Processing math: 100%

Identifier
Values
[1] => [1] => [1] => [[1]] => 1
[2] => [1,1] => [2] => [[1,2]] => 2
[1,1] => [2] => [1,1] => [[1],[2]] => 1
[3] => [2,1] => [2,1] => [[1,2],[3]] => 2
[2,1] => [1,1,1] => [3] => [[1,2,3]] => 3
[1,1,1] => [3] => [1,1,1] => [[1],[2],[3]] => 1
[4] => [2,2] => [2,2] => [[1,2],[3,4]] => 2
[3,1] => [1,1,1,1] => [4] => [[1,2,3,4]] => 4
[2,2] => [2,1,1] => [3,1] => [[1,2,3],[4]] => 3
[2,1,1] => [3,1] => [2,1,1] => [[1,2],[3],[4]] => 2
[1,1,1,1] => [4] => [1,1,1,1] => [[1],[2],[3],[4]] => 1
[5] => [3,2] => [2,2,1] => [[1,2],[3,4],[5]] => 2
[4,1] => [3,1,1] => [3,1,1] => [[1,2,3],[4],[5]] => 3
[3,2] => [1,1,1,1,1] => [5] => [[1,2,3,4,5]] => 5
[3,1,1] => [2,1,1,1] => [4,1] => [[1,2,3,4],[5]] => 4
[2,2,1] => [2,2,1] => [3,2] => [[1,2,3],[4,5]] => 3
[2,1,1,1] => [4,1] => [2,1,1,1] => [[1,2],[3],[4],[5]] => 2
[1,1,1,1,1] => [5] => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 1
[6] => [3,3] => [2,2,2] => [[1,2],[3,4],[5,6]] => 2
[5,1] => [3,2,1] => [3,2,1] => [[1,2,3],[4,5],[6]] => 3
[4,2] => [2,1,1,1,1] => [5,1] => [[1,2,3,4,5],[6]] => 5
[4,1,1] => [2,2,1,1] => [4,2] => [[1,2,3,4],[5,6]] => 4
[3,3] => [3,1,1,1] => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[3,2,1] => [1,1,1,1,1,1] => [6] => [[1,2,3,4,5,6]] => 6
[3,1,1,1] => [4,1,1] => [3,1,1,1] => [[1,2,3],[4],[5],[6]] => 3
[2,2,2] => [2,2,2] => [3,3] => [[1,2,3],[4,5,6]] => 3
[2,2,1,1] => [4,2] => [2,2,1,1] => [[1,2],[3,4],[5],[6]] => 2
[2,1,1,1,1] => [5,1] => [2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => 2
[1,1,1,1,1,1] => [6] => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 1
[7] => [4,3] => [2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => 2
[6,1] => [3,3,1] => [3,2,2] => [[1,2,3],[4,5],[6,7]] => 3
[5,2] => [3,2,1,1] => [4,2,1] => [[1,2,3,4],[5,6],[7]] => 4
[5,1,1] => [4,2,1] => [3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => 3
[4,3] => [2,2,1,1,1] => [5,2] => [[1,2,3,4,5],[6,7]] => 5
[4,2,1] => [1,1,1,1,1,1,1] => [7] => [[1,2,3,4,5,6,7]] => 7
[4,1,1,1] => [2,2,2,1] => [4,3] => [[1,2,3,4],[5,6,7]] => 4
[3,3,1] => [2,1,1,1,1,1] => [6,1] => [[1,2,3,4,5,6],[7]] => 6
[3,2,2] => [3,1,1,1,1] => [5,1,1] => [[1,2,3,4,5],[6],[7]] => 5
[3,2,1,1] => [4,1,1,1] => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 4
[3,1,1,1,1] => [5,1,1] => [3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 3
[2,2,2,1] => [3,2,2] => [3,3,1] => [[1,2,3],[4,5,6],[7]] => 3
[2,2,1,1,1] => [5,2] => [2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => 2
[2,1,1,1,1,1] => [6,1] => [2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => 2
[1,1,1,1,1,1,1] => [7] => [1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => 1
[8] => [4,4] => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => 2
[7,1] => [4,3,1] => [3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => 3
[6,2] => [3,3,1,1] => [4,2,2] => [[1,2,3,4],[5,6],[7,8]] => 4
[6,1,1] => [4,2,2] => [3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => 3
[5,3] => [2,2,2,1,1] => [5,3] => [[1,2,3,4,5],[6,7,8]] => 5
[5,2,1] => [4,1,1,1,1] => [5,1,1,1] => [[1,2,3,4,5],[6],[7],[8]] => 5
[5,1,1,1] => [2,2,2,2] => [4,4] => [[1,2,3,4],[5,6,7,8]] => 4
[4,4] => [4,2,1,1] => [4,2,1,1] => [[1,2,3,4],[5,6],[7],[8]] => 4
[4,3,1] => [1,1,1,1,1,1,1,1] => [8] => [[1,2,3,4,5,6,7,8]] => 8
[4,2,2] => [2,1,1,1,1,1,1] => [7,1] => [[1,2,3,4,5,6,7],[8]] => 7
[4,2,1,1] => [3,1,1,1,1,1] => [6,1,1] => [[1,2,3,4,5,6],[7],[8]] => 6
[4,1,1,1,1] => [5,2,1] => [3,2,1,1,1] => [[1,2,3],[4,5],[6],[7],[8]] => 3
[3,3,2] => [2,2,1,1,1,1] => [6,2] => [[1,2,3,4,5,6],[7,8]] => 6
[3,3,1,1] => [3,2,1,1,1] => [5,2,1] => [[1,2,3,4,5],[6,7],[8]] => 5
[3,2,2,1] => [3,2,2,1] => [4,3,1] => [[1,2,3,4],[5,6,7],[8]] => 4
[3,2,1,1,1] => [5,1,1,1] => [4,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8]] => 4
[3,1,1,1,1,1] => [6,1,1] => [3,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8]] => 3
[2,2,2,2] => [3,3,2] => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => 3
[2,2,2,1,1] => [5,3] => [2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => 2
[2,2,1,1,1,1] => [6,2] => [2,2,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8]] => 2
[2,1,1,1,1,1,1] => [7,1] => [2,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8]] => 2
[1,1,1,1,1,1,1,1] => [8] => [1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => 1
[9] => [5,4] => [2,2,2,2,1] => [[1,2],[3,4],[5,6],[7,8],[9]] => 2
[8,1] => [4,4,1] => [3,2,2,2] => [[1,2,3],[4,5],[6,7],[8,9]] => 3
[7,2] => [4,3,1,1] => [4,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9]] => 4
[7,1,1] => [4,3,2] => [3,3,2,1] => [[1,2,3],[4,5,6],[7,8],[9]] => 3
[6,3] => [4,2,2,1] => [4,3,1,1] => [[1,2,3,4],[5,6,7],[8],[9]] => 4
[6,2,1] => [4,2,1,1,1] => [5,2,1,1] => [[1,2,3,4,5],[6,7],[8],[9]] => 5
[6,1,1,1] => [5,2,2] => [3,3,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9]] => 3
[5,4] => [2,2,2,2,1] => [5,4] => [[1,2,3,4,5],[6,7,8,9]] => 5
[5,3,1] => [3,1,1,1,1,1,1] => [7,1,1] => [[1,2,3,4,5,6,7],[8],[9]] => 7
[5,2,2] => [3,2,1,1,1,1] => [6,2,1] => [[1,2,3,4,5,6],[7,8],[9]] => 6
[5,2,1,1] => [3,3,1,1,1] => [5,2,2] => [[1,2,3,4,5],[6,7],[8,9]] => 5
[5,1,1,1,1] => [3,2,2,2] => [4,4,1] => [[1,2,3,4],[5,6,7,8],[9]] => 4
[4,4,1] => [4,1,1,1,1,1] => [6,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9]] => 6
[4,3,2] => [1,1,1,1,1,1,1,1,1] => [9] => [[1,2,3,4,5,6,7,8,9]] => 9
[4,3,1,1] => [2,1,1,1,1,1,1,1] => [8,1] => [[1,2,3,4,5,6,7,8],[9]] => 8
[4,2,2,1] => [2,2,1,1,1,1,1] => [7,2] => [[1,2,3,4,5,6,7],[8,9]] => 7
[4,2,1,1,1] => [5,1,1,1,1] => [5,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9]] => 5
[4,1,1,1,1,1] => [6,2,1] => [3,2,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9]] => 3
[3,3,3] => [3,2,2,1,1] => [5,3,1] => [[1,2,3,4,5],[6,7,8],[9]] => 5
[3,3,2,1] => [2,2,2,1,1,1] => [6,3] => [[1,2,3,4,5,6],[7,8,9]] => 6
[3,3,1,1,1] => [5,2,1,1] => [4,2,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9]] => 4
[3,2,2,2] => [3,3,2,1] => [4,3,2] => [[1,2,3,4],[5,6,7],[8,9]] => 4
[3,2,2,1,1] => [5,3,1] => [3,2,2,1,1] => [[1,2,3],[4,5],[6,7],[8],[9]] => 3
[3,2,1,1,1,1] => [6,1,1,1] => [4,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9]] => 4
[3,1,1,1,1,1,1] => [7,1,1] => [3,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9]] => 3
[2,2,2,2,1] => [3,3,3] => [3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => 3
[2,2,2,1,1,1] => [6,3] => [2,2,2,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9]] => 2
[2,2,1,1,1,1,1] => [7,2] => [2,2,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9]] => 2
[2,1,1,1,1,1,1,1] => [8,1] => [2,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9]] => 2
[1,1,1,1,1,1,1,1,1] => [9] => [1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => 1
[10] => [5,5] => [2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10]] => 2
[9,1] => [5,4,1] => [3,2,2,2,1] => [[1,2,3],[4,5],[6,7],[8,9],[10]] => 3
[8,2] => [4,4,1,1] => [4,2,2,2] => [[1,2,3,4],[5,6],[7,8],[9,10]] => 4
[8,1,1] => [4,4,2] => [3,3,2,2] => [[1,2,3],[4,5,6],[7,8],[9,10]] => 3
[7,3] => [4,3,2,1] => [4,3,2,1] => [[1,2,3,4],[5,6,7],[8,9],[10]] => 4
>>> Load all 210 entries. <<<
[7,2,1] => [4,3,1,1,1] => [5,2,2,1] => [[1,2,3,4,5],[6,7],[8,9],[10]] => 5
[7,1,1,1] => [5,3,2] => [3,3,2,1,1] => [[1,2,3],[4,5,6],[7,8],[9],[10]] => 3
[6,4] => [2,2,2,2,2] => [5,5] => [[1,2,3,4,5],[6,7,8,9,10]] => 5
[6,3,1] => [4,2,1,1,1,1] => [6,2,1,1] => [[1,2,3,4,5,6],[7,8],[9],[10]] => 6
[6,2,2] => [3,3,2,1,1] => [5,3,2] => [[1,2,3,4,5],[6,7,8],[9,10]] => 5
[6,2,1,1] => [5,3,1,1] => [4,2,2,1,1] => [[1,2,3,4],[5,6],[7,8],[9],[10]] => 4
[6,1,1,1,1] => [3,3,2,2] => [4,4,2] => [[1,2,3,4],[5,6,7,8],[9,10]] => 4
[5,5] => [4,2,2,2] => [4,4,1,1] => [[1,2,3,4],[5,6,7,8],[9],[10]] => 4
[5,4,1] => [3,3,1,1,1,1] => [6,2,2] => [[1,2,3,4,5,6],[7,8],[9,10]] => 6
[5,3,2] => [2,1,1,1,1,1,1,1,1] => [9,1] => [[1,2,3,4,5,6,7,8,9],[10]] => 9
[5,3,1,1] => [2,2,1,1,1,1,1,1] => [8,2] => [[1,2,3,4,5,6,7,8],[9,10]] => 8
[5,2,2,1] => [2,2,2,1,1,1,1] => [7,3] => [[1,2,3,4,5,6,7],[8,9,10]] => 7
[5,2,1,1,1] => [3,2,2,2,1] => [5,4,1] => [[1,2,3,4,5],[6,7,8,9],[10]] => 5
[5,1,1,1,1,1] => [6,2,2] => [3,3,1,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9],[10]] => 3
[4,4,2] => [3,1,1,1,1,1,1,1] => [8,1,1] => [[1,2,3,4,5,6,7,8],[9],[10]] => 8
[4,4,1,1] => [3,2,1,1,1,1,1] => [7,2,1] => [[1,2,3,4,5,6,7],[8,9],[10]] => 7
[4,3,3] => [4,1,1,1,1,1,1] => [7,1,1,1] => [[1,2,3,4,5,6,7],[8],[9],[10]] => 7
[4,3,2,1] => [1,1,1,1,1,1,1,1,1,1] => [10] => [[1,2,3,4,5,6,7,8,9,10]] => 10
[4,3,1,1,1] => [5,1,1,1,1,1] => [6,1,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9],[10]] => 6
[4,2,2,2] => [3,2,2,1,1,1] => [6,3,1] => [[1,2,3,4,5,6],[7,8,9],[10]] => 6
[4,2,2,1,1] => [5,2,1,1,1] => [5,2,1,1,1] => [[1,2,3,4,5],[6,7],[8],[9],[10]] => 5
[4,2,1,1,1,1] => [6,1,1,1,1] => [5,1,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9],[10]] => 5
[4,1,1,1,1,1,1] => [7,2,1] => [3,2,1,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9],[10]] => 3
[3,3,3,1] => [2,2,2,2,1,1] => [6,4] => [[1,2,3,4,5,6],[7,8,9,10]] => 6
[3,3,2,2] => [4,2,2,1,1] => [5,3,1,1] => [[1,2,3,4,5],[6,7,8],[9],[10]] => 5
[3,3,2,1,1] => [5,2,2,1] => [4,3,1,1,1] => [[1,2,3,4],[5,6,7],[8],[9],[10]] => 4
[3,3,1,1,1,1] => [6,2,1,1] => [4,2,1,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9],[10]] => 4
[3,2,2,2,1] => [3,3,3,1] => [4,3,3] => [[1,2,3,4],[5,6,7],[8,9,10]] => 4
[3,2,2,1,1,1] => [6,3,1] => [3,2,2,1,1,1] => [[1,2,3],[4,5],[6,7],[8],[9],[10]] => 3
[3,2,1,1,1,1,1] => [7,1,1,1] => [4,1,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9],[10]] => 4
[3,1,1,1,1,1,1,1] => [8,1,1] => [3,1,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9],[10]] => 3
[2,2,2,2,2] => [4,3,3] => [3,3,3,1] => [[1,2,3],[4,5,6],[7,8,9],[10]] => 3
[2,2,2,2,1,1] => [6,4] => [2,2,2,2,1,1] => [[1,2],[3,4],[5,6],[7,8],[9],[10]] => 2
[2,2,2,1,1,1,1] => [7,3] => [2,2,2,1,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9],[10]] => 2
[2,2,1,1,1,1,1,1] => [8,2] => [2,2,1,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9],[10]] => 2
[2,1,1,1,1,1,1,1,1] => [9,1] => [2,1,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10]] => 2
[1,1,1,1,1,1,1,1,1,1] => [10] => [1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => 1
[11] => [6,5] => [2,2,2,2,2,1] => [[1,2],[3,4],[5,6],[7,8],[9,10],[11]] => 2
[10,1] => [5,5,1] => [3,2,2,2,2] => [[1,2,3],[4,5],[6,7],[8,9],[10,11]] => 3
[9,2] => [5,4,1,1] => [4,2,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9,10],[11]] => 4
[9,1,1] => [5,4,2] => [3,3,2,2,1] => [[1,2,3],[4,5,6],[7,8],[9,10],[11]] => 3
[8,3] => [4,4,2,1] => [4,3,2,2] => [[1,2,3,4],[5,6,7],[8,9],[10,11]] => 4
[8,2,1] => [4,4,1,1,1] => [5,2,2,2] => [[1,2,3,4,5],[6,7],[8,9],[10,11]] => 5
[8,1,1,1] => [5,3,3] => [3,3,3,1,1] => [[1,2,3],[4,5,6],[7,8,9],[10],[11]] => 3
[7,4] => [5,2,2,2] => [4,4,1,1,1] => [[1,2,3,4],[5,6,7,8],[9],[10],[11]] => 4
[7,2,2] => [4,3,2,1,1] => [5,3,2,1] => [[1,2,3,4,5],[6,7,8],[9,10],[11]] => 5
[7,2,1,1] => [5,3,2,1] => [4,3,2,1,1] => [[1,2,3,4],[5,6,7],[8,9],[10],[11]] => 4
[6,2,2,1] => [5,2,2,1,1] => [5,3,1,1,1] => [[1,2,3,4,5],[6,7,8],[9],[10],[11]] => 5
[6,2,1,1,1] => [3,3,2,2,1] => [5,4,2] => [[1,2,3,4,5],[6,7,8,9],[10,11]] => 5
[6,1,1,1,1,1] => [3,3,3,2] => [4,4,3] => [[1,2,3,4],[5,6,7,8],[9,10,11]] => 4
[5,5,1] => [5,3,1,1,1] => [5,2,2,1,1] => [[1,2,3,4,5],[6,7],[8,9],[10],[11]] => 5
[4,2,2,2,1] => [3,3,3,1,1] => [5,3,3] => [[1,2,3,4,5],[6,7,8],[9,10,11]] => 5
[3,3,3,1,1] => [4,2,2,2,1] => [5,4,1,1] => [[1,2,3,4,5],[6,7,8,9],[10],[11]] => 5
[3,3,2,2,1] => [4,3,2,2] => [4,4,2,1] => [[1,2,3,4],[5,6,7,8],[9,10],[11]] => 4
[3,2,2,2,2] => [4,3,3,1] => [4,3,3,1] => [[1,2,3,4],[5,6,7],[8,9,10],[11]] => 4
[2,2,2,2,2,1] => [4,4,3] => [3,3,3,2] => [[1,2,3],[4,5,6],[7,8,9],[10,11]] => 3
[12] => [6,6] => [2,2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]] => 2
[10,1,1] => [5,5,2] => [3,3,2,2,2] => [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]] => 3
[9,3] => [5,4,2,1] => [4,3,2,2,1] => [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]] => 4
[9,2,1] => [5,4,1,1,1] => [5,2,2,2,1] => [[1,2,3,4,5],[6,7],[8,9],[10,11],[12]] => 5
[9,1,1,1] => [5,4,3] => [3,3,3,2,1] => [[1,2,3],[4,5,6],[7,8,9],[10,11],[12]] => 3
[8,4] => [4,4,2,2] => [4,4,2,2] => [[1,2,3,4],[5,6,7,8],[9,10],[11,12]] => 4
[8,2,2] => [4,4,2,1,1] => [5,3,2,2] => [[1,2,3,4,5],[6,7,8],[9,10],[11,12]] => 5
[8,2,1,1] => [5,3,3,1] => [4,3,3,1,1] => [[1,2,3,4],[5,6,7],[8,9,10],[11],[12]] => 4
[7,4,1] => [5,3,2,1,1] => [5,3,2,1,1] => [[1,2,3,4,5],[6,7,8],[9,10],[11],[12]] => 5
[7,3,1,1] => [3,3,2,2,1,1] => [6,4,2] => [[1,2,3,4,5,6],[7,8,9,10],[11,12]] => 6
[7,2,2,1] => [5,2,2,2,1] => [5,4,1,1,1] => [[1,2,3,4,5],[6,7,8,9],[10],[11],[12]] => 5
[7,1,1,1,1,1] => [3,3,3,3] => [4,4,4] => [[1,2,3,4],[5,6,7,8],[9,10,11,12]] => 4
[6,6] => [5,3,2,2] => [4,4,2,1,1] => [[1,2,3,4],[5,6,7,8],[9,10],[11],[12]] => 4
[6,2,2,1,1] => [4,3,2,2,1] => [5,4,2,1] => [[1,2,3,4,5],[6,7,8,9],[10,11],[12]] => 5
[6,2,1,1,1,1] => [3,3,3,2,1] => [5,4,3] => [[1,2,3,4,5],[6,7,8,9],[10,11,12]] => 5
[5,4,2,1] => [1,1,1,1,1,1,1,1,1,1,1,1] => [12] => [[1,2,3,4,5,6,7,8,9,10,11,12]] => 12
[4,2,2,2,2] => [4,3,3,1,1] => [5,3,3,1] => [[1,2,3,4,5],[6,7,8],[9,10,11],[12]] => 5
[3,3,3,2,1] => [2,2,2,2,2,2] => [6,6] => [[1,2,3,4,5,6],[7,8,9,10,11,12]] => 6
[3,3,2,2,2] => [4,3,3,2] => [4,4,3,1] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12]] => 4
[3,3,2,2,1,1] => [6,4,2] => [3,3,2,2,1,1] => [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]] => 3
[3,2,2,2,2,1] => [4,4,3,1] => [4,3,3,2] => [[1,2,3,4],[5,6,7],[8,9,10],[11,12]] => 4
[2,2,2,2,2,2] => [4,4,4] => [3,3,3,3] => [[1,2,3],[4,5,6],[7,8,9],[10,11,12]] => 3
[13] => [7,6] => [2,2,2,2,2,2,1] => [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13]] => 2
[12,1] => [6,6,1] => [3,2,2,2,2,2] => [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12,13]] => 3
[10,1,1,1] => [5,5,3] => [3,3,3,2,2] => [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13]] => 3
[9,4] => [5,4,2,2] => [4,4,2,2,1] => [[1,2,3,4],[5,6,7,8],[9,10],[11,12],[13]] => 4
[9,2,2] => [5,4,2,1,1] => [5,3,2,2,1] => [[1,2,3,4,5],[6,7,8],[9,10],[11,12],[13]] => 5
[9,2,1,1] => [5,4,3,1] => [4,3,3,2,1] => [[1,2,3,4],[5,6,7],[8,9,10],[11,12],[13]] => 4
[8,5] => [5,3,3,2] => [4,4,3,1,1] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12],[13]] => 4
[8,4,1] => [5,3,3,1,1] => [5,3,3,1,1] => [[1,2,3,4,5],[6,7,8],[9,10,11],[12],[13]] => 5
[7,2,2,2] => [4,3,3,2,1] => [5,4,3,1] => [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13]] => 5
[6,6,1] => [5,3,2,2,1] => [5,4,2,1,1] => [[1,2,3,4,5],[6,7,8,9],[10,11],[12],[13]] => 5
[6,2,2,1,1,1] => [4,4,2,2,1] => [5,4,2,2] => [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13]] => 5
[4,2,2,2,2,1] => [4,4,3,1,1] => [5,3,3,2] => [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13]] => 5
[3,3,2,2,2,1] => [4,4,3,2] => [4,4,3,2] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13]] => 4
[3,2,2,2,2,2] => [4,4,4,1] => [4,3,3,3] => [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13]] => 4
[2,2,2,2,2,2,1] => [5,4,4] => [3,3,3,3,1] => [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13]] => 3
[14] => [7,7] => [2,2,2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]] => 2
[12,1,1] => [6,6,2] => [3,3,2,2,2,2] => [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13,14]] => 3
[9,5] => [5,4,3,2] => [4,4,3,2,1] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13],[14]] => 4
[9,4,1] => [5,4,3,1,1] => [5,3,3,2,1] => [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13],[14]] => 5
[9,2,2,1] => [5,4,2,2,1] => [5,4,2,2,1] => [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13],[14]] => 5
[8,5,1] => [5,3,3,2,1] => [5,4,3,1,1] => [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13],[14]] => 5
[6,2,2,2,2] => [2,2,2,2,2,2,2] => [7,7] => [[1,2,3,4,5,6,7],[8,9,10,11,12,13,14]] => 7
[5,2,2,2,2,1] => [4,4,3,2,1] => [5,4,3,2] => [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14]] => 5
[3,3,2,2,2,2] => [4,4,4,2] => [4,4,3,3] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14]] => 4
[2,2,2,2,2,2,2] => [5,5,4] => [3,3,3,3,2] => [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14]] => 3
[12,1,1,1] => [6,6,3] => [3,3,3,2,2,2] => [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13],[14,15]] => 3
[9,5,1] => [5,4,3,2,1] => [5,4,3,2,1] => [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14],[15]] => 5
[2,2,2,2,2,2,2,1] => [5,5,5] => [3,3,3,3,3] => [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]] => 3
[16] => [8,8] => [2,2,2,2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]] => 2
[12,1,1,1,1] => [6,6,4] => [3,3,3,3,2,2] => [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14],[15,16]] => 3
[9,1,1,1,1,1,1,1] => [4,4,4,4] => [4,4,4,4] => [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]] => 4
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The last entry in the first row of a standard tableau.
Map
Loehr-Warrington inverse
Description
Return a partition whose length is the diagonal inversion number of the preimage.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers 1 through n row by row.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition λ of n is the partition λ whose Ferrers diagram is obtained from the diagram of λ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.