searching the database
Your data matches 7 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000770
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000770: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000770: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 2
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 1
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 4
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 2
[3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> [2]
=> 2
[4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> [3]
=> 3
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 1
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 4
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 2
[1,3,1,2] => [[4,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,3,2,1] => [[4,4,3,1],[3,2]]
=> [3,2]
=> [2]
=> 2
[1,4,1,1] => [[4,4,4,1],[3,3]]
=> [3,3]
=> [3]
=> 3
[2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[2,1,1,3] => [[4,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]]
=> [2,2,1,1]
=> [2,1,1]
=> 5
[2,1,2,2] => [[4,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 1
[2,1,3,1] => [[4,4,2,2],[3,1,1]]
=> [3,1,1]
=> [1,1]
=> 1
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]]
=> [2,2,2,1]
=> [2,2,1]
=> 4
[2,2,1,2] => [[4,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 4
[2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> [3,2,1]
=> [2,1]
=> 4
[2,3,1,1] => [[4,4,4,2],[3,3,1]]
=> [3,3,1]
=> [3,1]
=> 5
[3,1,1,1,1] => [[3,3,3,3,3],[2,2,2,2]]
=> [2,2,2,2]
=> [2,2,2]
=> 2
[3,1,1,2] => [[4,3,3,3],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 2
[3,1,2,1] => [[4,4,3,3],[3,2,2]]
=> [3,2,2]
=> [2,2]
=> 2
[3,1,3] => [[5,3,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[3,2,1,1] => [[4,4,4,3],[3,3,2]]
=> [3,3,2]
=> [3,2]
=> 6
[3,2,2] => [[5,4,3],[3,2]]
=> [3,2]
=> [2]
=> 2
[3,3,1] => [[5,5,3],[4,2]]
=> [4,2]
=> [2]
=> 2
[4,1,1,1] => [[4,4,4,4],[3,3,3]]
=> [3,3,3]
=> [3,3]
=> 3
[4,1,2] => [[5,4,4],[3,3]]
=> [3,3]
=> [3]
=> 3
[4,2,1] => [[5,5,4],[4,3]]
=> [4,3]
=> [3]
=> 3
[5,1,1] => [[5,5,5],[4,4]]
=> [4,4]
=> [4]
=> 4
[1,1,1,2,1,1,1] => [[2,2,2,2,1,1,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[1,1,2,1,1,1,1] => [[2,2,2,2,2,1,1],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,1,2,1,1,2] => [[3,2,2,2,1,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[1,1,2,1,2,1] => [[3,3,2,2,1,1],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 1
[1,1,2,2,1,1] => [[3,3,3,2,1,1],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 4
[1,1,3,1,2] => [[4,3,3,1,1],[2,2]]
=> [2,2]
=> [2]
=> 2
Description
The major index of an integer partition when read from bottom to top.
This is the sum of the positions of the corners of the shape of an integer partition when reading from bottom to top.
For example, the partition $\lambda = (8,6,6,4,3,3)$ has corners at positions 3,6,9, and 13, giving a major index of 31.
Matching statistic: St001638
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001638: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 22%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001638: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 22%
Values
[2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[2,1,1,1,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 1
[1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[1,2,1,1,1,1] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
[1,2,1,1,2] => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[1,2,1,2,1] => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[1,2,2,1,1] => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,1,1,1] => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,3,1,2] => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,3,2,1] => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[1,4,1,1] => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[2,1,1,1,1,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
[2,1,1,1,2] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[2,1,1,2,1] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[2,1,1,3] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,1,2,1,1] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[2,1,2,2] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,1,3,1] => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,2,1,1,1] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[2,2,1,2] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[2,2,2,1] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[2,3,1,1] => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[3,1,1,1,1] => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,1,1,2] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,1,2,1] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,2,1,1] => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[3,2,2] => [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,3,1] => [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[4,1,2] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[4,2,1] => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,1,1,2,1,1,1] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,1,2,1,1,1,1] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,1,2,1,1,2] => [1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,2,1,2,1] => [2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,2,2,1,1] => [3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,3,1,2] => [1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,3,2,1] => [2,2,1,3] => ([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,2,1,1,1,1,1] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,2,1,1,1,2] => [1,5,2] => ([(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,1,1,2,1] => [2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,1,2,1,1] => [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,2,1,2,2] => [1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,1,3,1] => [2,1,3,2] => ([(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,2,1,1,1] => [4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,2,2,1,2] => [1,3,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,2,2,2,1] => [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,2,3,1,1] => [3,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,3,1,1,2] => [1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,3,1,2,1] => [2,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,3,1,3] => [1,1,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,3,2,1,1] => [3,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[1,3,2,2] => [1,2,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,3,3,1] => [2,1,2,1,2] => ([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
Description
The book thickness of a graph.
The book thickness (or pagenumber, or stacknumber) of a graph is the minimal number of pages required for a book embedding of a graph.
Matching statistic: St000454
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 44%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 44%
Values
[2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 1
[1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[2,1,1,1,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 1
[1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,2,1,1,1,1] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 1
[1,2,1,1,2] => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,2,1,2,1] => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,2,2,1,1] => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[1,3,1,1,1] => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,3,1,2] => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,3,2,1] => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,4,1,1] => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,1,1,1,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[2,1,1,1,2] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,1,1,2,1] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,1,1,3] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[2,1,2,1,1] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 5
[2,1,2,2] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[2,1,3,1] => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[2,2,1,1,1] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[2,2,1,2] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[2,2,2,1] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[2,3,1,1] => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 5
[3,1,1,1,1] => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[3,1,1,2] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[3,1,2,1] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[3,2,1,1] => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 6
[3,2,2] => [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,3,1] => [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,1,2] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[4,2,1] => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,1,2,1,1,1] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,2,1,1,1,1] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,2,1,1,2] => [1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,2,1,2,1] => [2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,2,2,1,1] => [3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4
[1,1,3,1,2] => [1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,3,2,1] => [2,2,1,3] => ([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,2,1,1,1,1,1] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,1,1,1,2] => [1,5,2] => ([(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,1,1,2,1] => [2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,1,2,1,1] => [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 5
[1,2,1,2,2] => [1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,1,3,1] => [2,1,3,2] => ([(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,2,1,1,1] => [4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4
[1,2,2,1,2] => [1,3,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4
[1,2,2,2,1] => [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4
[1,2,3,1,1] => [3,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 5
[1,3,1,1,2] => [1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,3,1,2,1] => [2,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,3,1,3] => [1,1,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,3,2,1,1] => [3,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 6
[1,3,2,2] => [1,2,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[5,1,1,1] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001330
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 44%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 44%
Values
[2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 1 + 1
[3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 2 = 1 + 1
[1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,1,1,1,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4 + 1
[3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 2 = 1 + 1
[1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,2,1,1,1,1] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 2 = 1 + 1
[1,2,1,1,2] => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,2,1,2,1] => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,2,2,1,1] => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
[1,3,1,1,1] => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,3,1,2] => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,3,2,1] => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,4,1,1] => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,1,1,1,1,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,1,1,1,2] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[2,1,1,2,1] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[2,1,1,3] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[2,1,2,1,1] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 5 + 1
[2,1,2,2] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[2,1,3,1] => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[2,2,1,1,1] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4 + 1
[2,2,1,2] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,2,2,1] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,3,1,1] => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 5 + 1
[3,1,1,1,1] => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,1,1,2] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,1,2,1] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[3,2,1,1] => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 6 + 1
[3,2,2] => [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[3,3,1] => [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,1,2] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[4,2,1] => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,1,1,2,1,1,1] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
[1,1,2,1,1,1,1] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
[1,1,2,1,1,2] => [1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
[1,1,2,1,2,1] => [2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
[1,1,2,2,1,1] => [3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4 + 1
[1,1,3,1,2] => [1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2 + 1
[1,1,3,2,1] => [2,2,1,3] => ([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2 + 1
[1,2,1,1,1,1,1] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
[1,2,1,1,1,2] => [1,5,2] => ([(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
[1,2,1,1,2,1] => [2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
[1,2,1,2,1,1] => [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 5 + 1
[1,2,1,2,2] => [1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
[1,2,1,3,1] => [2,1,3,2] => ([(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
[1,2,2,1,1,1] => [4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4 + 1
[1,2,2,1,2] => [1,3,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4 + 1
[1,2,2,2,1] => [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4 + 1
[1,2,3,1,1] => [3,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 5 + 1
[1,3,1,1,2] => [1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2 + 1
[1,3,1,2,1] => [2,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2 + 1
[1,3,1,3] => [1,1,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2 + 1
[1,3,2,1,1] => [3,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 6 + 1
[1,3,2,2] => [1,2,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2 + 1
[5,1,1,1] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St001232
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 44%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 44%
Values
[2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,3,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[2,1,1,2] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 1 + 1
[2,1,2,1] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 1 + 1
[2,2,1,1] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 4 + 1
[3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[3,1,2] => [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ? = 2 + 1
[3,2,1] => [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ? = 2 + 1
[4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,2,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,3,1,1] => [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,2,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,2,1,1,2] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 1 + 1
[1,2,1,2,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 1 + 1
[1,2,2,1,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 4 + 1
[1,3,1,1,1] => [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,3,1,2] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> ? = 2 + 1
[1,3,2,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> ? = 2 + 1
[1,4,1,1] => [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[2,1,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[2,1,1,1,2] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 1 + 1
[2,1,1,2,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 1 + 1
[2,1,1,3] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> ? = 1 + 1
[2,1,2,1,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 5 + 1
[2,1,2,2] => [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ? = 1 + 1
[2,1,3,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> ? = 1 + 1
[2,2,1,1,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 4 + 1
[2,2,1,2] => [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ? = 4 + 1
[2,2,2,1] => [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ? = 4 + 1
[2,3,1,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> ? = 5 + 1
[3,1,1,1,1] => [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[3,1,1,2] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> ? = 2 + 1
[3,1,2,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> ? = 2 + 1
[3,1,3] => [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? = 2 + 1
[3,2,1,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> ? = 6 + 1
[3,2,2] => [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ? = 2 + 1
[3,3,1] => [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? = 2 + 1
[4,1,1,1] => [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[4,1,2] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 3 + 1
[4,2,1] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 3 + 1
[5,1,1] => [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
[1,1,1,2,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 1 + 1
[1,1,2,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 1 + 1
[1,1,2,1,1,2] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 1 + 1
[1,1,2,1,2,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 1 + 1
[1,1,2,2,1,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 4 + 1
[1,1,3,1,2] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,3,2,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> ? = 2 + 1
[1,2,1,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 1 + 1
[1,2,1,1,1,2] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 1 + 1
[1,2,1,1,2,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 1 + 1
[1,2,1,2,1,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 5 + 1
[1,2,1,2,2] => [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 1 + 1
[1,2,1,3,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> ? = 1 + 1
[1,2,2,1,1,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 4 + 1
[1,2,2,1,2] => [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 4 + 1
[1,2,2,2,1] => [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 4 + 1
[1,2,3,1,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> ? = 5 + 1
[1,3,1,1,2] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> ? = 2 + 1
[1,3,1,2,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> ? = 2 + 1
[1,3,1,3] => [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 2 + 1
[1,3,2,1,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> ? = 6 + 1
[1,3,2,2] => [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 2 + 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000028
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00238: Permutations —Clarke-Steingrimsson-Zeng⟶ Permutations
St000028: Permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 33%
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00238: Permutations —Clarke-Steingrimsson-Zeng⟶ Permutations
St000028: Permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 33%
Values
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6,2,1,3,4,5] => 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [6,2,3,1,4,5] => 2
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [7,3,1,2,4,5,6] => 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [7,3,1,4,2,5,6] => ? = 2
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => [7,2,1,3,4,5,6] => 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => [7,2,1,3,6,4,5] => ? = 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => [7,2,1,5,3,4,6] => ? = 1
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => [7,2,4,1,3,5,6] => ? = 4
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => [7,2,3,1,4,5,6] => 2
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => [7,2,3,1,6,4,5] => ? = 2
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => [7,2,3,5,1,4,6] => ? = 2
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => [7,2,3,4,1,5,6] => 3
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [4,1,2,8,3,5,6,7] => [8,1,4,2,3,5,6,7] => ? = 1
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [4,1,2,5,8,3,6,7] => [8,1,4,2,5,3,6,7] => ? = 2
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,8,2,4,5,6,7] => [8,3,1,2,4,5,6,7] => 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [3,1,7,2,4,5,8,6] => [8,3,1,2,4,7,5,6] => 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [3,1,6,2,4,8,5,7] => [8,3,1,2,6,4,5,7] => ? = 1
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [3,1,5,2,8,4,6,7] => [8,3,1,5,2,4,6,7] => ? = 4
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,1,4,8,2,5,6,7] => [8,3,1,4,2,5,6,7] => ? = 2
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,1,4,7,2,5,8,6] => [8,3,1,4,2,7,5,6] => ? = 2
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,1,4,6,2,8,5,7] => [8,3,1,4,6,2,5,7] => ? = 2
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [3,1,4,5,8,2,6,7] => [8,3,1,4,5,2,6,7] => ? = 3
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,8,1,3,4,5,6,7] => [8,2,1,3,4,5,6,7] => 1
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,7,1,3,4,5,8,6] => [8,2,1,3,4,7,5,6] => ? = 1
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,6,1,3,4,8,5,7] => [8,2,1,3,6,4,5,7] => ? = 1
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,6,1,3,4,7,8,5] => [8,2,1,3,6,4,7,5] => ? = 1
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,5,1,3,8,4,6,7] => [8,2,1,5,3,4,6,7] => ? = 5
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,7,4,8,6] => [8,2,1,5,3,7,4,6] => ? = 1
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,5,1,3,6,8,4,7] => [8,2,1,5,3,6,4,7] => ? = 1
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,4,1,8,3,5,6,7] => [8,2,4,1,3,5,6,7] => ? = 4
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,4,1,7,3,5,8,6] => [8,2,4,1,3,7,5,6] => ? = 4
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,8,5,7] => [8,2,4,1,6,3,5,7] => ? = 4
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,4,1,5,8,3,6,7] => [8,2,4,1,5,3,6,7] => ? = 5
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [2,3,8,1,4,5,6,7] => [8,2,3,1,4,5,6,7] => 2
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [2,3,7,1,4,5,8,6] => [8,2,3,1,4,7,5,6] => ? = 2
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [2,3,6,1,4,8,5,7] => [8,2,3,1,6,4,5,7] => ? = 2
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [2,3,6,1,4,7,8,5] => [8,2,3,1,6,4,7,5] => ? = 2
[3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [2,3,5,1,8,4,6,7] => [8,2,3,5,1,4,6,7] => ? = 6
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [2,3,5,1,7,4,8,6] => [8,2,3,5,1,7,4,6] => ? = 2
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [2,3,5,1,6,8,4,7] => [8,2,3,5,1,6,4,7] => ? = 2
[4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [2,3,4,8,1,5,6,7] => [8,2,3,4,1,5,6,7] => 3
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [2,3,4,7,1,5,8,6] => [8,2,3,4,1,7,5,6] => ? = 3
[4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [2,3,4,6,1,8,5,7] => [8,2,3,4,6,1,5,7] => ? = 3
[5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [2,3,4,5,8,1,6,7] => [8,2,3,4,5,1,6,7] => ? = 4
[1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,1,2,3,9,4,6,7,8] => [9,1,2,5,3,4,6,7,8] => ? = 1
[1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [4,1,2,9,3,5,6,7,8] => ? => ? = 1
[1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,1,2,8,3,5,6,9,7] => [9,1,4,2,3,5,8,6,7] => ? = 1
[1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [4,1,2,7,3,5,9,6,8] => ? => ? = 1
[1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [4,1,2,6,3,9,5,7,8] => ? => ? = 4
[1,1,3,1,2] => [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [4,1,2,5,8,3,6,9,7] => ? => ? = 2
[1,1,3,2,1] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [4,1,2,5,7,3,9,6,8] => ? => ? = 2
[1,2,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [3,1,9,2,4,5,6,7,8] => [9,3,1,2,4,5,6,7,8] => 1
[1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [3,1,8,2,4,5,6,9,7] => [9,3,1,2,4,5,8,6,7] => ? = 1
[1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [3,1,7,2,4,5,9,6,8] => ? => ? = 1
[1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,9,5,7,8] => ? => ? = 5
[1,2,1,2,2] => [1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [3,1,6,2,4,8,5,9,7] => ? => ? = 1
[1,2,1,3,1] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [3,1,6,2,4,7,9,5,8] => ? => ? = 1
[1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,5,2,9,4,6,7,8] => ? => ? = 4
[1,2,2,1,2] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,5,2,8,4,6,9,7] => ? => ? = 4
[1,2,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,9,6,8] => [9,3,1,5,2,7,4,6,8] => ? = 4
[1,2,3,1,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,5,2,6,9,4,7,8] => ? => ? = 5
[1,3,1,1,2] => [1,0,1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [3,1,4,8,2,5,6,9,7] => ? => ? = 2
[2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,9,1,3,4,5,6,7,8] => [9,2,1,3,4,5,6,7,8] => 1
[3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,9,1,4,5,6,7,8] => [9,2,3,1,4,5,6,7,8] => 2
[2,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,10,1,3,4,5,6,7,8,9] => [10,2,1,3,4,5,6,7,8,9] => 1
Description
The number of stack-sorts needed to sort a permutation.
A permutation is (West) $t$-stack sortable if it is sortable using $t$ stacks in series.
Let $W_t(n,k)$ be the number of permutations of size $n$
with $k$ descents which are $t$-stack sortable. Then the polynomials $W_{n,t}(x) = \sum_{k=0}^n W_t(n,k)x^k$
are symmetric and unimodal.
We have $W_{n,1}(x) = A_n(x)$, the Eulerian polynomials. One can show that $W_{n,1}(x)$ and $W_{n,2}(x)$ are real-rooted.
Precisely the permutations that avoid the pattern $231$ have statistic at most $1$, see [3]. These are counted by $\frac{1}{n+1}\binom{2n}{n}$ ([[OEIS:A000108]]). Precisely the permutations that avoid the pattern $2341$ and the barred pattern $3\bar 5241$ have statistic at most $2$, see [4]. These are counted by $\frac{2(3n)!}{(n+1)!(2n+1)!}$ ([[OEIS:A000139]]).
Matching statistic: St000359
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00238: Permutations —Clarke-Steingrimsson-Zeng⟶ Permutations
St000359: Permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 33%
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00238: Permutations —Clarke-Steingrimsson-Zeng⟶ Permutations
St000359: Permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 33%
Values
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6,2,1,3,4,5] => 0 = 1 - 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [6,2,3,1,4,5] => 1 = 2 - 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [7,3,1,2,4,5,6] => 0 = 1 - 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [7,3,1,4,2,5,6] => ? = 2 - 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => [7,2,1,3,4,5,6] => 0 = 1 - 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => [7,2,1,3,6,4,5] => ? = 1 - 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => [7,2,1,5,3,4,6] => ? = 1 - 1
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => [7,2,4,1,3,5,6] => ? = 4 - 1
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => [7,2,3,1,4,5,6] => 1 = 2 - 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => [7,2,3,1,6,4,5] => ? = 2 - 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => [7,2,3,5,1,4,6] => ? = 2 - 1
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => [7,2,3,4,1,5,6] => 2 = 3 - 1
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [4,1,2,8,3,5,6,7] => [8,1,4,2,3,5,6,7] => ? = 1 - 1
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [4,1,2,5,8,3,6,7] => [8,1,4,2,5,3,6,7] => ? = 2 - 1
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,8,2,4,5,6,7] => [8,3,1,2,4,5,6,7] => 0 = 1 - 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [3,1,7,2,4,5,8,6] => [8,3,1,2,4,7,5,6] => 0 = 1 - 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [3,1,6,2,4,8,5,7] => [8,3,1,2,6,4,5,7] => ? = 1 - 1
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [3,1,5,2,8,4,6,7] => [8,3,1,5,2,4,6,7] => ? = 4 - 1
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,1,4,8,2,5,6,7] => [8,3,1,4,2,5,6,7] => ? = 2 - 1
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,1,4,7,2,5,8,6] => [8,3,1,4,2,7,5,6] => ? = 2 - 1
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,1,4,6,2,8,5,7] => [8,3,1,4,6,2,5,7] => ? = 2 - 1
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [3,1,4,5,8,2,6,7] => [8,3,1,4,5,2,6,7] => ? = 3 - 1
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,8,1,3,4,5,6,7] => [8,2,1,3,4,5,6,7] => 0 = 1 - 1
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,7,1,3,4,5,8,6] => [8,2,1,3,4,7,5,6] => ? = 1 - 1
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,6,1,3,4,8,5,7] => [8,2,1,3,6,4,5,7] => ? = 1 - 1
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,6,1,3,4,7,8,5] => [8,2,1,3,6,4,7,5] => ? = 1 - 1
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,5,1,3,8,4,6,7] => [8,2,1,5,3,4,6,7] => ? = 5 - 1
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,7,4,8,6] => [8,2,1,5,3,7,4,6] => ? = 1 - 1
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,5,1,3,6,8,4,7] => [8,2,1,5,3,6,4,7] => ? = 1 - 1
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,4,1,8,3,5,6,7] => [8,2,4,1,3,5,6,7] => ? = 4 - 1
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,4,1,7,3,5,8,6] => [8,2,4,1,3,7,5,6] => ? = 4 - 1
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,8,5,7] => [8,2,4,1,6,3,5,7] => ? = 4 - 1
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,4,1,5,8,3,6,7] => [8,2,4,1,5,3,6,7] => ? = 5 - 1
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [2,3,8,1,4,5,6,7] => [8,2,3,1,4,5,6,7] => 1 = 2 - 1
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [2,3,7,1,4,5,8,6] => [8,2,3,1,4,7,5,6] => ? = 2 - 1
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [2,3,6,1,4,8,5,7] => [8,2,3,1,6,4,5,7] => ? = 2 - 1
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [2,3,6,1,4,7,8,5] => [8,2,3,1,6,4,7,5] => ? = 2 - 1
[3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [2,3,5,1,8,4,6,7] => [8,2,3,5,1,4,6,7] => ? = 6 - 1
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [2,3,5,1,7,4,8,6] => [8,2,3,5,1,7,4,6] => ? = 2 - 1
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [2,3,5,1,6,8,4,7] => [8,2,3,5,1,6,4,7] => ? = 2 - 1
[4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [2,3,4,8,1,5,6,7] => [8,2,3,4,1,5,6,7] => 2 = 3 - 1
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [2,3,4,7,1,5,8,6] => [8,2,3,4,1,7,5,6] => ? = 3 - 1
[4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [2,3,4,6,1,8,5,7] => [8,2,3,4,6,1,5,7] => ? = 3 - 1
[5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [2,3,4,5,8,1,6,7] => [8,2,3,4,5,1,6,7] => ? = 4 - 1
[1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,1,2,3,9,4,6,7,8] => [9,1,2,5,3,4,6,7,8] => ? = 1 - 1
[1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [4,1,2,9,3,5,6,7,8] => ? => ? = 1 - 1
[1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,1,2,8,3,5,6,9,7] => [9,1,4,2,3,5,8,6,7] => ? = 1 - 1
[1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [4,1,2,7,3,5,9,6,8] => ? => ? = 1 - 1
[1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [4,1,2,6,3,9,5,7,8] => ? => ? = 4 - 1
[1,1,3,1,2] => [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [4,1,2,5,8,3,6,9,7] => ? => ? = 2 - 1
[1,1,3,2,1] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [4,1,2,5,7,3,9,6,8] => ? => ? = 2 - 1
[1,2,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [3,1,9,2,4,5,6,7,8] => [9,3,1,2,4,5,6,7,8] => 0 = 1 - 1
[1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [3,1,8,2,4,5,6,9,7] => [9,3,1,2,4,5,8,6,7] => ? = 1 - 1
[1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [3,1,7,2,4,5,9,6,8] => ? => ? = 1 - 1
[1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,9,5,7,8] => ? => ? = 5 - 1
[1,2,1,2,2] => [1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [3,1,6,2,4,8,5,9,7] => ? => ? = 1 - 1
[1,2,1,3,1] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [3,1,6,2,4,7,9,5,8] => ? => ? = 1 - 1
[1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,5,2,9,4,6,7,8] => ? => ? = 4 - 1
[1,2,2,1,2] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,5,2,8,4,6,9,7] => ? => ? = 4 - 1
[1,2,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,9,6,8] => [9,3,1,5,2,7,4,6,8] => ? = 4 - 1
[1,2,3,1,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,5,2,6,9,4,7,8] => ? => ? = 5 - 1
[1,3,1,1,2] => [1,0,1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [3,1,4,8,2,5,6,9,7] => ? => ? = 2 - 1
[2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,9,1,3,4,5,6,7,8] => [9,2,1,3,4,5,6,7,8] => 0 = 1 - 1
[3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,9,1,4,5,6,7,8] => [9,2,3,1,4,5,6,7,8] => 1 = 2 - 1
[2,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,10,1,3,4,5,6,7,8,9] => [10,2,1,3,4,5,6,7,8,9] => 0 = 1 - 1
Description
The number of occurrences of the pattern 23-1.
See [[Permutations/#Pattern-avoiding_permutations]] for the definition of the pattern $23\!\!-\!\!1$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!