Identifier
-
Mp00323:
Integer partitions
—Loehr-Warrington inverse⟶
Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000288: Binary words ⟶ ℤ
Values
[1] => [1] => 10 => 1
[2] => [1,1] => 110 => 2
[1,1] => [2] => 100 => 1
[3] => [2,1] => 1010 => 2
[2,1] => [1,1,1] => 1110 => 3
[1,1,1] => [3] => 1000 => 1
[4] => [2,2] => 1100 => 2
[3,1] => [1,1,1,1] => 11110 => 4
[2,2] => [2,1,1] => 10110 => 3
[2,1,1] => [3,1] => 10010 => 2
[1,1,1,1] => [4] => 10000 => 1
[5] => [3,2] => 10100 => 2
[4,1] => [3,1,1] => 100110 => 3
[3,2] => [1,1,1,1,1] => 111110 => 5
[3,1,1] => [2,1,1,1] => 101110 => 4
[2,2,1] => [2,2,1] => 11010 => 3
[2,1,1,1] => [4,1] => 100010 => 2
[1,1,1,1,1] => [5] => 100000 => 1
[6] => [3,3] => 11000 => 2
[5,1] => [3,2,1] => 101010 => 3
[4,2] => [2,1,1,1,1] => 1011110 => 5
[4,1,1] => [2,2,1,1] => 110110 => 4
[3,3] => [3,1,1,1] => 1001110 => 4
[3,2,1] => [1,1,1,1,1,1] => 1111110 => 6
[3,1,1,1] => [4,1,1] => 1000110 => 3
[2,2,2] => [2,2,2] => 11100 => 3
[2,2,1,1] => [4,2] => 100100 => 2
[2,1,1,1,1] => [5,1] => 1000010 => 2
[1,1,1,1,1,1] => [6] => 1000000 => 1
[7] => [4,3] => 101000 => 2
[6,1] => [3,3,1] => 110010 => 3
[5,2] => [3,2,1,1] => 1010110 => 4
[5,1,1] => [4,2,1] => 1001010 => 3
[4,3] => [2,2,1,1,1] => 1101110 => 5
[4,2,1] => [1,1,1,1,1,1,1] => 11111110 => 7
[4,1,1,1] => [2,2,2,1] => 111010 => 4
[3,3,1] => [2,1,1,1,1,1] => 10111110 => 6
[3,2,2] => [3,1,1,1,1] => 10011110 => 5
[3,2,1,1] => [4,1,1,1] => 10001110 => 4
[3,1,1,1,1] => [5,1,1] => 10000110 => 3
[2,2,2,1] => [3,2,2] => 101100 => 3
[2,2,1,1,1] => [5,2] => 1000100 => 2
[2,1,1,1,1,1] => [6,1] => 10000010 => 2
[1,1,1,1,1,1,1] => [7] => 10000000 => 1
[8] => [4,4] => 110000 => 2
[7,1] => [4,3,1] => 1010010 => 3
[6,2] => [3,3,1,1] => 1100110 => 4
[6,1,1] => [4,2,2] => 1001100 => 3
[5,3] => [2,2,2,1,1] => 1110110 => 5
[5,2,1] => [4,1,1,1,1] => 100011110 => 5
[5,1,1,1] => [2,2,2,2] => 111100 => 4
[4,4] => [4,2,1,1] => 10010110 => 4
[4,3,1] => [1,1,1,1,1,1,1,1] => 111111110 => 8
[4,2,2] => [2,1,1,1,1,1,1] => 101111110 => 7
[4,2,1,1] => [3,1,1,1,1,1] => 100111110 => 6
[4,1,1,1,1] => [5,2,1] => 10001010 => 3
[3,3,2] => [2,2,1,1,1,1] => 11011110 => 6
[3,3,1,1] => [3,2,1,1,1] => 10101110 => 5
[3,2,2,1] => [3,2,2,1] => 1011010 => 4
[3,2,1,1,1] => [5,1,1,1] => 100001110 => 4
[3,1,1,1,1,1] => [6,1,1] => 100000110 => 3
[2,2,2,2] => [3,3,2] => 110100 => 3
[2,2,2,1,1] => [5,3] => 1001000 => 2
[2,2,1,1,1,1] => [6,2] => 10000100 => 2
[2,1,1,1,1,1,1] => [7,1] => 100000010 => 2
[1,1,1,1,1,1,1,1] => [8] => 100000000 => 1
[9] => [5,4] => 1010000 => 2
[8,1] => [4,4,1] => 1100010 => 3
[7,2] => [4,3,1,1] => 10100110 => 4
[7,1,1] => [4,3,2] => 1010100 => 3
[6,3] => [4,2,2,1] => 10011010 => 4
[6,2,1] => [4,2,1,1,1] => 100101110 => 5
[6,1,1,1] => [5,2,2] => 10001100 => 3
[5,4] => [2,2,2,2,1] => 1111010 => 5
[5,3,1] => [3,1,1,1,1,1,1] => 1001111110 => 7
[5,2,2] => [3,2,1,1,1,1] => 101011110 => 6
[5,2,1,1] => [3,3,1,1,1] => 11001110 => 5
[5,1,1,1,1] => [3,2,2,2] => 1011100 => 4
[4,4,1] => [4,1,1,1,1,1] => 1000111110 => 6
[4,3,2] => [1,1,1,1,1,1,1,1,1] => 1111111110 => 9
[4,3,1,1] => [2,1,1,1,1,1,1,1] => 1011111110 => 8
[4,2,2,1] => [2,2,1,1,1,1,1] => 110111110 => 7
[4,2,1,1,1] => [5,1,1,1,1] => 1000011110 => 5
[4,1,1,1,1,1] => [6,2,1] => 100001010 => 3
[3,3,3] => [3,2,2,1,1] => 10110110 => 5
[3,3,2,1] => [2,2,2,1,1,1] => 11101110 => 6
[3,3,1,1,1] => [5,2,1,1] => 100010110 => 4
[3,2,2,2] => [3,3,2,1] => 1101010 => 4
[3,2,2,1,1] => [5,3,1] => 10010010 => 3
[3,2,1,1,1,1] => [6,1,1,1] => 1000001110 => 4
[3,1,1,1,1,1,1] => [7,1,1] => 1000000110 => 3
[2,2,2,2,1] => [3,3,3] => 111000 => 3
[2,2,2,1,1,1] => [6,3] => 10001000 => 2
[2,2,1,1,1,1,1] => [7,2] => 100000100 => 2
[2,1,1,1,1,1,1,1] => [8,1] => 1000000010 => 2
[1,1,1,1,1,1,1,1,1] => [9] => 1000000000 => 1
[10] => [5,5] => 1100000 => 2
[9,1] => [5,4,1] => 10100010 => 3
[8,2] => [4,4,1,1] => 11000110 => 4
[8,1,1] => [4,4,2] => 1100100 => 3
[7,3] => [4,3,2,1] => 10101010 => 4
>>> Load all 283 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of ones in a binary word.
This is also known as the Hamming weight of the word.
This is also known as the Hamming weight of the word.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
Map
Loehr-Warrington inverse
Description
Return a partition whose length is the diagonal inversion number of the preimage.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!