3,1,1]
=> [2,1,1,1]
=> 4
[2,2,1]
=> [2,2,1]
=> 3
[2,1,1,1]
=> [4,1]
=> 2
[1,1,1,1,1]
=> [5]
=> 1
[6]
=> [3,3]
=> 2
[5,1]
=> [3,2,1]
=> 3
[4,2]
=> [2,1,1,1,1]
=> 5
[4,1,1]
=> [2,2,1,1]
=> 4
[3,3]
=> [3,1,1,1]
=> 4
[3,2,1]
=> [1,1,1,1,1,1]
=> 6
[3,1,1,1]
=> [4,1,1]
=> 3
[2,2,2]
=> [2,2,2]
=> 3
[2,2,1,1]
=> [4,2]
=> 2
[2,1,1,1,1]
=> [5,1]
=> 2
[1,1,1,1,1,1]
=> [6]
=> 1
[7]
=> [4,3]
=> 2
[6,1]
=> [3,3,1]
=> 3
[5,2]
=> [3,2,1,1]
=> 4
[5,1,1]
=> [4,2,1]
=> 3
[4,3]
=> [2,2,1,1,1]
=> 5
[4,2,1]
=> [1,1,1,1,1,1,1]
=> 7
[4,1,1,1]
=> [2,2,2,1]
=> 4
[3,3,1]
=> [2,1,1,1,1,1]
=> 6
[3,2,2]
=> [3,1,1,1,1]
=> 5
[3,2,1,1]
=> [4,1,1,1]
=> 4
[3,1,1,1,1]
=> [5,1,1]
=> 3
[2,2,2,1]
=> [3,2,2]
=> 3
[2,2,1,1,1]
=> [5,2]
=> 2
[2,1,1,1,1,1]
=> [6,1]
=> 2
[1,1,1,1,1,1,1]
=> [7]
=> 1
[8]
=> [4,4]
=> 2
[7,1]
=> [4,3,1]
=> 3
[6,2]
=> [3,3,1,1]
=> 4
[6,1,1]
=> [4,2,2]
=> 3
[5,3]
=> [2,2,2,1,1]
=> 5
[5,2,1]
=> [4,1,1,1,1]
=> 5
[]
=> ?
=> ? = 0
[6,5,4,3,2,1]
=> ?
=> ? = 21
[5,5,4,3,2,1]
=> ?
=> ? = 15
[6,4,4,3,2,1]
=> ?
=> ? = 16
[5,4,4,3,2,1]
=> ?
=> ? = 11
[4,4,4,3,2,1]
=> ?
=> ? = 10
[6,5,3,3,2,1]
=> ?
=> ? = 17
[5,5,3,3,2,1]
=> ?
=> ? = 12
[5,4,3,3,2,1]
=> ?
=> ? = 9
[6,3,3,3,2,1]
=> ?
=> ? = 11
[6,5,4,2,2,1]
=> ?
=> ? = 18
[5,5,4,2,2,1]
=> ?
=> ? = 13
[6,4,4,2,2,1]
=> ?
=> ? = 14
[6,5,2,2,2,1]
=> ?
=> ? = 12
[6,5,4,3,1,1]
=> ?
=> ? = 19
[5,5,4,3,1,1]
=> ?
=> ? = 14
[6,4,4,3,1,1]
=> ?
=> ? = 15
[6,5,3,3,1,1]
=> ?
=> ? = 16
[5,5,3,3,1,1]
=> ?
=> ? = 12
[6,5,4,1,1,1]
=> ?
=> ? = 13
[6,5,4,3,2]
=> ?
=> ? = 20
[5,5,4,3,2]
=> ?
=> ? = 15
[6,4,4,3,2]
=> ?
=> ? = 16
[6,5,3,3,2]
=> ?
=> ? = 17
[5,5,3,3,2]
=> ?
=> ? = 13
[6,5,4,2,2]
=> ?
=> ? = 18
[5,5,4,2,2]
=> ?
=> ? = 14
[6,4,4,2,2]
=> ?
=> ? = 15
[6,5,4,3,1]
=> ?
=> ? = 19
[6,5,4,3]
=> ?
=> ? = 14
[7,6,5,4,3,2,1]
=> ?
=> ? = 28
[6,6,5,4,3,2,1]
=> ?
=> ? = 21
[6,5,5,4,3,2,1]
=> ?
=> ? = 16
[5,5,5,4,3,2,1]
=> ?
=> ? = 15
[6,5,4,4,3,2,1]
=> ?
=> ? = 13
[6,4,4,4,3,2,1]
=> ?
=> ? = 12
[5,4,4,4,3,2,1]
=> ?
=> ? = 11
[4,4,4,4,3,2,1]
=> ?
=> ? = 10
[6,5,4,3,3,2,1]
=> ?
=> ? = 12
[6,5,3,3,3,2,1]
=> ?
=> ? = 11
[6,4,3,3,3,2,1]
=> ?
=> ? = 10
[6,3,3,3,3,2,1]
=> ?
=> ? = 8
[6,5,4,3,2,2,1]
=> ?
=> ? = 13
[6,5,4,2,2,2,1]
=> ?
=> ? = 12
[6,5,3,2,2,2,1]
=> ?
=> ? = 11
[6,5,2,2,2,2,1]
=> ?
=> ? = 8
[6,5,4,3,2,1,1]
=> ?
=> ? = 16
[6,5,4,3,1,1,1]
=> ?
=> ? = 15
[6,5,4,2,1,1,1]
=> ?
=> ? = 14
[6,5,4,1,1,1,1]
=> ?
=> ? = 10
Description
The length of the partition.
Mp00323: Integer partitions Loehr-Warrington inverseInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 38% values known / values provided: 62%distinct values known / distinct values provided: 38%
Values
[1]
=> [1]
=> []
=> []
=> 0 = 1 - 1
[2]
=> [1,1]
=> [1]
=> [1]
=> 1 = 2 - 1
[1,1]
=> [2]
=> []
=> []
=> 0 = 1 - 1
[3]
=> [2,1]
=> [1]
=> [1]
=> 1 = 2 - 1
[2,1]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
[1,1,1]
=> [3]
=> []
=> []
=> 0 = 1 - 1
[4]
=> [2,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
[3,1]
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 3 = 4 - 1
[2,2]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
[2,1,1]
=> [3,1]
=> [1]
=> [1]
=> 1 = 2 - 1
[1,1,1,1]
=> [4]
=> []
=> []
=> 0 = 1 - 1
[5]
=> [3,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
[4,1]
=> [3,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
[3,2]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 4 = 5 - 1
[3,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [3]
=> 3 = 4 - 1
[2,2,1]
=> [2,2,1]
=> [2,1]
=> [2,1]
=> 2 = 3 - 1
[2,1,1,1]
=> [4,1]
=> [1]
=> [1]
=> 1 = 2 - 1
[1,1,1,1,1]
=> [5]
=> []
=> []
=> 0 = 1 - 1
[6]
=> [3,3]
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
[5,1]
=> [3,2,1]
=> [2,1]
=> [2,1]
=> 2 = 3 - 1
[4,2]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 4 = 5 - 1
[4,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 3 = 4 - 1
[3,3]
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 3 = 4 - 1
[3,2,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 5 = 6 - 1
[3,1,1,1]
=> [4,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
[2,2,2]
=> [2,2,2]
=> [2,2]
=> [2,2]
=> 2 = 3 - 1
[2,2,1,1]
=> [4,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
[2,1,1,1,1]
=> [5,1]
=> [1]
=> [1]
=> 1 = 2 - 1
[1,1,1,1,1,1]
=> [6]
=> []
=> []
=> 0 = 1 - 1
[7]
=> [4,3]
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
[6,1]
=> [3,3,1]
=> [3,1]
=> [2,1,1]
=> 2 = 3 - 1
[5,2]
=> [3,2,1,1]
=> [2,1,1]
=> [3,1]
=> 3 = 4 - 1
[5,1,1]
=> [4,2,1]
=> [2,1]
=> [2,1]
=> 2 = 3 - 1
[4,3]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [4,1]
=> 4 = 5 - 1
[4,2,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [6]
=> 6 = 7 - 1
[4,1,1,1]
=> [2,2,2,1]
=> [2,2,1]
=> [3,2]
=> 3 = 4 - 1
[3,3,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 5 = 6 - 1
[3,2,2]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 4 = 5 - 1
[3,2,1,1]
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 3 = 4 - 1
[3,1,1,1,1]
=> [5,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
[2,2,2,1]
=> [3,2,2]
=> [2,2]
=> [2,2]
=> 2 = 3 - 1
[2,2,1,1,1]
=> [5,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
[2,1,1,1,1,1]
=> [6,1]
=> [1]
=> [1]
=> 1 = 2 - 1
[1,1,1,1,1,1,1]
=> [7]
=> []
=> []
=> 0 = 1 - 1
[8]
=> [4,4]
=> [4]
=> [1,1,1,1]
=> 1 = 2 - 1
[7,1]
=> [4,3,1]
=> [3,1]
=> [2,1,1]
=> 2 = 3 - 1
[6,2]
=> [3,3,1,1]
=> [3,1,1]
=> [3,1,1]
=> 3 = 4 - 1
[6,1,1]
=> [4,2,2]
=> [2,2]
=> [2,2]
=> 2 = 3 - 1
[5,3]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [4,2]
=> 4 = 5 - 1
[5,2,1]
=> [4,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 4 = 5 - 1
[]
=> ?
=> ?
=> ?
=> ? = 0 - 1
[6,5,4,3,2,1]
=> ?
=> ?
=> ?
=> ? = 21 - 1
[5,5,4,3,2,1]
=> ?
=> ?
=> ?
=> ? = 15 - 1
[6,4,4,3,2,1]
=> ?
=> ?
=> ?
=> ? = 16 - 1
[5,4,4,3,2,1]
=> ?
=> ?
=> ?
=> ? = 11 - 1
[4,4,4,3,2,1]
=> ?
=> ?
=> ?
=> ? = 10 - 1
[6,5,3,3,2,1]
=> ?
=> ?
=> ?
=> ? = 17 - 1
[5,5,3,3,2,1]
=> ?
=> ?
=> ?
=> ? = 12 - 1
[5,4,3,3,2,1]
=> ?
=> ?
=> ?
=> ? = 9 - 1
[6,3,3,3,2,1]
=> ?
=> ?
=> ?
=> ? = 11 - 1
[6,5,4,2,2,1]
=> ?
=> ?
=> ?
=> ? = 18 - 1
[5,5,4,2,2,1]
=> ?
=> ?
=> ?
=> ? = 13 - 1
[6,4,4,2,2,1]
=> ?
=> ?
=> ?
=> ? = 14 - 1
[6,5,2,2,2,1]
=> ?
=> ?
=> ?
=> ? = 12 - 1
[6,5,4,3,1,1]
=> ?
=> ?
=> ?
=> ? = 19 - 1
[5,5,4,3,1,1]
=> ?
=> ?
=> ?
=> ? = 14 - 1
[6,4,4,3,1,1]
=> ?
=> ?
=> ?
=> ? = 15 - 1
[6,5,3,3,1,1]
=> ?
=> ?
=> ?
=> ? = 16 - 1
[5,5,3,3,1,1]
=> ?
=> ?
=> ?
=> ? = 12 - 1
[6,5,4,1,1,1]
=> ?
=> ?
=> ?
=> ? = 13 - 1
[6,5,4,3,2]
=> ?
=> ?
=> ?
=> ? = 20 - 1
[5,5,4,3,2]
=> ?
=> ?
=> ?
=> ? = 15 - 1
[6,4,4,3,2]
=> ?
=> ?
=> ?
=> ? = 16 - 1
[6,5,3,3,2]
=> ?
=> ?
=> ?
=> ? = 17 - 1
[5,5,3,3,2]
=> ?
=> ?
=> ?
=> ? = 13 - 1
[6,5,4,2,2]
=> ?
=> ?
=> ?
=> ? = 18 - 1
[5,5,4,2,2]
=> ?
=> ?
=> ?
=> ? = 14 - 1
[6,4,4,2,2]
=> ?
=> ?
=> ?
=> ? = 15 - 1
[6,5,4,3,1]
=> ?
=> ?
=> ?
=> ? = 19 - 1
[6,5,4,3]
=> ?
=> ?
=> ?
=> ? = 14 - 1
[7,6,5,4,3,2,1]
=> ?
=> ?
=> ?
=> ? = 28 - 1
[6,6,5,4,3,2,1]
=> ?
=> ?
=> ?
=> ? = 21 - 1
[6,5,5,4,3,2,1]
=> ?
=> ?
=> ?
=> ? = 16 - 1
[5,5,5,4,3,2,1]
=> ?
=> ?
=> ?
=> ? = 15 - 1
[6,5,4,4,3,2,1]
=> ?
=> ?
=> ?
=> ? = 13 - 1
[6,4,4,4,3,2,1]
=> ?
=> ?
=> ?
=> ? = 12 - 1
[5,4,4,4,3,2,1]
=> ?
=> ?
=> ?
=> ? = 11 - 1
[4,4,4,4,3,2,1]
=> ?
=> ?
=> ?
=> ? = 10 - 1
[6,5,4,3,3,2,1]
=> ?
=> ?
=> ?
=> ? = 12 - 1
[6,5,3,3,3,2,1]
=> ?
=> ?
=> ?
=> ? = 11 - 1
[6,4,3,3,3,2,1]
=> ?
=> ?
=> ?
=> ? = 10 - 1
[6,3,3,3,3,2,1]
=> ?
=> ?
=> ?
=> ? = 8 - 1
[6,5,4,3,2,2,1]
=> ?
=> ?
=> ?
=> ? = 13 - 1
[6,5,4,2,2,2,1]
=> ?
=> ?
=> ?
=> ? = 12 - 1
[6,5,3,2,2,2,1]
=> ?
=> ?
=> ?
=> ? = 11 - 1
[6,5,2,2,2,2,1]
=> ?
=> ?
=> ?
=> ? = 8 - 1
[6,5,4,3,2,1,1]
=> ?
=> ?
=> ?
=> ? = 16 - 1
[6,5,4,3,1,1,1]
=> ?
=> ?
=> ?
=> ? = 15 - 1
[6,5,4,2,1,1,1]
=> ?
=> ?
=> ?
=> ? = 14 - 1
[6,5,4,1,1,1,1]
=> ?
=> ?
=> ?
=> ? = 10 - 1
Description
The largest part of an integer partition.
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
St000012: Dyck paths ⟶ ℤResult quality: 48% values known / values provided: 48%distinct values known / distinct values provided: 52%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 5
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 3
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 4
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 3
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> 3
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 4
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> 3
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 5
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 4
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 6
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> 3
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 2
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> 4
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> 3
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 5
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> 5
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 4
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 2
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 2
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 4
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 2
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 4
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 4
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[7,3,1]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 6
[7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 5
[4,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 5
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 2
[11,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[10,2]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 4
[10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 4
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5
[9,1,1,1]
=> [1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 4
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 6
[8,2,2]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 4
[8,1,1,1,1]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 3
[7,3,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0,1,1,0,1,0,0]
=> ? = 7
[7,3,1,1]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> ? = 6
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 3
[4,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 6
Description
The area of a Dyck path. This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic. 1. Dyck paths are bijection with '''area sequences''' $(a_1,\ldots,a_n)$ such that $a_1 = 0, a_{k+1} \leq a_k + 1$. 2. The generating function $\mathbf{D}_n(q) = \sum_{D \in \mathfrak{D}_n} q^{\operatorname{area}(D)}$ satisfy the recurrence $$\mathbf{D}_{n+1}(q) = \sum q^k \mathbf{D}_k(q) \mathbf{D}_{n-k}(q).$$ 3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of $q,t$-Catalan numbers.
Matching statistic: St000041
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
St000041: Perfect matchings ⟶ ℤResult quality: 35% values known / values provided: 35%distinct values known / distinct values provided: 57%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [(1,4),(2,3)]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> 4
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> 3
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> 5
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> 4
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,6),(7,12),(8,9),(10,11)]
=> 3
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> 5
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> 4
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> 4
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> 6
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> 3
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> 3
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,14),(12,13)]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,16),(12,13),(14,15)]
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 3
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5),(7,12),(8,9),(10,11)]
=> 4
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]
=> 3
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> 5
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> 7
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> 4
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> 6
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> 5
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,12),(10,11)]
=> 3
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,14),(12,13)]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,16),(14,15)]
=> 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,18),(14,15),(16,17)]
=> 2
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,16),(12,13),(14,15)]
=> ? = 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,14),(10,11),(12,13)]
=> ? = 4
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,14),(10,11),(12,13)]
=> ? = 3
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]
=> 5
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [(1,6),(2,5),(3,4),(7,12),(8,9),(10,11)]
=> 5
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> 4
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> 4
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> 8
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> 7
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10),(11,14),(12,13)]
=> ? = 3
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12),(13,16),(14,15)]
=> ? = 2
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12),(13,18),(14,15),(16,17)]
=> ? = 3
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10),(11,16),(12,13),(14,15)]
=> ? = 4
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,16),(12,13),(14,15)]
=> ? = 3
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,14),(10,11),(12,13)]
=> ? = 4
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,14),(10,11),(12,13)]
=> ? = 5
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,14),(10,11),(12,13)]
=> ? = 3
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,14),(12,13)]
=> ? = 3
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10),(11,12),(13,16),(14,15)]
=> ? = 3
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12),(13,16),(14,15)]
=> ? = 2
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12),(13,14),(15,18),(16,17)]
=> ? = 2
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,22),(18,19),(20,21)]
=> ? = 2
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12),(13,14),(15,20),(16,17),(18,19)]
=> ? = 3
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10),(11,12),(13,18),(14,15),(16,17)]
=> ? = 4
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12),(13,18),(14,15),(16,17)]
=> ? = 3
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,16),(12,13),(14,15)]
=> ? = 4
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10),(11,16),(12,13),(14,15)]
=> ? = 5
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,16),(12,13),(14,15)]
=> ? = 3
[6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,14),(6,7),(8,11),(9,10),(12,13)]
=> ? = 5
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,14),(10,11),(12,13)]
=> ? = 6
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,14),(10,11),(12,13)]
=> ? = 5
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,14),(10,11),(12,13)]
=> ? = 4
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,14),(12,13)]
=> ? = 3
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10),(11,14),(12,13)]
=> ? = 5
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,12),(13,16),(14,15)]
=> ? = 3
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10),(11,14),(12,13)]
=> ? = 4
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10),(11,12),(13,16),(14,15)]
=> ? = 4
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10),(11,12),(13,14),(15,18),(16,17)]
=> ? = 3
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12),(13,16),(14,15)]
=> ? = 2
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12),(13,14),(15,18),(16,17)]
=> ? = 2
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,20),(18,19)]
=> ? = 2
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,22),(20,21)]
=> ? = 1
[11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,24),(20,21),(22,23)]
=> ? = 2
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 3
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 4
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12),(13,14),(15,20),(16,17),(18,19)]
=> ? = 3
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 4
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10),(11,12),(13,18),(14,15),(16,17)]
=> ? = 5
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12),(13,18),(14,15),(16,17)]
=> ? = 3
[7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,16),(12,13),(14,15)]
=> ? = 4
[7,3,1]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10),(11,16),(12,13),(14,15)]
=> ? = 6
[7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10),(11,16),(12,13),(14,15)]
=> ? = 5
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10),(11,16),(12,13),(14,15)]
=> ? = 4
[7,1,1,1,1]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,16),(12,13),(14,15)]
=> ? = 3
[6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,4),(2,3),(5,14),(6,7),(8,11),(9,10),(12,13)]
=> ? = 6
Description
The number of nestings of a perfect matching. This is the number of pairs of edges $((a,b), (c,d))$ such that $a\le c\le d\le b$. i.e., the edge $(c,d)$ is nested inside $(a,b)$.
Matching statistic: St001397
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
Mp00242: Dyck paths Hessenberg posetPosets
St001397: Posets ⟶ ℤResult quality: 31% values known / values provided: 31%distinct values known / distinct values provided: 52%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> ([],2)
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([],3)
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 4
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 3
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 5
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 4
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(1,2),(2,5),(5,3),(5,4)],6)
=> 3
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> 5
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> 4
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 6
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 3
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ? = 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(1,4),(4,6),(5,2),(5,3),(6,5)],7)
=> ? = 3
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> 4
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 3
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 5
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> 7
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 4
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(1,4)],5)
=> 6
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 5
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> 3
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7)
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ? = 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,8),(1,3),(3,8),(4,6),(5,4),(6,2),(7,5),(8,7)],9)
=> ? = 2
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,4),(4,7),(5,6),(6,2),(6,3),(7,5)],8)
=> ? = 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(1,3),(3,6),(5,2),(6,4),(6,5)],7)
=> ? = 4
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(1,2),(2,6),(3,5),(4,5),(6,3),(6,4)],7)
=> 3
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> 5
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> ([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 5
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,5),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> 4
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> 4
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(2,3),(2,4)],5)
=> 8
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(1,4),(2,3),(2,4)],5)
=> 7
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 6
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> 3
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> 6
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(4,6),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 2
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,8),(1,8),(3,4),(4,6),(5,3),(6,2),(7,5),(8,7)],9)
=> ? = 1
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,9),(1,3),(3,9),(4,5),(5,7),(6,4),(7,2),(8,6),(9,8)],10)
=> ? = 2
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,8),(1,4),(4,8),(5,7),(6,5),(7,2),(7,3),(8,6)],9)
=> ? = 3
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,4),(4,7),(5,3),(6,2),(6,5),(7,6)],8)
=> ? = 4
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,2),(2,7),(3,6),(4,6),(5,3),(5,4),(7,5)],8)
=> ? = 3
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(1,4),(1,6),(2,5),(3,4),(3,6),(4,2),(6,5)],7)
=> ? = 4
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(1,2),(2,6),(6,3),(6,4),(6,5)],7)
=> ? = 5
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(1,5),(1,6),(3,5),(3,6),(4,2),(5,4),(6,4)],7)
=> ? = 3
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(4,3),(5,6),(6,2),(6,4),(7,5)],8)
=> ? = 3
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,2),(5,3),(7,4)],8)
=> ? = 2
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,8),(1,8),(4,5),(5,7),(6,4),(7,2),(7,3),(8,6)],9)
=> ? = 2
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,9),(1,9),(3,5),(4,3),(5,7),(6,4),(7,2),(8,6),(9,8)],10)
=> ? = 1
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,10),(1,3),(3,10),(4,6),(5,4),(6,8),(7,5),(8,2),(9,7),(10,9)],11)
=> ? = 2
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,9),(1,4),(4,9),(5,6),(6,8),(7,5),(8,2),(8,3),(9,7)],10)
=> ? = 3
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,8),(1,4),(4,8),(5,3),(6,7),(7,2),(7,5),(8,6)],9)
=> ? = 4
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,8),(1,2),(2,8),(3,7),(4,7),(5,6),(6,3),(6,4),(8,5)],9)
=> ? = 3
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,2),(2,7),(3,6),(4,6),(5,4),(7,3),(7,5)],8)
=> ? = 4
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,5),(5,7),(6,2),(6,3),(6,4),(7,6)],8)
=> ? = 5
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,2),(2,7),(3,6),(4,6),(6,5),(7,3),(7,4)],8)
=> ? = 3
[6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> ([(0,5),(1,3),(1,4),(3,6),(4,5),(5,6),(6,2)],7)
=> ? = 5
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(0,6),(1,4),(4,5),(4,6),(6,2),(6,3)],7)
=> ? = 6
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(1,5),(1,6),(3,5),(3,6),(5,4),(6,2),(6,4)],7)
=> ? = 5
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,2),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7)
=> ? = 4
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,6),(1,3),(1,4),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 4
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,6),(1,5),(1,6),(3,5),(4,2),(5,4),(6,4)],7)
=> ? = 4
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(2,6),(3,6),(4,3),(5,2),(5,4),(7,5)],8)
=> ? = 3
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(5,6),(6,2),(6,3),(6,4),(7,5)],8)
=> ? = 4
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,8),(1,8),(4,7),(5,2),(6,4),(7,3),(7,5),(8,6)],9)
=> ? = 3
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> ? = 3
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(1,6),(3,7),(4,7),(5,3),(5,4),(6,5),(7,2)],8)
=> ? = 2
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,8),(1,8),(2,7),(3,7),(4,5),(5,6),(6,2),(6,3),(8,4)],9)
=> ? = 2
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,9),(1,9),(4,6),(5,4),(6,8),(7,5),(8,2),(8,3),(9,7)],10)
=> ? = 2
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,10),(1,10),(3,4),(4,6),(5,3),(6,8),(7,5),(8,2),(9,7),(10,9)],11)
=> ? = 1
[11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 2
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 3
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 4
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 3
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 4
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 5
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 3
[7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(0,7),(1,2),(2,5),(2,7),(3,6),(5,6),(6,4),(7,3)],8)
=> ? = 4
[7,3,1]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,4),(4,7),(6,2),(6,3),(7,5),(7,6)],8)
=> ? = 6
Description
Number of pairs of incomparable elements in a finite poset. For a finite poset $(P,\leq)$, this is the number of unordered pairs $\{x,y\} \in \binom{P}{2}$ with $x \not\leq y$ and $y \not\leq x$.
Mp00323: Integer partitions Loehr-Warrington inverseInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000288: Binary words ⟶ ℤResult quality: 25% values known / values provided: 31%distinct values known / distinct values provided: 25%
Values
[1]
=> [1]
=> 10 => 1
[2]
=> [1,1]
=> 110 => 2
[1,1]
=> [2]
=> 100 => 1
[3]
=> [2,1]
=> 1010 => 2
[2,1]
=> [1,1,1]
=> 1110 => 3
[1,1,1]
=> [3]
=> 1000 => 1
[4]
=> [2,2]
=> 1100 => 2
[3,1]
=> [1,1,1,1]
=> 11110 => 4
[2,2]
=> [2,1,1]
=> 10110 => 3
[2,1,1]
=> [3,1]
=> 10010 => 2
[1,1,1,1]
=> [4]
=> 10000 => 1
[5]
=> [3,2]
=> 10100 => 2
[4,1]
=> [3,1,1]
=> 100110 => 3
[3,2]
=> [1,1,1,1,1]
=> 111110 => 5
[3,1,1]
=> [2,1,1,1]
=> 101110 => 4
[2,2,1]
=> [2,2,1]
=> 11010 => 3
[2,1,1,1]
=> [4,1]
=> 100010 => 2
[1,1,1,1,1]
=> [5]
=> 100000 => 1
[6]
=> [3,3]
=> 11000 => 2
[5,1]
=> [3,2,1]
=> 101010 => 3
[4,2]
=> [2,1,1,1,1]
=> 1011110 => 5
[4,1,1]
=> [2,2,1,1]
=> 110110 => 4
[3,3]
=> [3,1,1,1]
=> 1001110 => 4
[3,2,1]
=> [1,1,1,1,1,1]
=> 1111110 => 6
[3,1,1,1]
=> [4,1,1]
=> 1000110 => 3
[2,2,2]
=> [2,2,2]
=> 11100 => 3
[2,2,1,1]
=> [4,2]
=> 100100 => 2
[2,1,1,1,1]
=> [5,1]
=> 1000010 => 2
[1,1,1,1,1,1]
=> [6]
=> 1000000 => 1
[7]
=> [4,3]
=> 101000 => 2
[6,1]
=> [3,3,1]
=> 110010 => 3
[5,2]
=> [3,2,1,1]
=> 1010110 => 4
[5,1,1]
=> [4,2,1]
=> 1001010 => 3
[4,3]
=> [2,2,1,1,1]
=> 1101110 => 5
[4,2,1]
=> [1,1,1,1,1,1,1]
=> 11111110 => 7
[4,1,1,1]
=> [2,2,2,1]
=> 111010 => 4
[3,3,1]
=> [2,1,1,1,1,1]
=> 10111110 => 6
[3,2,2]
=> [3,1,1,1,1]
=> 10011110 => 5
[3,2,1,1]
=> [4,1,1,1]
=> 10001110 => 4
[3,1,1,1,1]
=> [5,1,1]
=> 10000110 => 3
[2,2,2,1]
=> [3,2,2]
=> 101100 => 3
[2,2,1,1,1]
=> [5,2]
=> 1000100 => 2
[2,1,1,1,1,1]
=> [6,1]
=> 10000010 => 2
[1,1,1,1,1,1,1]
=> [7]
=> 10000000 => 1
[8]
=> [4,4]
=> 110000 => 2
[7,1]
=> [4,3,1]
=> 1010010 => 3
[6,2]
=> [3,3,1,1]
=> 1100110 => 4
[6,1,1]
=> [4,2,2]
=> 1001100 => 3
[5,3]
=> [2,2,2,1,1]
=> 1110110 => 5
[5,2,1]
=> [4,1,1,1,1]
=> 100011110 => 5
[7,3,1]
=> [4,3,1,1,1,1]
=> 1010011110 => ? = 6
[6,4,1]
=> [3,2,2,2,1,1]
=> 101110110 => ? = 6
[5,3,2,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> 111111111110 => ? = 11
[5,3,1,1,1]
=> [3,2,2,1,1,1,1]
=> 1011011110 => ? = 7
[5,2,2,1,1]
=> [4,2,2,1,1,1]
=> 1001101110 => ? = 6
[5,2,1,1,1,1]
=> [6,3,1,1]
=> 1000100110 => ? = 4
[5,1,1,1,1,1,1]
=> [7,2,2]
=> 1000001100 => ? = 3
[4,4,3]
=> [3,3,1,1,1,1,1]
=> 1100111110 => ? = 7
[4,4,2,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> 101111111110 => ? = 10
[4,4,1,1,1]
=> [3,3,2,1,1,1]
=> 110101110 => ? = 6
[4,3,3,1]
=> [3,1,1,1,1,1,1,1,1]
=> 100111111110 => ? = 9
[4,3,2,2]
=> [4,1,1,1,1,1,1,1]
=> 100011111110 => ? = 8
[4,3,2,1,1]
=> [5,1,1,1,1,1,1]
=> 100001111110 => ? = 7
[4,3,1,1,1,1]
=> [6,1,1,1,1,1]
=> 100000111110 => ? = 6
[4,2,1,1,1,1,1]
=> [7,1,1,1,1]
=> 100000011110 => ? = 5
[3,3,2,1,1,1]
=> [6,2,2,1]
=> 1000011010 => ? = 4
[3,2,2,1,1,1,1]
=> [7,3,1]
=> 1000010010 => ? = 3
[3,2,1,1,1,1,1,1]
=> [8,1,1,1]
=> 100000001110 => ? = 4
[3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> 100000000110 => ? = 3
[2,2,2,1,1,1,1,1]
=> [8,3]
=> 1000001000 => ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [10,1]
=> 100000000010 => ? = 2
[1,1,1,1,1,1,1,1,1,1,1]
=> [11]
=> 100000000000 => ? = 1
[11,1]
=> [6,5,1]
=> 101000010 => ? = 3
[10,2]
=> [5,5,1,1]
=> 110000110 => ? = 4
[8,3,1]
=> [4,4,1,1,1,1]
=> 1100011110 => ? = 6
[8,1,1,1,1]
=> [6,3,3]
=> 100011000 => ? = 3
[7,3,2]
=> [4,3,1,1,1,1,1]
=> 10100111110 => ? = 7
[7,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 4
[6,5,1]
=> [3,2,2,2,2,1]
=> 101111010 => ? = 6
[6,4,2]
=> [3,2,2,1,1,1,1,1]
=> 10110111110 => ? = 8
[6,4,1,1]
=> [3,2,2,2,1,1,1]
=> 1011101110 => ? = 7
[6,3,3]
=> [3,3,2,1,1,1,1]
=> 1101011110 => ? = 7
[6,3,2,1]
=> [5,1,1,1,1,1,1,1]
=> 1000011111110 => ? = 8
[6,3,1,1,1]
=> [4,3,2,1,1,1]
=> 1010101110 => ? = 6
[6,2,2,2]
=> [4,2,2,2,1,1]
=> 1001110110 => ? = 6
[6,1,1,1,1,1,1]
=> [7,3,2]
=> 1000010100 => ? = 3
[5,5,2]
=> [5,2,1,1,1,1,1]
=> 100010111110 => ? = 7
[5,5,1,1]
=> [5,2,2,1,1,1]
=> 10001101110 => ? = 6
[5,4,3]
=> [2,2,2,1,1,1,1,1,1]
=> 11101111110 => ? = 9
[5,4,2,1]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> 1111111111110 => ? = 12
[5,4,1,1,1]
=> [2,2,2,2,1,1,1,1]
=> 1111011110 => ? = 8
[5,3,3,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> 1011111111110 => ? = 11
[5,3,2,2]
=> [3,1,1,1,1,1,1,1,1,1]
=> 1001111111110 => ? = 10
[5,3,2,1,1]
=> [4,1,1,1,1,1,1,1,1]
=> 1000111111110 => ? = 9
[5,3,1,1,1,1]
=> [6,2,1,1,1,1]
=> 100001011110 => ? = 6
[5,2,2,2,1]
=> [2,2,2,2,2,1,1]
=> 111110110 => ? = 7
[5,2,2,1,1,1]
=> [6,2,2,1,1]
=> 10000110110 => ? = 5
[5,2,1,1,1,1,1]
=> [7,3,1,1]
=> 10000100110 => ? = 4
[5,1,1,1,1,1,1,1]
=> [8,2,2]
=> 10000001100 => ? = 3
[4,4,4]
=> [5,3,1,1,1,1]
=> 10010011110 => ? = 6
Description
The number of ones in a binary word. This is also known as the Hamming weight of the word.
Matching statistic: St000161
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
Mp00029: Dyck paths to binary tree: left tree, up step, right tree, down stepBinary trees
St000161: Binary trees ⟶ ℤResult quality: 29% values known / values provided: 29%distinct values known / distinct values provided: 48%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [.,[.,.]]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [.,[[.,.],.]]
=> 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [.,[.,[.,.]]]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> 4
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> 3
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[[[.,.],.],.],[.,.]]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[.,.],.],.],[[.,.],.]]
=> 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [.,[.,[[.,.],.]]]
=> 5
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> 4
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [[[[[.,.],.],.],.],[.,.]]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[[.,.],.],.],.],[[.,.],.]]
=> 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [[[.,[.,.]],.],[[.,.],.]]
=> 3
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> 5
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> 4
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [.,[[[[.,.],.],.],.]]
=> 4
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> 6
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> 3
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> 3
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[[[.,[.,.]],.],.],[.,.]]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [[[[[[.,.],.],.],.],.],[.,.]]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[[[.,.],.],.],.],.],[[.,.],.]]
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[.,[.,.]],.],.],[[.,.],.]]
=> ? = 3
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [[.,[[.,.],.]],[[.,.],.]]
=> 4
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [[[.,.],[.,.]],[[.,.],.]]
=> 3
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> 5
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> 7
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> 4
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> 6
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [.,[[[.,[.,.]],.],.]]
=> 5
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [[[.,[[.,.],.]],.],[.,.]]
=> 3
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[[.,.],.],[.,[.,.]]]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [[[[.,.],[.,.]],.],[.,.]]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [[[[[.,[.,.]],.],.],.],[.,.]]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[[[[.,.],.],.],.],.],.],[[.,.],.]]
=> ? = 2
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[[.,[.,.]],.],.],.],[[.,.],.]]
=> ? = 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [[[.,[[.,.],.]],.],[[.,.],.]]
=> ? = 4
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [[[[.,.],[.,.]],.],[[.,.],.]]
=> ? = 3
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [[.,.],[[[.,.],[.,.]],.]]
=> 5
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [[.,[.,[.,.]]],[[.,.],.]]
=> 5
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [[[.,.],.],[[.,[.,.]],.]]
=> 4
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [[.,.],[[[[.,.],.],.],.]]
=> 4
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [.,[.,[[.,[.,.]],.]]]
=> 8
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 7
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> 6
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[[[[[.,.],.],.],.],.],.],.],[[.,.],.]]
=> ? = 2
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[[[.,[.,.]],.],.],.],.],[[.,.],.]]
=> ? = 3
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[[.,.],[.,.]],.],.],[[.,.],.]]
=> ? = 3
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [[[.,.],[[.,.],.]],[[.,.],.]]
=> ? = 4
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [[[.,[.,[.,.]]],.],[[.,.],.]]
=> ? = 5
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [[[[.,.],.],[.,.]],[[.,.],.]]
=> ? = 3
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[[[[[[.,.],.],.],.],.],.],.],.],[[.,.],.]]
=> ? = 2
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[[[[.,[.,.]],.],.],.],.],.],[[.,.],.]]
=> ? = 3
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[[.,[[.,.],.]],.],.],.],[[.,.],.]]
=> ? = 4
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[[[.,.],[.,.]],.],.],.],[[.,.],.]]
=> ? = 3
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[.,[.,[.,.]]],.],.],[[.,.],.]]
=> ? = 5
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [[[[[.,.],.],[.,.]],.],[[.,.],.]]
=> ? = 3
[6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [[[.,.],.],[[[.,.],[.,.]],.]]
=> ? = 5
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [[.,[[.,[.,.]],.]],[[.,.],.]]
=> ? = 6
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [[.,[[[.,.],.],.]],[[.,.],.]]
=> ? = 5
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [[[.,[.,.]],[.,.]],[[.,.],.]]
=> ? = 4
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [[[[.,.],.],.],[[.,[.,.]],.]]
=> ? = 4
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [[[.,.],.],[[[[.,.],.],.],.]]
=> ? = 4
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [[[[.,.],.],[[.,.],.]],[.,.]]
=> ? = 3
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [[[[[.,.],[[.,.],.]],.],.],[.,.]]
=> ? = 3
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [[[[.,.],.],.],[[[.,.],.],.]]
=> ? = 3
[11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[[[[[[[.,.],.],.],.],.],.],.],.],.],[[.,.],.]]
=> ? = 2
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 3
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 4
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[[[[.,.],[.,.]],.],.],.],.],[[.,.],.]]
=> ? = 3
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? = 4
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[[.,[.,[.,.]]],.],.],.],[[.,.],.]]
=> ? = 5
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [[[[[[.,.],.],[.,.]],.],.],[[.,.],.]]
=> ? = 3
[7,3,1]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,1,0,0]
=> [[[.,[[.,[.,.]],.]],.],[[.,.],.]]
=> ? = 6
[7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [[[.,[[[.,.],.],.]],.],[[.,.],.]]
=> ? = 5
[7,1,1,1,1]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [[[[[.,.],.],.],[.,.]],[[.,.],.]]
=> ? = 3
[6,5]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [[[[.,.],.],.],[.,[[.,.],.]]]
=> ? = 5
[6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [[.,[.,.]],[[[.,.],[.,.]],.]]
=> ? = 6
[6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [[.,[.,[[.,.],.]]],[[.,.],.]]
=> ? = 7
[6,3,1,1]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [[.,[[.,.],[.,.]]],[[.,.],.]]
=> ? = 6
[6,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [[[.,[.,.]],.],[[.,[.,.]],.]]
=> ? = 5
[6,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [[[[.,.],.],.],[[.,.],[.,.]]]
=> ? = 4
[5,5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [[.,[.,.]],[[[[.,.],.],.],.]]
=> ? = 5
[5,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ? = 4
[5,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [[[[[.,.],.],[[.,.],.]],.],[.,.]]
=> ? = 3
[4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,1,0,0]
=> [[[.,[.,[[.,.],.]]],.],[.,.]]
=> ? = 6
[4,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,1,0,0]
=> [[[.,[[.,.],[.,.]]],.],[.,.]]
=> ? = 5
[4,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,0]
=> [[[[.,[[.,[.,.]],.]],.],.],[.,.]]
=> ? = 5
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 3
[3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [[[.,[.,.]],.],[[[.,.],.],.]]
=> ? = 4
Description
The sum of the sizes of the right subtrees of a binary tree. This statistic corresponds to [[St000012]] under the Tamari Dyck path-binary tree bijection, and to [[St000018]] of the $312$-avoiding permutation corresponding to the binary tree. It is also the sum of all heights $j$ of the coordinates $(i,j)$ of the Dyck path corresponding to the binary tree.
Matching statistic: St000734
Mp00323: Integer partitions Loehr-Warrington inverseInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000734: Standard tableaux ⟶ ℤResult quality: 27% values known / values provided: 27%distinct values known / distinct values provided: 28%
Values
[1]
=> [1]
=> [1]
=> [[1]]
=> 1
[2]
=> [1,1]
=> [2]
=> [[1,2]]
=> 2
[1,1]
=> [2]
=> [1,1]
=> [[1],[2]]
=> 1
[3]
=> [2,1]
=> [2,1]
=> [[1,2],[3]]
=> 2
[2,1]
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 3
[1,1,1]
=> [3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 1
[4]
=> [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[3,1]
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 4
[2,2]
=> [2,1,1]
=> [3,1]
=> [[1,2,3],[4]]
=> 3
[2,1,1]
=> [3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2
[1,1,1,1]
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 1
[5]
=> [3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 2
[4,1]
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[3,2]
=> [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 5
[3,1,1]
=> [2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 4
[2,2,1]
=> [2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 3
[2,1,1,1]
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2
[1,1,1,1,1]
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
[6]
=> [3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 2
[5,1]
=> [3,2,1]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 3
[4,2]
=> [2,1,1,1,1]
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 5
[4,1,1]
=> [2,2,1,1]
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 4
[3,3]
=> [3,1,1,1]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 4
[3,2,1]
=> [1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> 6
[3,1,1,1]
=> [4,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 3
[2,2,2]
=> [2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 3
[2,2,1,1]
=> [4,2]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 2
[2,1,1,1,1]
=> [5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 2
[1,1,1,1,1,1]
=> [6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 1
[7]
=> [4,3]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> 2
[6,1]
=> [3,3,1]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 3
[5,2]
=> [3,2,1,1]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> 4
[5,1,1]
=> [4,2,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> 3
[4,3]
=> [2,2,1,1,1]
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 5
[4,2,1]
=> [1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 7
[4,1,1,1]
=> [2,2,2,1]
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> 4
[3,3,1]
=> [2,1,1,1,1,1]
=> [6,1]
=> [[1,2,3,4,5,6],[7]]
=> 6
[3,2,2]
=> [3,1,1,1,1]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> 5
[3,2,1,1]
=> [4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> 4
[3,1,1,1,1]
=> [5,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> 3
[2,2,2,1]
=> [3,2,2]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> 3
[2,2,1,1,1]
=> [5,2]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> 2
[2,1,1,1,1,1]
=> [6,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> 2
[1,1,1,1,1,1,1]
=> [7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 1
[8]
=> [4,4]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 2
[7,1]
=> [4,3,1]
=> [3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> 3
[6,2]
=> [3,3,1,1]
=> [4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> 4
[6,1,1]
=> [4,2,2]
=> [3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> 3
[5,3]
=> [2,2,2,1,1]
=> [5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> 5
[5,2,1]
=> [4,1,1,1,1]
=> [5,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8]]
=> 5
[7,3,1]
=> [4,3,1,1,1,1]
=> [6,2,2,1]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11]]
=> ? = 6
[7,1,1,1,1]
=> [6,3,2]
=> [3,3,2,1,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10],[11]]
=> ? = 3
[6,5]
=> [3,2,2,2,2]
=> [5,5,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11]]
=> ? = 5
[6,4,1]
=> [3,2,2,2,1,1]
=> [6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ? = 6
[6,3,2]
=> [4,2,1,1,1,1,1]
=> [7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> ? = 7
[6,3,1,1]
=> [5,2,1,1,1,1]
=> [6,2,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11]]
=> ? = 6
[5,4,2]
=> [2,2,1,1,1,1,1,1,1]
=> [9,2]
=> [[1,2,3,4,5,6,7,8,9],[10,11]]
=> ? = 9
[5,4,1,1]
=> [2,2,2,1,1,1,1,1]
=> [8,3]
=> [[1,2,3,4,5,6,7,8],[9,10,11]]
=> ? = 8
[5,3,3]
=> [3,2,1,1,1,1,1,1]
=> [8,2,1]
=> [[1,2,3,4,5,6,7,8],[9,10],[11]]
=> ? = 8
[5,3,2,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 11
[5,3,1,1,1]
=> [3,2,2,1,1,1,1]
=> [7,3,1]
=> [[1,2,3,4,5,6,7],[8,9,10],[11]]
=> ? = 7
[5,2,2,2]
=> [2,2,2,2,1,1,1]
=> [7,4]
=> [[1,2,3,4,5,6,7],[8,9,10,11]]
=> ? = 7
[5,2,2,1,1]
=> [4,2,2,1,1,1]
=> [6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> ? = 6
[5,2,1,1,1,1]
=> [6,3,1,1]
=> [4,2,2,1,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10],[11]]
=> ? = 4
[5,1,1,1,1,1,1]
=> [7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10],[11]]
=> ? = 3
[4,4,3]
=> [3,3,1,1,1,1,1]
=> [7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> ? = 7
[4,4,2,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 10
[4,4,1,1,1]
=> [3,3,2,1,1,1]
=> [6,3,2]
=> [[1,2,3,4,5,6],[7,8,9],[10,11]]
=> ? = 6
[4,3,3,1]
=> [3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? = 9
[4,3,2,2]
=> [4,1,1,1,1,1,1,1]
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? = 8
[4,3,2,1,1]
=> [5,1,1,1,1,1,1]
=> [7,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11]]
=> ? = 7
[4,3,1,1,1,1]
=> [6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[4,2,2,1,1,1]
=> [6,2,1,1,1]
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[4,2,1,1,1,1,1]
=> [7,1,1,1,1]
=> [5,1,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10],[11]]
=> ? = 5
[4,1,1,1,1,1,1,1]
=> [8,2,1]
=> [3,2,1,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10],[11]]
=> ? = 3
[3,3,3,2]
=> [2,2,2,2,2,1]
=> [6,5]
=> [[1,2,3,4,5,6],[7,8,9,10,11]]
=> ? = 6
[3,3,2,1,1,1]
=> [6,2,2,1]
=> [4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ? = 4
[3,3,1,1,1,1,1]
=> [7,2,1,1]
=> [4,2,1,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? = 4
[3,2,2,2,1,1]
=> [6,4,1]
=> [3,2,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10],[11]]
=> ? = 3
[3,2,2,1,1,1,1]
=> [7,3,1]
=> [3,2,2,1,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10],[11]]
=> ? = 3
[3,2,1,1,1,1,1,1]
=> [8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 3
[2,2,2,2,1,1,1]
=> [7,4]
=> [2,2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11]]
=> ? = 2
[2,2,2,1,1,1,1,1]
=> [8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? = 2
[2,2,1,1,1,1,1,1,1]
=> [9,2]
=> [2,2,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 2
[1,1,1,1,1,1,1,1,1,1,1]
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
[11,1]
=> [6,5,1]
=> [3,2,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12]]
=> ? = 3
[10,2]
=> [5,5,1,1]
=> [4,2,2,2,2]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11,12]]
=> ? = 4
[8,3,1]
=> [4,4,1,1,1,1]
=> [6,2,2,2]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11,12]]
=> ? = 6
[8,1,1,1,1]
=> [6,3,3]
=> [3,3,3,1,1,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10],[11],[12]]
=> ? = 3
[7,5]
=> [3,3,2,2,2]
=> [5,5,2]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12]]
=> ? = 5
[7,3,2]
=> [4,3,1,1,1,1,1]
=> [7,2,2,1]
=> [[1,2,3,4,5,6,7],[8,9],[10,11],[12]]
=> ? = 7
[7,2,1,1,1]
=> [6,3,2,1]
=> [4,3,2,1,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11],[12]]
=> ? = 4
[6,5,1]
=> [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,2,3,4,5,6],[7,8,9,10,11],[12]]
=> ? = 6
[6,4,2]
=> [3,2,2,1,1,1,1,1]
=> [8,3,1]
=> [[1,2,3,4,5,6,7,8],[9,10,11],[12]]
=> ? = 8
[6,4,1,1]
=> [3,2,2,2,1,1,1]
=> [7,4,1]
=> [[1,2,3,4,5,6,7],[8,9,10,11],[12]]
=> ? = 7
[6,3,3]
=> [3,3,2,1,1,1,1]
=> [7,3,2]
=> [[1,2,3,4,5,6,7],[8,9,10],[11,12]]
=> ? = 7
[6,3,2,1]
=> [5,1,1,1,1,1,1,1]
=> [8,1,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11],[12]]
=> ? = 8
[6,3,1,1,1]
=> [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,2,3,4,5,6],[7,8,9],[10,11],[12]]
=> ? = 6
Description
The last entry in the first row of a standard tableau.
Matching statistic: St000246
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000246: Permutations ⟶ ℤResult quality: 27% values known / values provided: 27%distinct values known / distinct values provided: 72%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [2,3,1] => 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 4
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 3
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 5
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 4
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,3,2,1] => ? = 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,1,2] => 3
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 5
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 4
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 4
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 6
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 3
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 3
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,1,2] => 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,2,1] => ? = 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,6,8,5,4,3,2,1] => 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,3,1,2] => ? = 3
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,1,3] => 4
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => 3
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 5
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => 7
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 4
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => 6
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => 5
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,1,3] => 3
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,1,2] => ? = 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [7,8,6,5,4,3,2,1] => ? = 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [8,7,9,6,5,4,3,2,1] => ? = 2
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,6,8,5,4,3,1,2] => ? = 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,2,1,3] => ? = 4
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,2,3,1] => ? = 3
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,6,1] => 5
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [5,4,6,1,2,3] => 5
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => 4
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,6,1] => 4
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 8
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => 7
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => 6
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,6,3,2,4,1] => 3
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 6
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 5
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 4
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,2,1,3] => ? = 3
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,2,3,1] => ? = 2
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [8,9,7,6,5,4,3,2,1] => ? = 1
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [9,8,10,7,6,5,4,3,2,1] => ? = 2
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [8,7,9,6,5,4,3,1,2] => ? = 3
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [7,6,8,5,4,2,3,1] => ? = 3
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [6,5,7,3,2,4,1] => ? = 4
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,1,2,3] => ? = 5
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [6,5,7,3,4,2,1] => ? = 3
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,2,4,1] => ? = 3
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,1,2,3] => ? = 4
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [7,8,6,5,4,2,1,3] => ? = 3
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,4,2,1] => ? = 2
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [8,9,7,6,5,4,3,1,2] => ? = 2
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [9,10,8,7,6,5,4,3,2,1] => ? = 1
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [10,9,11,8,7,6,5,4,3,2,1] => ? = 2
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [9,8,10,7,6,5,4,3,1,2] => ? = 3
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [8,7,9,6,5,4,2,1,3] => ? = 4
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [8,7,9,6,5,4,2,3,1] => ? = 3
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [7,6,8,5,3,2,4,1] => ? = 4
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [7,6,8,5,4,1,2,3] => ? = 5
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [7,6,8,5,3,4,2,1] => ? = 3
[6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [6,4,5,3,7,2,1] => ? = 5
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [6,5,7,3,1,2,4] => ? = 6
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [6,5,7,3,2,1,4] => ? = 5
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [6,4,5,7,3,2,1] => ? = 4
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,7,2,1] => ? = 4
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,7,4,3,5,2,1] => ? = 3
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,1,2,4] => ? = 5
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [7,8,6,5,3,2,4,1] => ? = 3
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,2,1,4] => ? = 4
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,4,1,2] => ? = 3
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [7,8,6,5,4,1,2,3] => ? = 4
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [8,9,7,6,5,4,2,1,3] => ? = 3
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,7,3,2,1] => ? = 3
[2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,2,1] => ? = 2
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [8,9,7,6,5,4,2,3,1] => ? = 2
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [9,10,8,7,6,5,4,3,1,2] => ? = 2
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [10,11,9,8,7,6,5,4,3,2,1] => ? = 1
[11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [11,10,12,9,8,7,6,5,4,3,2,1] => ? = 2
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? => ? = 3
Description
The number of non-inversions of a permutation. For a permutation of $\{1,\ldots,n\}$, this is given by $\operatorname{noninv}(\pi) = \binom{n}{2}-\operatorname{inv}(\pi)$.
The following 26 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001558The number of transpositions that are smaller or equal to a permutation in Bruhat order. St000733The row containing the largest entry of a standard tableau. St000157The number of descents of a standard tableau. St000018The number of inversions of a permutation. St000676The number of odd rises of a Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St000067The inversion number of the alternating sign matrix. St000057The Shynar inversion number of a standard tableau. St000076The rank of the alternating sign matrix in the alternating sign matrix poset. St000507The number of ascents of a standard tableau. St000006The dinv of a Dyck path. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St000005The bounce statistic of a Dyck path. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001480The number of simple summands of the module J^2/J^3. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St000053The number of valleys of the Dyck path. St001462The number of factors of a standard tableaux under concatenation. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000015The number of peaks of a Dyck path. St000331The number of upper interactions of a Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.