Identifier
-
Mp00103:
Dyck paths
—peeling map⟶
Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00123: Dyck paths —Barnabei-Castronuovo involution⟶ Dyck paths
St001199: Dyck paths ⟶ ℤ
Values
[1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0] => 2
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => 2
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => 2
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => 2
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,0,0,0,1,0] => 2
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,0,0,0,1,0] => 2
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,0,0,0,1,0] => 2
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0] => 2
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
[1,0,1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
[1,0,1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => 2
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => 2
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
[1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
[1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => 2
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => 2
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
[1,1,1,0,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
[1,1,1,0,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => 2
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => 2
[1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => 2
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => 2
[1,1,1,1,0,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => 2
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => 2
[1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => 2
[1,1,1,1,0,0,1,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => 2
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => 2
[1,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => 2
[1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 3
[1,1,1,1,0,1,0,0,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => 2
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => 2
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => 1
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 1
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
[1,0,1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,0,1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0,1,1,0,0] => 2
[1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,1,0,0] => 2
[1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0,1,1,0,0] => 2
[1,0,1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,1,0,0] => 2
[1,0,1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,1,0,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,1,0,1,1,0,0,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0,1,1,0,0] => 2
[1,0,1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,1,0,0] => 2
[1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,1,1,0,0,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,1,1,0,0,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0,1,0] => 2
[1,0,1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,1,0,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,1,0,0,0,1,1,0,0] => 1
[1,0,1,1,1,1,0,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0] => [1,1,1,0,0,1,1,0,0,0,1,1,0,0] => 2
[1,0,1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0] => [1,1,1,0,0,1,1,0,0,0,1,1,0,0] => 2
[1,0,1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0] => [1,1,1,0,0,1,1,0,0,0,1,1,0,0] => 2
[1,0,1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => 2
[1,0,1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0,1,1,0,0] => 2
[1,0,1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0,1,1,0,0] => 2
[1,0,1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0,1,1,0,0] => 2
[1,0,1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => 3
[1,0,1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => 2
[1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,1,1,0,0,0] => 3
[1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
[1,1,0,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
[1,1,0,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
[1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0,1,0] => 2
[1,1,0,0,1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0,1,0] => 2
[1,1,0,0,1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0,1,0] => 2
>>> Load all 248 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA.
Map
Barnabei-Castronuovo involution
Description
The Barnabei-Castronuovo Schützenberger involution on Dyck paths.
The image of a Dyck path is obtained by reversing the canonical decompositions of the two halves of the Dyck path. More precisely, let D1,1,D2,1,… be the canonical decomposition of the first half, then the canonical decomposition of the first half of the image is …,1,D2,1,D1.
The image of a Dyck path is obtained by reversing the canonical decompositions of the two halves of the Dyck path. More precisely, let D1,1,D2,1,… be the canonical decomposition of the first half, then the canonical decomposition of the first half of the image is …,1,D2,1,D1.
Map
zeta map
Description
The zeta map on Dyck paths.
The zeta map ζ is a bijection on Dyck paths of semilength n.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path D with corresponding area sequence a=(a1,…,an) to a Dyck path as follows:
The zeta map ζ is a bijection on Dyck paths of semilength n.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path D with corresponding area sequence a=(a1,…,an) to a Dyck path as follows:
- First, build an intermediate Dyck path consisting of d1 north steps, followed by d1 east steps, followed by d2 north steps and d2 east steps, and so on, where di is the number of i−1's within the sequence a.
For example, given a=(0,1,2,2,2,3,1,2), we build the path
NE NNEE NNNNEEEE NE. - Next, the rectangles between two consecutive peaks are filled. Observe that such the rectangle between the kth and the (k+1)st peak must be filled by dk east steps and dk+1 north steps. In the above example, the rectangle between the second and the third peak must be filled by 2 east and 4 north steps, the 2 being the number of 1's in a, and 4 being the number of 2's. To fill such a rectangle, scan through the sequence a from left to right, and add east or north steps whenever you see a k−1 or k, respectively. So to fill the 2×4 rectangle, we look for 1's and 2's in the sequence and see 122212, so this rectangle gets filled with ENNNEN.
The complete path we obtain in thus
NENNENNNENEEENEE.
Map
peeling map
Description
Send a Dyck path to its peeled Dyck path.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!