searching the database
Your data matches 37 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001104
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
St001104: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 0
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> 2
Description
The number of descents of the invariant in a tensor power of the adjoint representation of the rank two general linear group.
Following Stembridge [1, cor.4.7], the highest weight words indexing the irreducibles in $\mathfrak{gl_n}^{\otimes r}$ are ''staircase tableaux'' of length $2r$: sequences $(\gamma^{(0)},\dots,\gamma^{(2r)})$ of vectors in $\mathbb Z^n$ with decreasing entries, such that $\gamma^{(2i+1)}$ is obtained from $\gamma^{(2i)}$ by adding a unit vector and $\gamma^{(2i)}$ is obtained from $\gamma^{(2i-1)}$ by subtracting a unit vector.
For $n=2$, the staircase tableaux whose final element is the zero vector are in natural correspondence with Dyck paths: adding the first or subtracting the second unit vector is translated to an up step, whereas adding the second or subtracting the first unit vector is translated to a down step.
A Dyck path can be transformed into a ''bicoloured Motzkin path'' by replacing double up steps (double down, up-down, down-up steps) with up steps (down, coloured level, level steps). Note that the resulting path cannot have coloured level steps at height zero.
In this context, say that a bicoloured Motzkin path has a $\mathfrak{gl}_2$-''descent'' between the following pairs of steps:
* an up step followed by a level step
* an up step followed by a down step, if the final height is not zero
* a coloured level step followed by any non-coloured step.
Then, conjecturally, the quasisymmetric expansion of the Frobenius character of the symmetric group $\mathfrak S_r$ acting on $\mathfrak{gl}_2^{\otimes r}$, is
$$
\sum_M F_{Des(M)},
$$
where the sum is over all length $r$ prefixes of bicoloured Motzkin paths, $Des(M)$ is the set of indices of descents of the path $M$ and $F_D$ is Gessel's fundamental quasisymmetric function.
The statistic recorded here is the number of $\mathfrak{gl}_2$-descents in the bicoloured Motzkin path corresponding to the Dyck path.
Restricting to Motzkin paths without coloured steps one obtains the quasisymmetric expansion for the Frobenius character of $\mathfrak S_r$ acting on $\mathfrak{sl}_2^{\otimes r}$. In this case, the conjecture was shown by Braunsteiner [2].
Matching statistic: St001199
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00123: Dyck paths —Barnabei-Castronuovo involution⟶ Dyck paths
St001199: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 50%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00123: Dyck paths —Barnabei-Castronuovo involution⟶ Dyck paths
St001199: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 0
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> ? ∊ {0,0}
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> ? ∊ {0,0}
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,0,1,1,2}
[1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,0,1,1,2}
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,0,1,1,2}
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,0,1,1,2}
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,0,1,1,2}
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 2
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 3
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 1
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St000460
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000460: Integer partitions ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 67%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000460: Integer partitions ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> [2,1] => [2]
=> []
=> ? = 0
[1,0,1,0]
=> [3,1,2] => [3]
=> []
=> ? ∊ {0,0}
[1,1,0,0]
=> [2,3,1] => [3]
=> []
=> ? ∊ {0,0}
[1,0,1,0,1,0]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,1,0,0]
=> [3,1,4,2] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,0,1,0]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,1,0,0]
=> [4,3,1,2] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,1,0,0,0]
=> [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [4,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,3]
=> [3]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [4,2]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [3,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [4,2]
=> [2]
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [4,3]
=> [3]
=> 3
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [4,3]
=> [3]
=> 3
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [5,2]
=> [2]
=> 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [4,3]
=> [3]
=> 3
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [5,2]
=> [2]
=> 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [6,4,1,2,3,7,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [5,6,1,2,3,7,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,4,1,2,7,3,6] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [5,7,1,2,6,3,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [5,4,1,2,6,7,3] => [5,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [7,4,1,5,2,3,6] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6,7,1,5,2,3,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [7,4,1,5,6,2,3] => [4,3]
=> [3]
=> 3
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [2,7,5,1,3,4,6] => [5,2]
=> [2]
=> 2
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,6,7,1,3,4,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [5,2]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [2,7,5,1,6,3,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [7,3,5,1,2,4,6] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6,3,5,1,2,7,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [7,5,4,1,2,3,6] => [5,2]
=> [2]
=> 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,5,4,1,2,7,3] => [5,2]
=> [2]
=> 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [7,3,5,1,6,2,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [7,5,4,1,6,2,3] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [2,3,7,6,1,4,5] => [5,2]
=> [2]
=> 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [2,7,4,6,1,3,5] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [2,7,6,5,1,3,4] => [5,2]
=> [2]
=> 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,3,4,6,1,2,5] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => [5,2]
=> [2]
=> 2
Description
The hook length of the last cell along the main diagonal of an integer partition.
Matching statistic: St000474
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000474: Integer partitions ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 50%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000474: Integer partitions ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 50%
Values
[1,0]
=> [2,1] => [2]
=> []
=> ? = 0
[1,0,1,0]
=> [3,1,2] => [3]
=> []
=> ? ∊ {0,0}
[1,1,0,0]
=> [2,3,1] => [3]
=> []
=> ? ∊ {0,0}
[1,0,1,0,1,0]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,1,0,0]
=> [3,1,4,2] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,0,1,0]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,1,0,0]
=> [4,3,1,2] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,1,0,0,0]
=> [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [4,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,3]
=> [3]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [4,2]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [3,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [4,2]
=> [2]
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [4,3]
=> [3]
=> 3
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [4,3]
=> [3]
=> 3
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [5,2]
=> [2]
=> 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [4,3]
=> [3]
=> 3
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [5,2]
=> [2]
=> 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [6,4,1,2,3,7,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [5,6,1,2,3,7,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,4,1,2,7,3,6] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [5,7,1,2,6,3,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [5,4,1,2,6,7,3] => [5,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [7,4,1,5,2,3,6] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6,7,1,5,2,3,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [7,4,1,5,6,2,3] => [4,3]
=> [3]
=> 3
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [2,7,5,1,3,4,6] => [5,2]
=> [2]
=> 2
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,6,7,1,3,4,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [5,2]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [2,7,5,1,6,3,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [7,3,5,1,2,4,6] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6,3,5,1,2,7,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [7,5,4,1,2,3,6] => [5,2]
=> [2]
=> 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,5,4,1,2,7,3] => [5,2]
=> [2]
=> 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [7,3,5,1,6,2,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [7,5,4,1,6,2,3] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [2,3,7,6,1,4,5] => [5,2]
=> [2]
=> 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [2,7,4,6,1,3,5] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [2,7,6,5,1,3,4] => [5,2]
=> [2]
=> 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,3,4,6,1,2,5] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => [5,2]
=> [2]
=> 2
Description
Dyson's crank of a partition.
Let $\lambda$ be a partition and let $o(\lambda)$ be the number of parts that are equal to 1 ([[St000475]]), and let $\mu(\lambda)$ be the number of parts that are strictly larger than $o(\lambda)$ ([[St000473]]). Dyson's crank is then defined as
$$crank(\lambda) = \begin{cases} \text{ largest part of }\lambda & o(\lambda) = 0\\ \mu(\lambda) - o(\lambda) & o(\lambda) > 0. \end{cases}$$
Matching statistic: St000667
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000667: Integer partitions ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 50%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000667: Integer partitions ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 50%
Values
[1,0]
=> [2,1] => [2]
=> []
=> ? = 0
[1,0,1,0]
=> [3,1,2] => [3]
=> []
=> ? ∊ {0,0}
[1,1,0,0]
=> [2,3,1] => [3]
=> []
=> ? ∊ {0,0}
[1,0,1,0,1,0]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,1,0,0]
=> [3,1,4,2] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,0,1,0]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,1,0,0]
=> [4,3,1,2] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,1,0,0,0]
=> [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [4,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,3]
=> [3]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [4,2]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [3,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [4,2]
=> [2]
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [4,3]
=> [3]
=> 3
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [4,3]
=> [3]
=> 3
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [5,2]
=> [2]
=> 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [4,3]
=> [3]
=> 3
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [5,2]
=> [2]
=> 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [6,4,1,2,3,7,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [5,6,1,2,3,7,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,4,1,2,7,3,6] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [5,7,1,2,6,3,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [5,4,1,2,6,7,3] => [5,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [7,4,1,5,2,3,6] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6,7,1,5,2,3,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [7,4,1,5,6,2,3] => [4,3]
=> [3]
=> 3
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [2,7,5,1,3,4,6] => [5,2]
=> [2]
=> 2
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,6,7,1,3,4,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [5,2]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [2,7,5,1,6,3,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [7,3,5,1,2,4,6] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6,3,5,1,2,7,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [7,5,4,1,2,3,6] => [5,2]
=> [2]
=> 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,5,4,1,2,7,3] => [5,2]
=> [2]
=> 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [7,3,5,1,6,2,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [7,5,4,1,6,2,3] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [2,3,7,6,1,4,5] => [5,2]
=> [2]
=> 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [2,7,4,6,1,3,5] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [2,7,6,5,1,3,4] => [5,2]
=> [2]
=> 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,3,4,6,1,2,5] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => [5,2]
=> [2]
=> 2
Description
The greatest common divisor of the parts of the partition.
Matching statistic: St000668
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 50%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 50%
Values
[1,0]
=> [2,1] => [2]
=> []
=> ? = 0
[1,0,1,0]
=> [3,1,2] => [3]
=> []
=> ? ∊ {0,0}
[1,1,0,0]
=> [2,3,1] => [3]
=> []
=> ? ∊ {0,0}
[1,0,1,0,1,0]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,1,0,0]
=> [3,1,4,2] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,0,1,0]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,1,0,0]
=> [4,3,1,2] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,1,0,0,0]
=> [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [4,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,3]
=> [3]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [4,2]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [3,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [4,2]
=> [2]
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [4,3]
=> [3]
=> 3
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [4,3]
=> [3]
=> 3
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [5,2]
=> [2]
=> 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [4,3]
=> [3]
=> 3
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [5,2]
=> [2]
=> 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [6,4,1,2,3,7,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [5,6,1,2,3,7,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,4,1,2,7,3,6] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [5,7,1,2,6,3,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [5,4,1,2,6,7,3] => [5,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [7,4,1,5,2,3,6] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6,7,1,5,2,3,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [7,4,1,5,6,2,3] => [4,3]
=> [3]
=> 3
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [2,7,5,1,3,4,6] => [5,2]
=> [2]
=> 2
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,6,7,1,3,4,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [5,2]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [2,7,5,1,6,3,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [7,3,5,1,2,4,6] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6,3,5,1,2,7,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [7,5,4,1,2,3,6] => [5,2]
=> [2]
=> 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,5,4,1,2,7,3] => [5,2]
=> [2]
=> 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [7,3,5,1,6,2,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [7,5,4,1,6,2,3] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [2,3,7,6,1,4,5] => [5,2]
=> [2]
=> 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [2,7,4,6,1,3,5] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [2,7,6,5,1,3,4] => [5,2]
=> [2]
=> 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,3,4,6,1,2,5] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => [5,2]
=> [2]
=> 2
Description
The least common multiple of the parts of the partition.
Matching statistic: St000708
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000708: Integer partitions ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 50%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000708: Integer partitions ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 50%
Values
[1,0]
=> [2,1] => [2]
=> []
=> ? = 0
[1,0,1,0]
=> [3,1,2] => [3]
=> []
=> ? ∊ {0,0}
[1,1,0,0]
=> [2,3,1] => [3]
=> []
=> ? ∊ {0,0}
[1,0,1,0,1,0]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,1,0,0]
=> [3,1,4,2] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,0,1,0]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,1,0,0]
=> [4,3,1,2] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,1,0,0,0]
=> [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [4,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,3]
=> [3]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [4,2]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [3,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [4,2]
=> [2]
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [4,3]
=> [3]
=> 3
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [4,3]
=> [3]
=> 3
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [5,2]
=> [2]
=> 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [4,3]
=> [3]
=> 3
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [5,2]
=> [2]
=> 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [6,4,1,2,3,7,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [5,6,1,2,3,7,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,4,1,2,7,3,6] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [5,7,1,2,6,3,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [5,4,1,2,6,7,3] => [5,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [7,4,1,5,2,3,6] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6,7,1,5,2,3,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [7,4,1,5,6,2,3] => [4,3]
=> [3]
=> 3
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [2,7,5,1,3,4,6] => [5,2]
=> [2]
=> 2
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,6,7,1,3,4,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [5,2]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [2,7,5,1,6,3,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [7,3,5,1,2,4,6] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6,3,5,1,2,7,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [7,5,4,1,2,3,6] => [5,2]
=> [2]
=> 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,5,4,1,2,7,3] => [5,2]
=> [2]
=> 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [7,3,5,1,6,2,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [7,5,4,1,6,2,3] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [2,3,7,6,1,4,5] => [5,2]
=> [2]
=> 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [2,7,4,6,1,3,5] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [2,7,6,5,1,3,4] => [5,2]
=> [2]
=> 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,3,4,6,1,2,5] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => [5,2]
=> [2]
=> 2
Description
The product of the parts of an integer partition.
Matching statistic: St000770
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000770: Integer partitions ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 50%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000770: Integer partitions ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 50%
Values
[1,0]
=> [2,1] => [2]
=> []
=> ? = 0
[1,0,1,0]
=> [3,1,2] => [3]
=> []
=> ? ∊ {0,0}
[1,1,0,0]
=> [2,3,1] => [3]
=> []
=> ? ∊ {0,0}
[1,0,1,0,1,0]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,1,0,0]
=> [3,1,4,2] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,0,1,0]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,1,0,0]
=> [4,3,1,2] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,1,0,0,0]
=> [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [4,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,3]
=> [3]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [4,2]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [3,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [4,2]
=> [2]
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [4,3]
=> [3]
=> 3
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [4,3]
=> [3]
=> 3
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [5,2]
=> [2]
=> 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [4,3]
=> [3]
=> 3
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [5,2]
=> [2]
=> 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [6,4,1,2,3,7,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [5,6,1,2,3,7,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,4,1,2,7,3,6] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [5,7,1,2,6,3,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [5,4,1,2,6,7,3] => [5,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [7,4,1,5,2,3,6] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6,7,1,5,2,3,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [7,4,1,5,6,2,3] => [4,3]
=> [3]
=> 3
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [2,7,5,1,3,4,6] => [5,2]
=> [2]
=> 2
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,6,7,1,3,4,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [5,2]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [2,7,5,1,6,3,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [7,3,5,1,2,4,6] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6,3,5,1,2,7,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [7,5,4,1,2,3,6] => [5,2]
=> [2]
=> 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,5,4,1,2,7,3] => [5,2]
=> [2]
=> 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [7,3,5,1,6,2,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [7,5,4,1,6,2,3] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [2,3,7,6,1,4,5] => [5,2]
=> [2]
=> 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [2,7,4,6,1,3,5] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [2,7,6,5,1,3,4] => [5,2]
=> [2]
=> 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,3,4,6,1,2,5] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => [5,2]
=> [2]
=> 2
Description
The major index of an integer partition when read from bottom to top.
This is the sum of the positions of the corners of the shape of an integer partition when reading from bottom to top.
For example, the partition $\lambda = (8,6,6,4,3,3)$ has corners at positions 3,6,9, and 13, giving a major index of 31.
Matching statistic: St000870
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000870: Integer partitions ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 50%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000870: Integer partitions ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 50%
Values
[1,0]
=> [2,1] => [2]
=> []
=> ? = 0
[1,0,1,0]
=> [3,1,2] => [3]
=> []
=> ? ∊ {0,0}
[1,1,0,0]
=> [2,3,1] => [3]
=> []
=> ? ∊ {0,0}
[1,0,1,0,1,0]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,1,0,0]
=> [3,1,4,2] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,0,1,0]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,1,0,0]
=> [4,3,1,2] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,1,0,0,0]
=> [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [4,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,3]
=> [3]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [4,2]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [3,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [4,2]
=> [2]
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [4,3]
=> [3]
=> 3
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [4,3]
=> [3]
=> 3
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [5,2]
=> [2]
=> 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [4,3]
=> [3]
=> 3
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [5,2]
=> [2]
=> 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [6,4,1,2,3,7,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [5,6,1,2,3,7,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,4,1,2,7,3,6] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [5,7,1,2,6,3,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [5,4,1,2,6,7,3] => [5,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [7,4,1,5,2,3,6] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6,7,1,5,2,3,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [7,4,1,5,6,2,3] => [4,3]
=> [3]
=> 3
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [2,7,5,1,3,4,6] => [5,2]
=> [2]
=> 2
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,6,7,1,3,4,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [5,2]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [2,7,5,1,6,3,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [7,3,5,1,2,4,6] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6,3,5,1,2,7,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [7,5,4,1,2,3,6] => [5,2]
=> [2]
=> 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,5,4,1,2,7,3] => [5,2]
=> [2]
=> 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [7,3,5,1,6,2,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [7,5,4,1,6,2,3] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [2,3,7,6,1,4,5] => [5,2]
=> [2]
=> 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [2,7,4,6,1,3,5] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [2,7,6,5,1,3,4] => [5,2]
=> [2]
=> 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,3,4,6,1,2,5] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => [5,2]
=> [2]
=> 2
Description
The product of the hook lengths of the diagonal cells in an integer partition.
For a cell in the Ferrers diagram of a partition, the hook length is given by the number of boxes to its right plus the number of boxes below + 1. This statistic is the product of the hook lengths of the diagonal cells $(i,i)$ of a partition.
Matching statistic: St001279
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001279: Integer partitions ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 50%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001279: Integer partitions ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 50%
Values
[1,0]
=> [2,1] => [2]
=> []
=> ? = 0
[1,0,1,0]
=> [3,1,2] => [3]
=> []
=> ? ∊ {0,0}
[1,1,0,0]
=> [2,3,1] => [3]
=> []
=> ? ∊ {0,0}
[1,0,1,0,1,0]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,1,0,0]
=> [3,1,4,2] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,0,1,0]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,0,1,0,0]
=> [4,3,1,2] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,1,1,0,0,0]
=> [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,1,1,2}
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [4,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,3]
=> [3]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [4,2]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [3,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [4,2]
=> [2]
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [4,3]
=> [3]
=> 3
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [5,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [4,3]
=> [3]
=> 3
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [5,2]
=> [2]
=> 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [4,3]
=> [3]
=> 3
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [5,2]
=> [2]
=> 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [6,4,1,2,3,7,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [5,6,1,2,3,7,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,4,1,2,7,3,6] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [5,7,1,2,6,3,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [5,4,1,2,6,7,3] => [5,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => [5,2]
=> [2]
=> 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [7,4,1,5,2,3,6] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6,7,1,5,2,3,4] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => [4,3]
=> [3]
=> 3
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [7,4,1,5,6,2,3] => [4,3]
=> [3]
=> 3
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [2,7,5,1,3,4,6] => [5,2]
=> [2]
=> 2
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,6,7,1,3,4,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [5,2]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [2,7,5,1,6,3,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [7,3,5,1,2,4,6] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6,3,5,1,2,7,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [7,5,4,1,2,3,6] => [5,2]
=> [2]
=> 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,5,4,1,2,7,3] => [5,2]
=> [2]
=> 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [7,3,5,1,6,2,4] => [4,3]
=> [3]
=> 3
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [7,5,4,1,6,2,3] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [2,3,7,6,1,4,5] => [5,2]
=> [2]
=> 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [2,7,4,6,1,3,5] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [2,7,6,5,1,3,4] => [5,2]
=> [2]
=> 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,3,4,6,1,2,5] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => [4,3]
=> [3]
=> 3
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => [5,2]
=> [2]
=> 2
Description
The sum of the parts of an integer partition that are at least two.
The following 27 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001389The number of partitions of the same length below the given integer partition. St001527The cyclic permutation representation number of an integer partition. St001571The Cartan determinant of the integer partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St000264The girth of a graph, which is not a tree. St000260The radius of a connected graph. St001432The order dimension of the partition. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001060The distinguishing index of a graph. St000259The diameter of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001569The maximal modular displacement of a permutation. St001948The number of augmented double ascents of a permutation. St000993The multiplicity of the largest part of an integer partition. St001875The number of simple modules with projective dimension at most 1. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000871The number of very big ascents of a permutation. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000455The second largest eigenvalue of a graph if it is integral. St000454The largest eigenvalue of a graph if it is integral. St001964The interval resolution global dimension of a poset. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001960The number of descents of a permutation minus one if its first entry is not one. St000660The number of rises of length at least 3 of a Dyck path.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!