Identifier
-
Mp00323:
Integer partitions
—Loehr-Warrington inverse⟶
Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000734: Standard tableaux ⟶ ℤ
Values
[1] => [1] => [1] => [[1]] => 1
[2] => [1,1] => [2] => [[1,2]] => 2
[1,1] => [2] => [1,1] => [[1],[2]] => 1
[3] => [2,1] => [2,1] => [[1,2],[3]] => 2
[2,1] => [1,1,1] => [3] => [[1,2,3]] => 3
[1,1,1] => [3] => [1,1,1] => [[1],[2],[3]] => 1
[4] => [2,2] => [2,2] => [[1,2],[3,4]] => 2
[3,1] => [1,1,1,1] => [4] => [[1,2,3,4]] => 4
[2,2] => [2,1,1] => [3,1] => [[1,2,3],[4]] => 3
[2,1,1] => [3,1] => [2,1,1] => [[1,2],[3],[4]] => 2
[1,1,1,1] => [4] => [1,1,1,1] => [[1],[2],[3],[4]] => 1
[5] => [3,2] => [2,2,1] => [[1,2],[3,4],[5]] => 2
[4,1] => [3,1,1] => [3,1,1] => [[1,2,3],[4],[5]] => 3
[3,2] => [1,1,1,1,1] => [5] => [[1,2,3,4,5]] => 5
[3,1,1] => [2,1,1,1] => [4,1] => [[1,2,3,4],[5]] => 4
[2,2,1] => [2,2,1] => [3,2] => [[1,2,3],[4,5]] => 3
[2,1,1,1] => [4,1] => [2,1,1,1] => [[1,2],[3],[4],[5]] => 2
[1,1,1,1,1] => [5] => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 1
[6] => [3,3] => [2,2,2] => [[1,2],[3,4],[5,6]] => 2
[5,1] => [3,2,1] => [3,2,1] => [[1,2,3],[4,5],[6]] => 3
[4,2] => [2,1,1,1,1] => [5,1] => [[1,2,3,4,5],[6]] => 5
[4,1,1] => [2,2,1,1] => [4,2] => [[1,2,3,4],[5,6]] => 4
[3,3] => [3,1,1,1] => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[3,2,1] => [1,1,1,1,1,1] => [6] => [[1,2,3,4,5,6]] => 6
[3,1,1,1] => [4,1,1] => [3,1,1,1] => [[1,2,3],[4],[5],[6]] => 3
[2,2,2] => [2,2,2] => [3,3] => [[1,2,3],[4,5,6]] => 3
[2,2,1,1] => [4,2] => [2,2,1,1] => [[1,2],[3,4],[5],[6]] => 2
[2,1,1,1,1] => [5,1] => [2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => 2
[1,1,1,1,1,1] => [6] => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 1
[7] => [4,3] => [2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => 2
[6,1] => [3,3,1] => [3,2,2] => [[1,2,3],[4,5],[6,7]] => 3
[5,2] => [3,2,1,1] => [4,2,1] => [[1,2,3,4],[5,6],[7]] => 4
[5,1,1] => [4,2,1] => [3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => 3
[4,3] => [2,2,1,1,1] => [5,2] => [[1,2,3,4,5],[6,7]] => 5
[4,2,1] => [1,1,1,1,1,1,1] => [7] => [[1,2,3,4,5,6,7]] => 7
[4,1,1,1] => [2,2,2,1] => [4,3] => [[1,2,3,4],[5,6,7]] => 4
[3,3,1] => [2,1,1,1,1,1] => [6,1] => [[1,2,3,4,5,6],[7]] => 6
[3,2,2] => [3,1,1,1,1] => [5,1,1] => [[1,2,3,4,5],[6],[7]] => 5
[3,2,1,1] => [4,1,1,1] => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 4
[3,1,1,1,1] => [5,1,1] => [3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 3
[2,2,2,1] => [3,2,2] => [3,3,1] => [[1,2,3],[4,5,6],[7]] => 3
[2,2,1,1,1] => [5,2] => [2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => 2
[2,1,1,1,1,1] => [6,1] => [2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => 2
[1,1,1,1,1,1,1] => [7] => [1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => 1
[8] => [4,4] => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => 2
[7,1] => [4,3,1] => [3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => 3
[6,2] => [3,3,1,1] => [4,2,2] => [[1,2,3,4],[5,6],[7,8]] => 4
[6,1,1] => [4,2,2] => [3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => 3
[5,3] => [2,2,2,1,1] => [5,3] => [[1,2,3,4,5],[6,7,8]] => 5
[5,2,1] => [4,1,1,1,1] => [5,1,1,1] => [[1,2,3,4,5],[6],[7],[8]] => 5
[5,1,1,1] => [2,2,2,2] => [4,4] => [[1,2,3,4],[5,6,7,8]] => 4
[4,4] => [4,2,1,1] => [4,2,1,1] => [[1,2,3,4],[5,6],[7],[8]] => 4
[4,3,1] => [1,1,1,1,1,1,1,1] => [8] => [[1,2,3,4,5,6,7,8]] => 8
[4,2,2] => [2,1,1,1,1,1,1] => [7,1] => [[1,2,3,4,5,6,7],[8]] => 7
[4,2,1,1] => [3,1,1,1,1,1] => [6,1,1] => [[1,2,3,4,5,6],[7],[8]] => 6
[4,1,1,1,1] => [5,2,1] => [3,2,1,1,1] => [[1,2,3],[4,5],[6],[7],[8]] => 3
[3,3,2] => [2,2,1,1,1,1] => [6,2] => [[1,2,3,4,5,6],[7,8]] => 6
[3,3,1,1] => [3,2,1,1,1] => [5,2,1] => [[1,2,3,4,5],[6,7],[8]] => 5
[3,2,2,1] => [3,2,2,1] => [4,3,1] => [[1,2,3,4],[5,6,7],[8]] => 4
[3,2,1,1,1] => [5,1,1,1] => [4,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8]] => 4
[3,1,1,1,1,1] => [6,1,1] => [3,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8]] => 3
[2,2,2,2] => [3,3,2] => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => 3
[2,2,2,1,1] => [5,3] => [2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => 2
[2,2,1,1,1,1] => [6,2] => [2,2,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8]] => 2
[2,1,1,1,1,1,1] => [7,1] => [2,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8]] => 2
[1,1,1,1,1,1,1,1] => [8] => [1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => 1
[9] => [5,4] => [2,2,2,2,1] => [[1,2],[3,4],[5,6],[7,8],[9]] => 2
[8,1] => [4,4,1] => [3,2,2,2] => [[1,2,3],[4,5],[6,7],[8,9]] => 3
[7,2] => [4,3,1,1] => [4,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9]] => 4
[7,1,1] => [4,3,2] => [3,3,2,1] => [[1,2,3],[4,5,6],[7,8],[9]] => 3
[6,3] => [4,2,2,1] => [4,3,1,1] => [[1,2,3,4],[5,6,7],[8],[9]] => 4
[6,2,1] => [4,2,1,1,1] => [5,2,1,1] => [[1,2,3,4,5],[6,7],[8],[9]] => 5
[6,1,1,1] => [5,2,2] => [3,3,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9]] => 3
[5,4] => [2,2,2,2,1] => [5,4] => [[1,2,3,4,5],[6,7,8,9]] => 5
[5,3,1] => [3,1,1,1,1,1,1] => [7,1,1] => [[1,2,3,4,5,6,7],[8],[9]] => 7
[5,2,2] => [3,2,1,1,1,1] => [6,2,1] => [[1,2,3,4,5,6],[7,8],[9]] => 6
[5,2,1,1] => [3,3,1,1,1] => [5,2,2] => [[1,2,3,4,5],[6,7],[8,9]] => 5
[5,1,1,1,1] => [3,2,2,2] => [4,4,1] => [[1,2,3,4],[5,6,7,8],[9]] => 4
[4,4,1] => [4,1,1,1,1,1] => [6,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9]] => 6
[4,3,2] => [1,1,1,1,1,1,1,1,1] => [9] => [[1,2,3,4,5,6,7,8,9]] => 9
[4,3,1,1] => [2,1,1,1,1,1,1,1] => [8,1] => [[1,2,3,4,5,6,7,8],[9]] => 8
[4,2,2,1] => [2,2,1,1,1,1,1] => [7,2] => [[1,2,3,4,5,6,7],[8,9]] => 7
[4,2,1,1,1] => [5,1,1,1,1] => [5,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9]] => 5
[4,1,1,1,1,1] => [6,2,1] => [3,2,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9]] => 3
[3,3,3] => [3,2,2,1,1] => [5,3,1] => [[1,2,3,4,5],[6,7,8],[9]] => 5
[3,3,2,1] => [2,2,2,1,1,1] => [6,3] => [[1,2,3,4,5,6],[7,8,9]] => 6
[3,3,1,1,1] => [5,2,1,1] => [4,2,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9]] => 4
[3,2,2,2] => [3,3,2,1] => [4,3,2] => [[1,2,3,4],[5,6,7],[8,9]] => 4
[3,2,2,1,1] => [5,3,1] => [3,2,2,1,1] => [[1,2,3],[4,5],[6,7],[8],[9]] => 3
[3,2,1,1,1,1] => [6,1,1,1] => [4,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9]] => 4
[3,1,1,1,1,1,1] => [7,1,1] => [3,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9]] => 3
[2,2,2,2,1] => [3,3,3] => [3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => 3
[2,2,2,1,1,1] => [6,3] => [2,2,2,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9]] => 2
[2,2,1,1,1,1,1] => [7,2] => [2,2,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9]] => 2
[2,1,1,1,1,1,1,1] => [8,1] => [2,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9]] => 2
[1,1,1,1,1,1,1,1,1] => [9] => [1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => 1
[10] => [5,5] => [2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10]] => 2
[9,1] => [5,4,1] => [3,2,2,2,1] => [[1,2,3],[4,5],[6,7],[8,9],[10]] => 3
[8,2] => [4,4,1,1] => [4,2,2,2] => [[1,2,3,4],[5,6],[7,8],[9,10]] => 4
[8,1,1] => [4,4,2] => [3,3,2,2] => [[1,2,3],[4,5,6],[7,8],[9,10]] => 3
[7,3] => [4,3,2,1] => [4,3,2,1] => [[1,2,3,4],[5,6,7],[8,9],[10]] => 4
>>> Load all 210 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The last entry in the first row of a standard tableau.
Map
Loehr-Warrington inverse
Description
Return a partition whose length is the diagonal inversion number of the preimage.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers 1 through n row by row.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition λ of n is the partition λ∗ whose Ferrers diagram is obtained from the diagram of λ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
The conjugate partition of the partition λ of n is the partition λ∗ whose Ferrers diagram is obtained from the diagram of λ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!