searching the database
Your data matches 14 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001452
St001452: Plane partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> 0
[[1],[1]]
=> 0
[[2]]
=> 1
[[1,1]]
=> 0
[[1],[1],[1]]
=> 0
[[2],[1]]
=> 1
[[1,1],[1]]
=> 0
[[3]]
=> 0
[[2,1]]
=> 1
[[1,1,1]]
=> 0
[[1],[1],[1],[1]]
=> 0
[[2],[1],[1]]
=> 1
[[2],[2]]
=> 2
[[1,1],[1],[1]]
=> 0
[[1,1],[1,1]]
=> 0
[[3],[1]]
=> 0
[[2,1],[1]]
=> 1
[[1,1,1],[1]]
=> 0
[[4]]
=> 1
[[3,1]]
=> 0
[[2,2]]
=> 2
[[2,1,1]]
=> 1
[[1,1,1,1]]
=> 0
[[1],[1],[1],[1],[1]]
=> 0
[[2],[1],[1],[1]]
=> 1
[[2],[2],[1]]
=> 2
[[1,1],[1],[1],[1]]
=> 0
[[1,1],[1,1],[1]]
=> 0
[[3],[1],[1]]
=> 0
[[3],[2]]
=> 1
[[2,1],[1],[1]]
=> 1
[[2,1],[2]]
=> 2
[[2,1],[1,1]]
=> 1
[[1,1,1],[1],[1]]
=> 0
[[1,1,1],[1,1]]
=> 0
[[4],[1]]
=> 1
[[3,1],[1]]
=> 0
[[2,2],[1]]
=> 2
[[2,1,1],[1]]
=> 1
[[1,1,1,1],[1]]
=> 0
[[5]]
=> 0
[[4,1]]
=> 1
[[3,2]]
=> 1
[[3,1,1]]
=> 0
[[2,2,1]]
=> 2
[[2,1,1,1]]
=> 1
[[1,1,1,1,1]]
=> 0
[[1],[1],[1],[1],[1],[1]]
=> 0
[[2],[1],[1],[1],[1]]
=> 1
[[2],[2],[1],[1]]
=> 2
Description
Number of even parts in the plane partition.
Matching statistic: St000142
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000142: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000142: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1]
=> 0
[[1],[1]]
=> [1,1]
=> [2]
=> 1
[[2]]
=> [2]
=> [1,1]
=> 0
[[1,1]]
=> [2]
=> [1,1]
=> 0
[[1],[1],[1]]
=> [1,1,1]
=> [3]
=> 0
[[2],[1]]
=> [2,1]
=> [2,1]
=> 1
[[1,1],[1]]
=> [2,1]
=> [2,1]
=> 1
[[3]]
=> [3]
=> [1,1,1]
=> 0
[[2,1]]
=> [3]
=> [1,1,1]
=> 0
[[1,1,1]]
=> [3]
=> [1,1,1]
=> 0
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [4]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [3,1]
=> 0
[[2],[2]]
=> [2,2]
=> [2,2]
=> 2
[[1,1],[1],[1]]
=> [2,1,1]
=> [3,1]
=> 0
[[1,1],[1,1]]
=> [2,2]
=> [2,2]
=> 2
[[3],[1]]
=> [3,1]
=> [2,1,1]
=> 1
[[2,1],[1]]
=> [3,1]
=> [2,1,1]
=> 1
[[1,1,1],[1]]
=> [3,1]
=> [2,1,1]
=> 1
[[4]]
=> [4]
=> [1,1,1,1]
=> 0
[[3,1]]
=> [4]
=> [1,1,1,1]
=> 0
[[2,2]]
=> [4]
=> [1,1,1,1]
=> 0
[[2,1,1]]
=> [4]
=> [1,1,1,1]
=> 0
[[1,1,1,1]]
=> [4]
=> [1,1,1,1]
=> 0
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [5]
=> 0
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [3,2]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [3,2]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 0
[[3],[2]]
=> [3,2]
=> [2,2,1]
=> 2
[[2,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 0
[[2,1],[2]]
=> [3,2]
=> [2,2,1]
=> 2
[[2,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> 2
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 0
[[1,1,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> 2
[[4],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[3,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[2,2],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[2,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[1,1,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[5]]
=> [5]
=> [1,1,1,1,1]
=> 0
[[4,1]]
=> [5]
=> [1,1,1,1,1]
=> 0
[[3,2]]
=> [5]
=> [1,1,1,1,1]
=> 0
[[3,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 0
[[2,2,1]]
=> [5]
=> [1,1,1,1,1]
=> 0
[[2,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 0
[[1,1,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 0
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [6]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [5,1]
=> 0
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [4,2]
=> 2
Description
The number of even parts of a partition.
Matching statistic: St000992
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000992: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000992: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> []
=> 0
[[1],[1]]
=> [1,1]
=> [1]
=> 1
[[2]]
=> [2]
=> []
=> 0
[[1,1]]
=> [2]
=> []
=> 0
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> 0
[[2],[1]]
=> [2,1]
=> [1]
=> 1
[[1,1],[1]]
=> [2,1]
=> [1]
=> 1
[[3]]
=> [3]
=> []
=> 0
[[2,1]]
=> [3]
=> []
=> 0
[[1,1,1]]
=> [3]
=> []
=> 0
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> 0
[[2],[2]]
=> [2,2]
=> [2]
=> 2
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> 0
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> 2
[[3],[1]]
=> [3,1]
=> [1]
=> 1
[[2,1],[1]]
=> [3,1]
=> [1]
=> 1
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> 1
[[4]]
=> [4]
=> []
=> 0
[[3,1]]
=> [4]
=> []
=> 0
[[2,2]]
=> [4]
=> []
=> 0
[[2,1,1]]
=> [4]
=> []
=> 0
[[1,1,1,1]]
=> [4]
=> []
=> 0
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> 0
[[3],[2]]
=> [3,2]
=> [2]
=> 2
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> 0
[[2,1],[2]]
=> [3,2]
=> [2]
=> 2
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> 2
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> 0
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> 2
[[4],[1]]
=> [4,1]
=> [1]
=> 1
[[3,1],[1]]
=> [4,1]
=> [1]
=> 1
[[2,2],[1]]
=> [4,1]
=> [1]
=> 1
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> 1
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> 1
[[5]]
=> [5]
=> []
=> 0
[[4,1]]
=> [5]
=> []
=> 0
[[3,2]]
=> [5]
=> []
=> 0
[[3,1,1]]
=> [5]
=> []
=> 0
[[2,2,1]]
=> [5]
=> []
=> 0
[[2,1,1,1]]
=> [5]
=> []
=> 0
[[1,1,1,1,1]]
=> [5]
=> []
=> 0
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> 2
Description
The alternating sum of the parts of an integer partition.
For a partition λ=(λ1,…,λk), this is λ1−λ2+⋯±λk.
Matching statistic: St000148
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000148: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000148: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> []
=> []
=> 0
[[1],[1]]
=> [1,1]
=> [1]
=> [1]
=> 1
[[2]]
=> [2]
=> []
=> []
=> 0
[[1,1]]
=> [2]
=> []
=> []
=> 0
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 0
[[2],[1]]
=> [2,1]
=> [1]
=> [1]
=> 1
[[1,1],[1]]
=> [2,1]
=> [1]
=> [1]
=> 1
[[3]]
=> [3]
=> []
=> []
=> 0
[[2,1]]
=> [3]
=> []
=> []
=> 0
[[1,1,1]]
=> [3]
=> []
=> []
=> 0
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 0
[[2],[2]]
=> [2,2]
=> [2]
=> [1,1]
=> 2
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 0
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> [1,1]
=> 2
[[3],[1]]
=> [3,1]
=> [1]
=> [1]
=> 1
[[2,1],[1]]
=> [3,1]
=> [1]
=> [1]
=> 1
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> [1]
=> 1
[[4]]
=> [4]
=> []
=> []
=> 0
[[3,1]]
=> [4]
=> []
=> []
=> 0
[[2,2]]
=> [4]
=> []
=> []
=> 0
[[2,1,1]]
=> [4]
=> []
=> []
=> 0
[[1,1,1,1]]
=> [4]
=> []
=> []
=> 0
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 0
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [2,1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [2,1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [2]
=> 0
[[3],[2]]
=> [3,2]
=> [2]
=> [1,1]
=> 2
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [2]
=> 0
[[2,1],[2]]
=> [3,2]
=> [2]
=> [1,1]
=> 2
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> [1,1]
=> 2
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [2]
=> 0
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> [1,1]
=> 2
[[4],[1]]
=> [4,1]
=> [1]
=> [1]
=> 1
[[3,1],[1]]
=> [4,1]
=> [1]
=> [1]
=> 1
[[2,2],[1]]
=> [4,1]
=> [1]
=> [1]
=> 1
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> [1]
=> 1
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> [1]
=> 1
[[5]]
=> [5]
=> []
=> []
=> 0
[[4,1]]
=> [5]
=> []
=> []
=> 0
[[3,2]]
=> [5]
=> []
=> []
=> 0
[[3,1,1]]
=> [5]
=> []
=> []
=> 0
[[2,2,1]]
=> [5]
=> []
=> []
=> 0
[[2,1,1,1]]
=> [5]
=> []
=> []
=> 0
[[1,1,1,1,1]]
=> [5]
=> []
=> []
=> 0
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 0
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 2
Description
The number of odd parts of a partition.
Matching statistic: St000149
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
St000149: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
St000149: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1]
=> [1]
=> 0
[[1],[1]]
=> [1,1]
=> [2]
=> [2]
=> 1
[[2]]
=> [2]
=> [1,1]
=> [1,1]
=> 0
[[1,1]]
=> [2]
=> [1,1]
=> [1,1]
=> 0
[[1],[1],[1]]
=> [1,1,1]
=> [3]
=> [2,1]
=> 0
[[2],[1]]
=> [2,1]
=> [2,1]
=> [3]
=> 1
[[1,1],[1]]
=> [2,1]
=> [2,1]
=> [3]
=> 1
[[3]]
=> [3]
=> [1,1,1]
=> [1,1,1]
=> 0
[[2,1]]
=> [3]
=> [1,1,1]
=> [1,1,1]
=> 0
[[1,1,1]]
=> [3]
=> [1,1,1]
=> [1,1,1]
=> 0
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [4]
=> [2,2]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [3,1]
=> [2,1,1]
=> 0
[[2],[2]]
=> [2,2]
=> [2,2]
=> [4]
=> 2
[[1,1],[1],[1]]
=> [2,1,1]
=> [3,1]
=> [2,1,1]
=> 0
[[1,1],[1,1]]
=> [2,2]
=> [2,2]
=> [4]
=> 2
[[3],[1]]
=> [3,1]
=> [2,1,1]
=> [3,1]
=> 1
[[2,1],[1]]
=> [3,1]
=> [2,1,1]
=> [3,1]
=> 1
[[1,1,1],[1]]
=> [3,1]
=> [2,1,1]
=> [3,1]
=> 1
[[4]]
=> [4]
=> [1,1,1,1]
=> [1,1,1,1]
=> 0
[[3,1]]
=> [4]
=> [1,1,1,1]
=> [1,1,1,1]
=> 0
[[2,2]]
=> [4]
=> [1,1,1,1]
=> [1,1,1,1]
=> 0
[[2,1,1]]
=> [4]
=> [1,1,1,1]
=> [1,1,1,1]
=> 0
[[1,1,1,1]]
=> [4]
=> [1,1,1,1]
=> [1,1,1,1]
=> 0
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [5]
=> [2,2,1]
=> 0
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> [3,2]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [3,2]
=> [4,1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> [3,2]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [3,2]
=> [4,1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> [2,1,1,1]
=> 0
[[3],[2]]
=> [3,2]
=> [2,2,1]
=> [5]
=> 2
[[2,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> [2,1,1,1]
=> 0
[[2,1],[2]]
=> [3,2]
=> [2,2,1]
=> [5]
=> 2
[[2,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> [5]
=> 2
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> [2,1,1,1]
=> 0
[[1,1,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> [5]
=> 2
[[4],[1]]
=> [4,1]
=> [2,1,1,1]
=> [3,1,1]
=> 1
[[3,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> [3,1,1]
=> 1
[[2,2],[1]]
=> [4,1]
=> [2,1,1,1]
=> [3,1,1]
=> 1
[[2,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> [3,1,1]
=> 1
[[1,1,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> [3,1,1]
=> 1
[[5]]
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[[4,1]]
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[[3,2]]
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[[3,1,1]]
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[[2,2,1]]
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[[2,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[[1,1,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [6]
=> [2,2,2]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [5,1]
=> [2,2,1,1]
=> 0
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [4,2]
=> [4,2]
=> 2
Description
The number of cells of the partition whose leg is zero and arm is odd.
This statistic is equidistributed with [[St000143]], see [1].
Matching statistic: St000150
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00312: Integer partitions —Glaisher-Franklin⟶ Integer partitions
St000150: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00312: Integer partitions —Glaisher-Franklin⟶ Integer partitions
St000150: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1]
=> [1]
=> 0
[[1],[1]]
=> [1,1]
=> [2]
=> [1,1]
=> 1
[[2]]
=> [2]
=> [1,1]
=> [2]
=> 0
[[1,1]]
=> [2]
=> [1,1]
=> [2]
=> 0
[[1],[1],[1]]
=> [1,1,1]
=> [3]
=> [3]
=> 0
[[2],[1]]
=> [2,1]
=> [2,1]
=> [1,1,1]
=> 1
[[1,1],[1]]
=> [2,1]
=> [2,1]
=> [1,1,1]
=> 1
[[3]]
=> [3]
=> [1,1,1]
=> [2,1]
=> 0
[[2,1]]
=> [3]
=> [1,1,1]
=> [2,1]
=> 0
[[1,1,1]]
=> [3]
=> [1,1,1]
=> [2,1]
=> 0
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [4]
=> [2,2]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [3,1]
=> [3,1]
=> 0
[[2],[2]]
=> [2,2]
=> [2,2]
=> [1,1,1,1]
=> 2
[[1,1],[1],[1]]
=> [2,1,1]
=> [3,1]
=> [3,1]
=> 0
[[1,1],[1,1]]
=> [2,2]
=> [2,2]
=> [1,1,1,1]
=> 2
[[3],[1]]
=> [3,1]
=> [2,1,1]
=> [2,1,1]
=> 1
[[2,1],[1]]
=> [3,1]
=> [2,1,1]
=> [2,1,1]
=> 1
[[1,1,1],[1]]
=> [3,1]
=> [2,1,1]
=> [2,1,1]
=> 1
[[4]]
=> [4]
=> [1,1,1,1]
=> [4]
=> 0
[[3,1]]
=> [4]
=> [1,1,1,1]
=> [4]
=> 0
[[2,2]]
=> [4]
=> [1,1,1,1]
=> [4]
=> 0
[[2,1,1]]
=> [4]
=> [1,1,1,1]
=> [4]
=> 0
[[1,1,1,1]]
=> [4]
=> [1,1,1,1]
=> [4]
=> 0
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [5]
=> [5]
=> 0
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> [2,2,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [3,2]
=> [3,1,1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> [2,2,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [3,2]
=> [3,1,1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> [3,2]
=> 0
[[3],[2]]
=> [3,2]
=> [2,2,1]
=> [1,1,1,1,1]
=> 2
[[2,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> [3,2]
=> 0
[[2,1],[2]]
=> [3,2]
=> [2,2,1]
=> [1,1,1,1,1]
=> 2
[[2,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> [1,1,1,1,1]
=> 2
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> [3,2]
=> 0
[[1,1,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> [1,1,1,1,1]
=> 2
[[4],[1]]
=> [4,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> 1
[[3,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> 1
[[2,2],[1]]
=> [4,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> 1
[[2,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> 1
[[1,1,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> 1
[[5]]
=> [5]
=> [1,1,1,1,1]
=> [4,1]
=> 0
[[4,1]]
=> [5]
=> [1,1,1,1,1]
=> [4,1]
=> 0
[[3,2]]
=> [5]
=> [1,1,1,1,1]
=> [4,1]
=> 0
[[3,1,1]]
=> [5]
=> [1,1,1,1,1]
=> [4,1]
=> 0
[[2,2,1]]
=> [5]
=> [1,1,1,1,1]
=> [4,1]
=> 0
[[2,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> [4,1]
=> 0
[[1,1,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> [4,1]
=> 0
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [6]
=> [3,3]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [5,1]
=> [5,1]
=> 0
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [4,2]
=> [2,2,1,1]
=> 2
Description
The floored half-sum of the multiplicities of a partition.
This statistic is equidistributed with [[St000143]] and [[St000149]], see [1].
Matching statistic: St000566
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000566: Integer partitions ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 67%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000566: Integer partitions ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1}
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,2,2}
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,2,2}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,2,2}
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,2,2}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,2,2}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,2,2}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,2,2}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,2,2}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,2,2}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,2,2}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,2,2}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,2,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3}
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3}
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3}
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3}
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 1
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 1
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 0
Description
The number of ways to select a row of a Ferrers shape and two cells in this row. Equivalently, if λ=(λ0≥λ1≥⋯≥λm) is an integer partition, then the statistic is
12m∑i=0λi(λi−1).
Matching statistic: St000668
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 50%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 50%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1}
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3}
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3}
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3}
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3}
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
Description
The least common multiple of the parts of the partition.
Matching statistic: St000698
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000698: Integer partitions ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 83%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000698: Integer partitions ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 83%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1}
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3}
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3}
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3}
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3}
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 2
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 3
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 2
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 2
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 2
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 2
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
Description
The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core.
For any positive integer k, one associates a k-core to a partition by repeatedly removing all rim hooks of size k.
This statistic counts the 2-rim hooks that are removed in this process to obtain a 2-core.
Matching statistic: St000714
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000714: Integer partitions ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 83%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000714: Integer partitions ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 83%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1}
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 3
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 3
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3}
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3}
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3}
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3}
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 3
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 3
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 3
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 3
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 0
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 0
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
Description
The number of semistandard Young tableau of given shape, with entries at most 2.
This is also the dimension of the corresponding irreducible representation of GL2.
The following 4 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000929The constant term of the character polynomial of an integer partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!