Your data matches 144 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001605
Mp00077: Semistandard tableaux shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00312: Integer partitions Glaisher-FranklinInteger partitions
St001605: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,1],[2,2],[3]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,1],[2,3],[3]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2],[2,3],[3]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,1,1],[2,2,2]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1],[2],[3],[5]]
=> [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1],[2],[4],[5]]
=> [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1],[3],[4],[5]]
=> [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[2],[3],[4],[5]]
=> [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,1],[2,2],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,1],[2,3],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,1],[2,4],[3]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,1],[2,4],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,1],[3,3],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,1],[3,4],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2],[2,3],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2],[2,4],[3]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2],[2,4],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2],[3,3],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3],[2,4],[3]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2],[3,4],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3],[2,4],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3],[3,4],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[2,2],[3,3],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[2,2],[3,4],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[2,3],[3,4],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,1],[2],[3],[4]]
=> [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,2],[2],[3],[4]]
=> [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,3],[2],[3],[4]]
=> [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,4],[2],[3],[4]]
=> [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,1,1],[2,2,3]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,1,1],[2,3,3]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,1,1],[3,3,3]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,1,2],[2,2,3]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,1,2],[2,3,3]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,1,2],[3,3,3]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,2,2],[2,3,3]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,2,2],[3,3,3]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[2,2,2],[3,3,3]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,1,1],[2,2],[3]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,1,1],[2,3],[3]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,1,2],[2,2],[3]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,1,2],[2,3],[3]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,1,3],[2,2],[3]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,1,3],[2,3],[3]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,2],[2,3],[3]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,3],[2,3],[3]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,1],[2,2],[3,3]]
=> [2,2,2]
=> [2,2]
=> [1,1,1,1]
=> 6
[[1,1,1,1],[2,2,2]]
=> [4,3]
=> [3]
=> [3]
=> 1
[[1,1,1,2],[2,2,2]]
=> [4,3]
=> [3]
=> [3]
=> 1
Description
The number of colourings of a cycle such that the multiplicities of colours are given by a partition. Two colourings are considered equal, if they are obtained by an action of the cyclic group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St001804
Mp00077: Semistandard tableaux shapeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
St001804: Standard tableaux ⟶ ℤResult quality: 20% values known / values provided: 35%distinct values known / distinct values provided: 20%
Values
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1
[[1,1],[2,2],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,2],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1,1],[2,2,2]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1
[[1],[2],[3],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1
[[1],[2],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1
[[1],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1
[[2],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1
[[1,1],[2,2],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,2],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,2],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,2],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,3],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,3],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[2,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[2,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[2,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,2],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,3],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,4],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,1,1],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1
[[1,1,1],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1
[[1,1,1],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1
[[1,1,2],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1
[[1,1,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1
[[1,1,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1
[[1,2,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1
[[1,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1
[[2,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1
[[1,1,1],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
[[1,1,1],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
[[1,1,2],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
[[1,1,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
[[1,1,3],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
[[1,1,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
[[1,2,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
[[1,2,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
[[1,1],[2,2],[3,3]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> ? = 6
[[1,1,1,1],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> ? = 1
[[1,1,1,2],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> ? = 1
[[1],[2],[3],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1
[[1],[2],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1
[[1],[2],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1
[[1],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1
[[1],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1
[[1],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1
[[2],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1
[[2],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1
[[2],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1
[[3],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1
[[1,1],[2,2],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[3,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[4,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[4,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,2],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,2],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,2],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,2],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,2],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,2],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,3],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2
[[1,1],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,1],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,1],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,2],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,2],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,3],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,5],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,4],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,5],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,4],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[1,5],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[2,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[[2,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
Description
The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. A cylindrical tableau associated with a standard Young tableau $T$ is the skew row-strict tableau obtained by gluing two copies of $T$ such that the inner shape is a rectangle. This statistic equals $\max_C\big(\ell(C) - \ell(T)\big)$, where $\ell$ denotes the number of rows of a tableau and the maximum is taken over all cylindrical tableaux.
Matching statistic: St001195
Mp00077: Semistandard tableaux shapeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001195: Dyck paths ⟶ ℤResult quality: 20% values known / values provided: 35%distinct values known / distinct values provided: 20%
Values
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[1,1],[2,2],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,2],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1,1],[2,2,2]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 - 1
[[1],[2],[3],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[1],[2],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[1],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[2],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[1,1],[2,2],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,2],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,2],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,2],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,3],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,3],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[2,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[2,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[2,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,2],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,3],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,4],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,1,1],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 - 1
[[1,1,1],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 - 1
[[1,1,1],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 - 1
[[1,1,2],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 - 1
[[1,1,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 - 1
[[1,1,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 - 1
[[1,2,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 - 1
[[1,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 - 1
[[2,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 - 1
[[1,1,1],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[[1,1,1],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[[1,1,2],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[[1,1,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[[1,1,3],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[[1,1,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[[1,2,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[[1,2,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[[1,1],[2,2],[3,3]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 6 - 1
[[1,1,1,1],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 1 - 1
[[1,1,1,2],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 1 - 1
[[1],[2],[3],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[1],[2],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[1],[2],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[1],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[1],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[1],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[2],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[2],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[2],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[3],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[1,1],[2,2],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[3,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[4,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[4,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,2],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,2],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,2],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,2],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,2],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,2],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,3],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,1],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,1],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,2],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,2],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,3],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,5],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,4],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,5],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,4],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[1,5],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[2,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[2,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
Description
The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$.
Matching statistic: St001207
Mp00077: Semistandard tableaux shapeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St001207: Permutations ⟶ ℤResult quality: 20% values known / values provided: 35%distinct values known / distinct values provided: 20%
Values
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
[[1,1],[2,2],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,2],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1,1],[2,2,2]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ? = 1 + 1
[[1],[2],[3],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
[[1],[2],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
[[1],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
[[2],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
[[1,1],[2,2],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,2],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,2],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,2],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,3],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,3],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[2,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[2,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[2,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,2],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,3],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,4],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,1,1],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ? = 1 + 1
[[1,1,1],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ? = 1 + 1
[[1,1,1],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ? = 1 + 1
[[1,1,2],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ? = 1 + 1
[[1,1,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ? = 1 + 1
[[1,1,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ? = 1 + 1
[[1,2,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ? = 1 + 1
[[1,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ? = 1 + 1
[[2,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ? = 1 + 1
[[1,1,1],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 3 = 2 + 1
[[1,1,1],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 3 = 2 + 1
[[1,1,2],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 3 = 2 + 1
[[1,1,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 3 = 2 + 1
[[1,1,3],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 3 = 2 + 1
[[1,1,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 3 = 2 + 1
[[1,2,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 3 = 2 + 1
[[1,2,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 3 = 2 + 1
[[1,1],[2,2],[3,3]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ? = 6 + 1
[[1,1,1,1],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => ? = 1 + 1
[[1,1,1,2],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => ? = 1 + 1
[[1],[2],[3],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
[[1],[2],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
[[1],[2],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
[[1],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
[[1],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
[[1],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
[[2],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
[[2],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
[[2],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
[[3],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
[[1,1],[2,2],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[3,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[4,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[4,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,2],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,2],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,2],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,2],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,2],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,2],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,3],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 2 + 1
[[1,1],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,1],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,1],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,2],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,2],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,3],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,5],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,4],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,5],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,4],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[1,5],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[2,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
[[2,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ? = 1 + 1
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Mp00077: Semistandard tableaux shapeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00201: Dyck paths RingelPermutations
St001208: Permutations ⟶ ℤResult quality: 20% values known / values provided: 35%distinct values known / distinct values provided: 20%
Values
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 - 1
[[1,1],[2,2],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,2],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1,1],[2,2,2]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ? = 1 - 1
[[1],[2],[3],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 - 1
[[1],[2],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 - 1
[[1],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 - 1
[[2],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 - 1
[[1,1],[2,2],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,2],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,2],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,2],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,3],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,3],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[2,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[2,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[2,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,2],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,3],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,4],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,1,1],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ? = 1 - 1
[[1,1,1],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ? = 1 - 1
[[1,1,1],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ? = 1 - 1
[[1,1,2],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ? = 1 - 1
[[1,1,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ? = 1 - 1
[[1,1,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ? = 1 - 1
[[1,2,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ? = 1 - 1
[[1,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ? = 1 - 1
[[2,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ? = 1 - 1
[[1,1,1],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1 = 2 - 1
[[1,1,1],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1 = 2 - 1
[[1,1,2],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1 = 2 - 1
[[1,1,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1 = 2 - 1
[[1,1,3],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1 = 2 - 1
[[1,1,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1 = 2 - 1
[[1,2,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1 = 2 - 1
[[1,2,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1 = 2 - 1
[[1,1],[2,2],[3,3]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ? = 6 - 1
[[1,1,1,1],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ? = 1 - 1
[[1,1,1,2],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ? = 1 - 1
[[1],[2],[3],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 - 1
[[1],[2],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 - 1
[[1],[2],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 - 1
[[1],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 - 1
[[1],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 - 1
[[1],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 - 1
[[2],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 - 1
[[2],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 - 1
[[2],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 - 1
[[3],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 - 1
[[1,1],[2,2],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[3,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[4,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[4,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,2],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,2],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,2],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,2],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,2],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,2],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,3],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[[1,1],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,1],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,1],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,2],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,2],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,3],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,5],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,4],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,5],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,4],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[1,5],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[2,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
[[2,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 - 1
Description
The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$.
Mp00077: Semistandard tableaux shapeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001314: Dyck paths ⟶ ℤResult quality: 20% values known / values provided: 35%distinct values known / distinct values provided: 20%
Values
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1,1],[2,2],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1,1],[2,2,2]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1],[2],[3],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[2],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[2],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1,1],[2,2],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,3],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,3],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[2,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[2,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[2,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,2],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,3],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,4],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,1,1],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,1],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,1],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,2],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,2,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[2,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,1],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1,1],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1,2],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1,3],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,2,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,2,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1],[2,2],[3,3]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 6 + 1
[[1,1,1,1],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 1 + 1
[[1,1,1,2],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 1 + 1
[[1],[2],[3],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[2],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[2],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[2],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[2],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[2],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[3],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1,1],[2,2],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[4,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[4,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,3],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,1],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,1],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,2],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,2],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,3],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,5],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,4],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,5],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,4],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,5],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[2,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[2,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
Description
The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra.
Matching statistic: St001514
Mp00077: Semistandard tableaux shapeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001514: Dyck paths ⟶ ℤResult quality: 20% values known / values provided: 35%distinct values known / distinct values provided: 20%
Values
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1,1],[2,2],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1,1],[2,2,2]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1],[2],[3],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[2],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[2],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1,1],[2,2],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,3],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,3],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[2,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[2,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[2,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,2],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,3],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,4],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,1,1],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,1],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,1],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,2],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,2,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[2,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,1],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1,1],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1,2],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1,3],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,2,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,2,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1],[2,2],[3,3]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 6 + 1
[[1,1,1,1],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 1 + 1
[[1,1,1,2],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 1 + 1
[[1],[2],[3],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[2],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[2],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[2],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[2],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[2],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[3],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1,1],[2,2],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[4,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[4,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,3],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,1],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,1],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,2],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,2],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,3],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,5],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,4],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,5],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,4],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,5],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[2,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[2,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
Description
The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule.
Mp00077: Semistandard tableaux shapeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001526: Dyck paths ⟶ ℤResult quality: 20% values known / values provided: 35%distinct values known / distinct values provided: 20%
Values
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1,1],[2,2],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1,1],[2,2,2]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1],[2],[3],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[2],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[2],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1,1],[2,2],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,3],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,3],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[2,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[2,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[2,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,2],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,3],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,4],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,1,1],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,1],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,1],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,2],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,2,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[2,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[[1,1,1],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1,1],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1,2],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1,3],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,2,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,2,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[1,1],[2,2],[3,3]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 6 + 1
[[1,1,1,1],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 1 + 1
[[1,1,1,2],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 1 + 1
[[1],[2],[3],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[2],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[2],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[2],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[2],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[2],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[3],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1,1],[2,2],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[3,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[4,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[4,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,3],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,1],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,1],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,2],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,2],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,3],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,5],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,4],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,5],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,4],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,5],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[2,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[[2,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
Description
The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path.
Mp00077: Semistandard tableaux shapeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St001582: Permutations ⟶ ℤResult quality: 20% values known / values provided: 35%distinct values known / distinct values provided: 20%
Values
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1 + 1
[[1,1],[2,2],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,2],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1,1],[2,2,2]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ? = 1 + 1
[[1],[2],[3],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1 + 1
[[1],[2],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1 + 1
[[1],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1 + 1
[[2],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1 + 1
[[1,1],[2,2],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,2],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,2],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,2],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,3],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,3],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[2,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[2,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[2,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,2],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,3],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,4],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,1,1],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ? = 1 + 1
[[1,1,1],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ? = 1 + 1
[[1,1,1],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ? = 1 + 1
[[1,1,2],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ? = 1 + 1
[[1,1,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ? = 1 + 1
[[1,1,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ? = 1 + 1
[[1,2,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ? = 1 + 1
[[1,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ? = 1 + 1
[[2,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ? = 1 + 1
[[1,1,1],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3 = 2 + 1
[[1,1,1],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3 = 2 + 1
[[1,1,2],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3 = 2 + 1
[[1,1,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3 = 2 + 1
[[1,1,3],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3 = 2 + 1
[[1,1,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3 = 2 + 1
[[1,2,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3 = 2 + 1
[[1,2,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3 = 2 + 1
[[1,1],[2,2],[3,3]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ? = 6 + 1
[[1,1,1,1],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => ? = 1 + 1
[[1,1,1,2],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => ? = 1 + 1
[[1],[2],[3],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1 + 1
[[1],[2],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1 + 1
[[1],[2],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1 + 1
[[1],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1 + 1
[[1],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1 + 1
[[1],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1 + 1
[[2],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1 + 1
[[2],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1 + 1
[[2],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1 + 1
[[3],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ? = 1 + 1
[[1,1],[2,2],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[3,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[4,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[4,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,2],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,2],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,2],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,2],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,2],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,2],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,3],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[[1,1],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,1],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,1],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,2],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,2],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,3],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,5],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,4],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,5],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,4],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[1,5],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[2,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
[[2,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ? = 1 + 1
Description
The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order.
Matching statistic: St000508
Mp00077: Semistandard tableaux shapeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
St000508: Standard tableaux ⟶ ℤResult quality: 20% values known / values provided: 35%distinct values known / distinct values provided: 20%
Values
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1 - 2
[[1,1],[2,2],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,2],[2,3],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1,1],[2,2,2]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1 - 2
[[1],[2],[3],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1 - 2
[[1],[2],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1 - 2
[[1],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1 - 2
[[2],[3],[4],[5]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1 - 2
[[1,1],[2,2],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,2],[2,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,2],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,2],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,3],[2,4],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,3],[2,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[2,2],[3,3],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[2,2],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[2,3],[3,4],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,2],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,3],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,4],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,1,1],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1 - 2
[[1,1,1],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1 - 2
[[1,1,1],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1 - 2
[[1,1,2],[2,2,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1 - 2
[[1,1,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1 - 2
[[1,1,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1 - 2
[[1,2,2],[2,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1 - 2
[[1,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1 - 2
[[2,2,2],[3,3,3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1 - 2
[[1,1,1],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 0 = 2 - 2
[[1,1,1],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 0 = 2 - 2
[[1,1,2],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 0 = 2 - 2
[[1,1,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 0 = 2 - 2
[[1,1,3],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 0 = 2 - 2
[[1,1,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 0 = 2 - 2
[[1,2,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 0 = 2 - 2
[[1,2,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 0 = 2 - 2
[[1,1],[2,2],[3,3]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> ? = 6 - 2
[[1,1,1,1],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> ? = 1 - 2
[[1,1,1,2],[2,2,2]]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> ? = 1 - 2
[[1],[2],[3],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1 - 2
[[1],[2],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1 - 2
[[1],[2],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1 - 2
[[1],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1 - 2
[[1],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1 - 2
[[1],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1 - 2
[[2],[3],[4],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1 - 2
[[2],[3],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1 - 2
[[2],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1 - 2
[[3],[4],[5],[6]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1 - 2
[[1,1],[2,2],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[3,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[4,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[4,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,2],[2,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,2],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,2],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,2],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,2],[2,5],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,2],[3,3],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,3],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0 = 2 - 2
[[1,1],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,1],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,1],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,2],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,2],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,3],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,5],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,4],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,5],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,4],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[1,5],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[2,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
[[2,3],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 2
Description
Eigenvalues of the random-to-random operator acting on a simple module. The simple module of the symmetric group indexed by a partition $\lambda$ has dimension equal to the number of standard tableaux of shape $\lambda$. Hence, the eigenvalues of any linear operator defined on this module can be indexed by standard tableaux of shape $\lambda$; this statistic gives all the eigenvalues of the operator acting on the module [1].
The following 134 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000735The last entry on the main diagonal of a standard tableau. St000744The length of the path to the largest entry in a standard Young tableau. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001371The length of the longest Yamanouchi prefix of a binary word. St001413Half the length of the longest even length palindromic prefix of a binary word. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St001556The number of inversions of the third entry of a permutation. St001557The number of inversions of the second entry of a permutation. St001730The number of times the path corresponding to a binary word crosses the base line. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St000044The number of vertices of the unicellular map given by a perfect matching. St000017The number of inversions of a standard tableau. St001721The degree of a binary word. St000016The number of attacking pairs of a standard tableau. St000958The number of Bruhat factorizations of a permutation. St000741The Colin de Verdière graph invariant. St001964The interval resolution global dimension of a poset. St001960The number of descents of a permutation minus one if its first entry is not one. St001427The number of descents of a signed permutation. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001487The number of inner corners of a skew partition. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001722The number of minimal chains with small intervals between a binary word and the top element. St000177The number of free tiles in the pattern. St000178Number of free entries. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001520The number of strict 3-descents. St001811The Castelnuovo-Mumford regularity of a permutation. St001856The number of edges in the reduced word graph of a permutation. St001948The number of augmented double ascents of a permutation. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001168The vector space dimension of the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001330The hat guessing number of a graph. St001862The number of crossings of a signed permutation. St001868The number of alignments of type NE of a signed permutation. St000454The largest eigenvalue of a graph if it is integral. St000068The number of minimal elements in a poset. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St001866The nesting alignments of a signed permutation. St001870The number of positive entries followed by a negative entry in a signed permutation. St001895The oddness of a signed permutation. St000422The energy of a graph, if it is integral. St001597The Frobenius rank of a skew partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001615The number of join prime elements of a lattice. St000633The size of the automorphism group of a poset. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001399The distinguishing number of a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St000850The number of 1/2-balanced pairs in a poset. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001472The permanent of the Coxeter matrix of the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001624The breadth of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001625The Möbius invariant of a lattice. St001621The number of atoms of a lattice. St001623The number of doubly irreducible elements of a lattice. St001626The number of maximal proper sublattices of a lattice. St001875The number of simple modules with projective dimension at most 1. St001877Number of indecomposable injective modules with projective dimension 2. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St000298The order dimension or Dushnik-Miller dimension of a poset. St000642The size of the smallest orbit of antichains under Panyushev complementation. St000907The number of maximal antichains of minimal length in a poset. St000524The number of posets with the same order polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000528The height of a poset. St000640The rank of the largest boolean interval in a poset. St000680The Grundy value for Hackendot on posets. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St000911The number of maximal antichains of maximal size in a poset. St000912The number of maximal antichains in a poset. St001343The dimension of the reduced incidence algebra of a poset. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St001718The number of non-empty open intervals in a poset. St001769The reflection length of a signed permutation. St001864The number of excedances of a signed permutation. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000281The size of the preimage of the map 'to poset' from Binary trees to Posets. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000632The jump number of the poset. St000643The size of the largest orbit of antichains under Panyushev complementation. St001095The number of non-isomorphic posets with precisely one further covering relation. St001510The number of self-evacuating linear extensions of a finite poset. St001534The alternating sum of the coefficients of the Poincare polynomial of the poset cone. St001631The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001782The order of rowmotion on the set of order ideals of a poset. St001861The number of Bruhat lower covers of a permutation. St001896The number of right descents of a signed permutations. St000527The width of the poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000910The number of maximal chains of minimal length in a poset. St001268The size of the largest ordinal summand in the poset. St001779The order of promotion on the set of linear extensions of a poset. St001892The flag excedance statistic of a signed permutation. St001894The depth of a signed permutation. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St000656The number of cuts of a poset. St001717The largest size of an interval in a poset. St001893The flag descent of a signed permutation. St001851The number of Hecke atoms of a signed permutation. St000849The number of 1/3-balanced pairs in a poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001848The atomic length of a signed permutation. St001684The reduced word complexity of a permutation. St000641The number of non-empty boolean intervals in a poset. St000639The number of relations in a poset. St001635The trace of the square of the Coxeter matrix of the incidence algebra of a poset. St001664The number of non-isomorphic subposets of a poset. St001902The number of potential covers of a poset. St001855The number of signed permutations less than or equal to a signed permutation in left weak order. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000525The number of posets with the same zeta polynomial. St001533The largest coefficient of the Poincare polynomial of the poset cone. St000848The balance constant multiplied with the number of linear extensions of a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001813The product of the sizes of the principal order filters in a poset. St001709The number of homomorphisms to the three element chain of a poset. St001815The number of order preserving surjections from a poset to a total order.