Your data matches 46 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000480
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000480: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[2,1] => [[2,2],[1]]
=> [1]
=> []
=> 0
[1,2,1] => [[2,2,1],[1]]
=> [1]
=> []
=> 0
[2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> [1]
=> 0
[2,2] => [[3,2],[1]]
=> [1]
=> []
=> 0
[3,1] => [[3,3],[2]]
=> [2]
=> []
=> 0
[1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> []
=> 0
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,2,2] => [[3,2,1],[1]]
=> [1]
=> []
=> 0
[1,3,1] => [[3,3,1],[2]]
=> [2]
=> []
=> 0
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> [1]
=> 0
[2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> [1]
=> 0
[2,3] => [[4,2],[1]]
=> [1]
=> []
=> 0
[3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> [2]
=> 1
[3,2] => [[4,3],[2]]
=> [2]
=> []
=> 0
[4,1] => [[4,4],[3]]
=> [3]
=> []
=> 0
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> []
=> 0
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> []
=> 0
[1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> []
=> 0
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> [1]
=> 0
[1,2,3] => [[4,2,1],[1]]
=> [1]
=> []
=> 0
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 1
[1,3,2] => [[4,3,1],[2]]
=> [2]
=> []
=> 0
[1,4,1] => [[4,4,1],[3]]
=> [3]
=> []
=> 0
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 0
[2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> [1]
=> 0
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 1
[2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> [1]
=> 0
[2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> [1]
=> 0
[2,4] => [[5,2],[1]]
=> [1]
=> []
=> 0
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 1
[3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> [2]
=> 1
[3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> [2]
=> 1
[3,3] => [[5,3],[2]]
=> [2]
=> []
=> 0
[4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> [3]
=> 1
[4,2] => [[5,4],[3]]
=> [3]
=> []
=> 0
[5,1] => [[5,5],[4]]
=> [4]
=> []
=> 0
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]]
=> [1]
=> []
=> 0
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,1,1,2,2] => [[3,2,1,1,1],[1]]
=> [1]
=> []
=> 0
[1,1,1,3,1] => [[3,3,1,1,1],[2]]
=> [2]
=> []
=> 0
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]]
=> [2,1]
=> [1]
=> 0
[1,1,2,3] => [[4,2,1,1],[1]]
=> [1]
=> []
=> 0
Description
The number of lower covers of a partition in dominance order. According to [1], Corollary 2.4, the maximum number of elements one element (apparently for $n\neq 2$) can cover is $$ \frac{1}{2}(\sqrt{1+8n}-3) $$ and an element which covers this number of elements is given by $(c+i,c,c-1,\dots,3,2,1)$, where $1\leq i\leq c+2$.
Matching statistic: St001597
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001597: Skew partitions ⟶ ℤResult quality: 67% values known / values provided: 80%distinct values known / distinct values provided: 67%
Values
[2,1] => [[2,2],[1]]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,2,1] => [[2,2,1],[1]]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[2,2] => [[3,2],[1]]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[3,1] => [[3,3],[2]]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,2,2] => [[3,2,1],[1]]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,3,1] => [[3,3,1],[2]]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1 = 0 + 1
[2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[2,3] => [[4,2],[1]]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> [[2,2],[]]
=> 2 = 1 + 1
[3,2] => [[4,3],[2]]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[4,1] => [[4,4],[3]]
=> [3]
=> [[3],[]]
=> 1 = 0 + 1
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1 = 0 + 1
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,2,3] => [[4,2,1],[1]]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> [[2,2],[]]
=> 2 = 1 + 1
[1,3,2] => [[4,3,1],[2]]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[1,4,1] => [[4,4,1],[3]]
=> [3]
=> [[3],[]]
=> 1 = 0 + 1
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 1 = 0 + 1
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1 = 0 + 1
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [[2,1,1],[]]
=> 1 = 0 + 1
[2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [[2,2,1],[]]
=> 2 = 1 + 1
[2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> [[3,1],[]]
=> 1 = 0 + 1
[2,4] => [[5,2],[1]]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [[2,2,2],[]]
=> 2 = 1 + 1
[3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> [[2,2],[]]
=> 2 = 1 + 1
[3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> [[3,2],[]]
=> 2 = 1 + 1
[3,3] => [[5,3],[2]]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> [[3,3],[]]
=> 2 = 1 + 1
[4,2] => [[5,4],[3]]
=> [3]
=> [[3],[]]
=> 1 = 0 + 1
[5,1] => [[5,5],[4]]
=> [4]
=> [[4],[]]
=> 1 = 0 + 1
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,1,1,2,2] => [[3,2,1,1,1],[1]]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,1,1,3,1] => [[3,3,1,1,1],[2]]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1 = 0 + 1
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,1,2,3] => [[4,2,1,1],[1]]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[3,1,1,1,1] => [[3,3,3,3,3],[2,2,2,2]]
=> [2,2,2,2]
=> [[2,2,2,2],[]]
=> ? = 1 + 1
[3,2,1,1] => [[4,4,4,3],[3,3,2]]
=> [3,3,2]
=> [[3,3,2],[]]
=> ? = 1 + 1
[4,1,1,1] => [[4,4,4,4],[3,3,3]]
=> [3,3,3]
=> [[3,3,3],[]]
=> ? = 1 + 1
[5,1,1] => [[5,5,5],[4,4]]
=> [4,4]
=> [[4,4],[]]
=> ? = 1 + 1
[1,3,2,1,1] => [[4,4,4,3,1],[3,3,2]]
=> [3,3,2]
=> [[3,3,2],[]]
=> ? = 1 + 1
[1,4,1,1,1] => [[4,4,4,4,1],[3,3,3]]
=> [3,3,3]
=> [[3,3,3],[]]
=> ? = 1 + 1
[2,1,2,1,1,1] => [[3,3,3,3,2,2],[2,2,2,1,1]]
=> [2,2,2,1,1]
=> [[2,2,2,1,1],[]]
=> ? = 1 + 1
[2,1,3,1,1] => [[4,4,4,2,2],[3,3,1,1]]
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 1 + 1
[2,2,1,1,1,1] => [[3,3,3,3,3,2],[2,2,2,2,1]]
=> [2,2,2,2,1]
=> [[2,2,2,2,1],[]]
=> ? = 1 + 1
[2,2,1,2,1] => [[4,4,3,3,2],[3,2,2,1]]
=> [3,2,2,1]
=> [[3,2,2,1],[]]
=> ? = 1 + 1
[2,2,2,1,1] => [[4,4,4,3,2],[3,3,2,1]]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? = 2 + 1
[2,3,1,1,1] => [[4,4,4,4,2],[3,3,3,1]]
=> [3,3,3,1]
=> [[3,3,3,1],[]]
=> ? = 1 + 1
[2,3,2,1] => [[5,5,4,2],[4,3,1]]
=> [4,3,1]
=> [[4,3,1],[]]
=> ? = 1 + 1
[2,4,1,1] => [[5,5,5,2],[4,4,1]]
=> [4,4,1]
=> [[4,4,1],[]]
=> ? = 1 + 1
[3,1,1,1,1,1] => [[3,3,3,3,3,3],[2,2,2,2,2]]
=> [2,2,2,2,2]
=> [[2,2,2,2,2],[]]
=> ? = 1 + 1
[3,1,1,2,1] => [[4,4,3,3,3],[3,2,2,2]]
=> [3,2,2,2]
=> [[3,2,2,2],[]]
=> ? = 1 + 1
[3,1,2,1,1] => [[4,4,4,3,3],[3,3,2,2]]
=> [3,3,2,2]
=> [[3,3,2,2],[]]
=> ? = 1 + 1
[3,1,3,1] => [[5,5,3,3],[4,2,2]]
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 1 + 1
[3,2,1,1,1] => [[4,4,4,4,3],[3,3,3,2]]
=> [3,3,3,2]
=> [[3,3,3,2],[]]
=> ? = 1 + 1
[3,2,1,2] => [[5,4,4,3],[3,3,2]]
=> [3,3,2]
=> [[3,3,2],[]]
=> ? = 1 + 1
[3,2,2,1] => [[5,5,4,3],[4,3,2]]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? = 1 + 1
[3,3,1,1] => [[5,5,5,3],[4,4,2]]
=> [4,4,2]
=> [[4,4,2],[]]
=> ? = 2 + 1
[4,1,1,1,1] => [[4,4,4,4,4],[3,3,3,3]]
=> [3,3,3,3]
=> [[3,3,3,3],[]]
=> ? = 1 + 1
[4,1,1,2] => [[5,4,4,4],[3,3,3]]
=> [3,3,3]
=> [[3,3,3],[]]
=> ? = 1 + 1
[4,1,2,1] => [[5,5,4,4],[4,3,3]]
=> [4,3,3]
=> [[4,3,3],[]]
=> ? = 1 + 1
[4,2,1,1] => [[5,5,5,4],[4,4,3]]
=> [4,4,3]
=> [[4,4,3],[]]
=> ? = 1 + 1
[4,3,1] => [[6,6,4],[5,3]]
=> [5,3]
=> [[5,3],[]]
=> ? = 1 + 1
[5,1,1,1] => [[5,5,5,5],[4,4,4]]
=> [4,4,4]
=> [[4,4,4],[]]
=> ? = 1 + 1
[6,1,1] => [[6,6,6],[5,5]]
=> [5,5]
=> [[5,5],[]]
=> ? = 1 + 1
[3,1,1,1,1,1,1] => [[3,3,3,3,3,3,3],[2,2,2,2,2,2]]
=> [2,2,2,2,2,2]
=> [[2,2,2,2,2,2],[]]
=> ? = 1 + 1
[4,1,1,1,1,1] => [[4,4,4,4,4,4],[3,3,3,3,3]]
=> [3,3,3,3,3]
=> [[3,3,3,3,3],[]]
=> ? = 1 + 1
[5,1,1,1,1] => [[5,5,5,5,5],[4,4,4,4]]
=> [4,4,4,4]
=> [[4,4,4,4],[]]
=> ? = 1 + 1
[6,1,1,1] => [[6,6,6,6],[5,5,5]]
=> [5,5,5]
=> [[5,5,5],[]]
=> ? = 1 + 1
[7,1,1] => [[7,7,7],[6,6]]
=> [6,6]
=> [[6,6],[]]
=> ? = 1 + 1
[2,1,1,1,1,1,1,1,1] => [[2,2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1,1]]
=> [1,1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1,1],[]]
=> ? = 0 + 1
[3,1,1,1,1,1,1,1] => [[3,3,3,3,3,3,3,3],[2,2,2,2,2,2,2]]
=> [2,2,2,2,2,2,2]
=> [[2,2,2,2,2,2,2],[]]
=> ? = 1 + 1
[7,1,1,1] => [[7,7,7,7],[6,6,6]]
=> [6,6,6]
=> [[6,6,6],[]]
=> ? = 1 + 1
[8,1,1] => [[8,8,8],[7,7]]
=> [7,7]
=> [[7,7],[]]
=> ? = 1 + 1
[9,1] => [[9,9],[8]]
=> [8]
=> [[8],[]]
=> ? = 0 + 1
Description
The Frobenius rank of a skew partition. This is the minimal number of border strips in a border strip decomposition of the skew partition.
Mp00231: Integer compositions bounce pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00122: Dyck paths Elizalde-Deutsch bijectionDyck paths
St001031: Dyck paths ⟶ ℤResult quality: 67% values known / values provided: 69%distinct values known / distinct values provided: 67%
Values
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1 = 0 + 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> 1 = 0 + 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> 1 = 0 + 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> 1 = 0 + 1
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2 = 1 + 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 0 + 1
[2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 0 + 1
[2,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 0 + 1
[2,1,1,2,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 1 + 1
[2,1,1,2,2] => [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,0]
=> ? = 0 + 1
[2,1,1,3,1] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0,1,0]
=> ? = 0 + 1
[2,1,2,1,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[2,1,2,1,2] => [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,1,0,0,0]
=> ? = 1 + 1
[2,1,2,2,1] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0,1,0]
=> ? = 1 + 1
[2,1,2,3] => [1,1,0,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0,1,0]
=> ? = 0 + 1
[2,1,3,1,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,1,0,0]
=> ? = 1 + 1
[2,1,3,2] => [1,1,0,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,1,0,0]
=> ? = 0 + 1
[2,2,1,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0]
=> ? = 1 + 1
[2,2,1,1,2] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,1,0,0,0]
=> ? = 1 + 1
[2,2,1,2,1] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0,1,0]
=> ? = 1 + 1
[2,2,1,3] => [1,1,0,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0,1,0]
=> ? = 1 + 1
[2,2,2,1,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? = 2 + 1
[2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,1,0,0]
=> ? = 1 + 1
[2,2,3,1] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,1,0,0]
=> ? = 1 + 1
[2,3,1,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,1,0,0,0,0]
=> ? = 1 + 1
[2,3,1,2] => [1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,1,1,0,0,0,0]
=> ? = 1 + 1
[2,3,2,1] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[2,3,3] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 0 + 1
[2,4,1,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0,1,0]
=> ? = 1 + 1
[2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0,1,0]
=> ? = 0 + 1
[3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 1
[3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 1 + 1
[3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0,1,0]
=> ? = 1 + 1
[3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,1,0,0]
=> ? = 1 + 1
[3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,1,0,0]
=> ? = 1 + 1
[3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 1 + 1
[3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0]
=> ? = 1 + 1
[3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,1,1,0,0,0,0]
=> ? = 1 + 1
[3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,1,0,0,0]
=> ? = 1 + 1
[3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,1,0,0,0]
=> ? = 1 + 1
[3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0,1,0]
=> ? = 2 + 1
[3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,0,1,0]
=> ? = 1 + 1
[3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 1 + 1
[4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1 + 1
[4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,1,0,0,0]
=> ? = 1 + 1
[4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,1,0,0,0]
=> ? = 1 + 1
[4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0,1,0]
=> ? = 1 + 1
[4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0,1,0]
=> ? = 1 + 1
[4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,0,0,1,0]
=> ? = 1 + 1
[4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 0 + 1
[5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? = 1 + 1
[6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,1,0,0]
=> ? = 1 + 1
[7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 0 + 1
[2,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 0 + 1
Description
The height of the bicoloured Motzkin path associated with the Dyck path.
Mp00231: Integer compositions bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
St001559: Permutations ⟶ ℤResult quality: 32% values known / values provided: 32%distinct values known / distinct values provided: 67%
Values
[2,1] => [1,1,0,0,1,0]
=> [1,3,2] => [3,1,2] => 0
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [1,4,2,3] => 0
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [2,4,1,3] => 0
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [3,1,2,4] => 0
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [4,1,2,3] => 0
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [1,2,5,3,4] => 0
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [1,3,5,2,4] => 0
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [1,4,2,3,5] => 0
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [1,5,2,3,4] => 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [2,3,5,1,4] => 0
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [2,4,1,3,5] => 0
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [2,5,1,3,4] => 0
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [3,5,1,2,4] => 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => 0
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => 0
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5] => [1,2,3,6,4,5] => 0
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,6,4] => [1,2,4,6,3,5] => 0
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,6] => [1,2,5,3,4,6] => 0
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,1,4,6,5] => [1,2,6,3,4,5] => 0
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,5,6,3] => [1,3,4,6,2,5] => 0
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,5,3,6] => [1,3,5,2,4,6] => 0
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5] => [1,3,6,2,4,5] => 0
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,5,6] => [1,4,2,3,5,6] => 0
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,3,5,6,4] => [1,4,6,2,3,5] => 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => [1,5,2,3,4,6] => 0
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => [1,6,2,3,4,5] => 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => [2,3,4,6,1,5] => 0
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => [2,3,5,1,4,6] => 0
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5] => [2,3,6,1,4,5] => 0
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => [2,4,1,3,5,6] => 0
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4] => [2,4,6,1,3,5] => 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => [2,5,1,3,4,6] => 0
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,6,5] => [2,6,1,3,4,5] => 0
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => [3,1,2,4,5,6] => 0
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,4,5,6,3] => [3,4,6,1,2,5] => 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => [3,5,1,2,4,6] => 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => [3,6,1,2,4,5] => 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => [4,1,2,3,5,6] => 0
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,2,3,5,6,4] => [4,6,1,2,3,5] => 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => [5,1,2,3,4,6] => 0
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => [6,1,2,3,4,5] => 0
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,5,1,7,6] => [1,2,3,4,7,5,6] => 0
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,4,1,6,7,5] => [1,2,3,5,7,4,6] => 0
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => [1,2,3,6,4,5,7] => 0
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,4,1,5,7,6] => [1,2,3,7,4,5,6] => 0
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,1,5,6,7,4] => [1,2,4,5,7,3,6] => 0
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => [1,2,4,6,3,5,7] => 0
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,7,6] => [1,2,4,7,3,5,6] => 0
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => [1,2,5,3,4,6,7] => 0
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,1,3,5,4,7,6] => [1,4,7,2,3,5,6] => ? = 1
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => [1,5,2,3,4,6,7] => ? = 0
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,1,3,4,6,7,5] => [1,5,7,2,3,4,6] => ? = 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,3,4,6,5,7] => [1,6,2,3,4,5,7] => ? = 0
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => [1,7,2,3,4,5,6] => ? = 0
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,7,2] => [2,3,4,5,7,1,6] => ? = 0
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,6,2,7] => [2,3,4,6,1,5,7] => ? = 0
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,3,4,5,2,7,6] => [2,3,4,7,1,5,6] => ? = 0
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,3,4,5,2,6,7] => [2,3,5,1,4,6,7] => ? = 0
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,3,4,2,6,7,5] => [2,3,5,7,1,4,6] => ? = 1
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5,7] => [2,3,6,1,4,5,7] => ? = 0
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,3,4,2,5,7,6] => [2,3,7,1,4,5,6] => ? = 0
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,3,4,2,5,6,7] => [2,4,1,3,5,6,7] => ? = 0
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,5,6,7,4] => [2,4,5,7,1,3,6] => ? = 1
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,5,6,4,7] => [2,4,6,1,3,5,7] => ? = 1
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,7,6] => [2,4,7,1,3,5,6] => ? = 1
[2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,5,4,6,7] => [2,5,1,3,4,6,7] => ? = 0
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,2,4,6,7,5] => [2,5,7,1,3,4,6] => ? = 1
[2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2,4,6,5,7] => [2,6,1,3,4,5,7] => ? = 0
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,3,2,4,5,7,6] => [2,7,1,3,4,5,6] => ? = 0
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,3,2,4,5,6,7] => [3,1,2,4,5,6,7] => ? = 0
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,6,7,3] => [3,4,5,7,1,2,6] => ? = 1
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,2,4,5,6,3,7] => [3,4,6,1,2,5,7] => ? = 1
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,2,4,5,3,7,6] => [3,4,7,1,2,5,6] => ? = 1
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,2,4,5,3,6,7] => [3,5,1,2,4,6,7] => ? = 1
[3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,6,7,5] => [3,5,7,1,2,4,6] => ? = 1
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5,7] => [3,6,1,2,4,5,7] => ? = 1
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,2,4,3,5,7,6] => [3,7,1,2,4,5,6] => ? = 1
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,2,4,3,5,6,7] => [4,1,2,3,5,6,7] => ? = 0
[4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,2,3,5,6,7,4] => [4,5,7,1,2,3,6] => ? = 1
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,5,6,4,7] => [4,6,1,2,3,5,7] => ? = 1
[4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6] => [4,7,1,2,3,5,6] => ? = 1
[4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 0
[5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,6,7,5] => [5,7,1,2,3,4,6] => ? = 1
[5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 0
[6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 0
[1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,5,6,1,8,7] => [1,2,3,4,5,8,6,7] => ? = 0
[1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,4,5,1,7,8,6] => [1,2,3,4,6,8,5,7] => ? = 0
[1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,5,1,7,6,8] => [1,2,3,4,7,5,6,8] => ? = 0
[1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,6,7,8,5] => [1,2,3,5,6,8,4,7] => ? = 0
[1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,4,1,6,7,5,8] => [1,2,3,5,7,4,6,8] => ? = 0
[1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5,8,7] => [1,2,3,5,8,4,6,7] => ? = 0
[1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,3,4,1,5,7,6,8] => [1,2,3,7,4,5,6,8] => ? = 0
[1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,1,5,6,7,8,4] => [1,2,4,5,6,8,3,7] => ? = 0
[1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,3,1,5,6,7,4,8] => [1,2,4,5,7,3,6,8] => ? = 0
[1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,6,4,8,7] => ? => ? = 0
[1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,4,7,8,6] => ? => ? = 1
[1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,7,6,8] => [1,2,4,7,3,5,6,8] => ? = 0
[1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1,5,4,6,8,7] => ? => ? = 0
[1,1,3,1,2] => [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,1,4,6,7,5,8] => [1,2,5,7,3,4,6,8] => ? = 1
Description
The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. This statistic is the difference between [[St001558]] and [[St000018]]. A permutation is '''smooth''' if and only if this number is zero. Equivalently, this number is zero if and only if the permutation avoids the two patterns $4231$ and $3412$.
Mp00231: Integer compositions bounce pathDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St001906: Permutations ⟶ ℤResult quality: 32% values known / values provided: 32%distinct values known / distinct values provided: 67%
Values
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 0
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 0
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 0
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 0
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 0
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => 0
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 0
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => 0
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 0
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 0
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => 0
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,6,5,4,2,1] => 0
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,5,4,2] => 0
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => 0
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,6,5,3,2,1] => 0
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,5,3,2] => 0
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,5,3,1] => 0
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,5,3] => 0
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,5,2,1] => 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,5,2] => 0
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [5,6,4,3,2,1] => 0
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,4,3,2] => 0
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,4,3,1] => 0
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,4,3] => 0
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,5,6,4,2,1] => 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,3,5,6,4,2] => 0
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,6,4,1] => 0
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => 0
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [4,5,6,3,2,1] => 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,3,2] => 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,3,1] => 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => 0
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,2,1] => 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => 0
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => 0
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,7,6,5,4,3,1] => ? = 0
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [3,7,6,5,4,2,1] => ? = 0
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,7,6,5,4,2] => 0
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,7,6,5,4,1] => ? = 0
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [4,7,6,5,3,2,1] => ? = 0
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,4,7,6,5,3,2] => ? = 0
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [2,4,7,6,5,3,1] => ? = 0
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => 0
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [3,4,7,6,5,2,1] => ? = 1
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,4,7,6,5,2] => 0
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,4,7,6,5,1] => ? = 0
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [5,7,6,4,3,2,1] => ? = 0
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 0
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [2,5,7,6,4,3,1] => ? = 0
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,6,4,3] => 0
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [3,5,7,6,4,2,1] => ? = 1
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,5,7,6,4,2] => 0
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [2,3,5,7,6,4,1] => ? = 0
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => 0
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [4,5,7,6,3,2,1] => ? = 1
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,4,5,7,6,3,2] => 1
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [2,4,5,7,6,3,1] => ? = 1
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => 0
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [3,4,5,7,6,2,1] => ? = 1
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,5,7,6,1] => ? = 0
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [6,7,5,4,3,2,1] => ? = 0
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 0
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [2,6,7,5,4,3,1] => ? = 0
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [3,6,7,5,4,2,1] => ? = 1
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,6,7,5,4,1] => ? = 0
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [4,6,7,5,3,2,1] => ? = 1
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,5,3,2] => ? = 1
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [2,4,6,7,5,3,1] => ? = 1
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [3,4,6,7,5,2,1] => ? = 1
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,4,6,7,5,1] => ? = 0
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [5,6,7,4,3,2,1] => ? = 1
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,4,3,2] => ? = 1
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [2,5,6,7,4,3,1] => ? = 1
[3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [3,5,6,7,4,2,1] => ? = 1
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,3,5,6,7,4,1] => ? = 1
[4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 1
[4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,4,5,6,7,3,1] => ? = 1
[5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,7,2,1] => ? = 1
[6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 0
[1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,8,7,6,5,4,3,1] => ? = 0
[1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,8,7,6,5,4,2,1] => ? = 0
[1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,3,8,7,6,5,4,2] => ? = 0
[1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [4,8,7,6,5,3,2,1] => ? = 0
[1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,4,8,7,6,5,3,2] => ? = 0
[1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [2,4,8,7,6,5,3,1] => ? = 0
[1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,4,8,7,6,5,2] => ? = 0
[1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [5,8,7,6,4,3,2,1] => ? = 0
[1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,5,8,7,6,4,3,2] => ? = 0
[1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [2,5,8,7,6,4,3,1] => ? = 0
[1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> [3,5,8,7,6,4,2,1] => ? = 1
[1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,3,5,8,7,6,4,2] => ? = 0
[1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,5,8,7,6,4,1] => ? = 0
[1,1,3,1,2] => [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,4,5,8,7,6,3,2] => ? = 1
Description
Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. Let $\pi$ be a permutation. Its total displacement [[St000830]] is $D(\pi) = \sum_i |\pi(i) - i|$, and its absolute length [[St000216]] is the minimal number $T(\pi)$ of transpositions whose product is $\pi$. Finally, let $I(\pi)$ be the number of inversions [[St000018]] of $\pi$. This statistic equals $\left(D(\pi)-T(\pi)-I(\pi)\right)/2$. Diaconis and Graham [1] proved that this statistic is always nonnegative.
Mp00231: Integer compositions bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
St001761: Permutations ⟶ ℤResult quality: 32% values known / values provided: 32%distinct values known / distinct values provided: 67%
Values
[2,1] => [1,1,0,0,1,0]
=> [1,3,2] => [3,1,2] => 1 = 0 + 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [1,4,2,3] => 1 = 0 + 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [2,4,1,3] => 1 = 0 + 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [3,1,2,4] => 1 = 0 + 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [4,1,2,3] => 1 = 0 + 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [1,2,5,3,4] => 1 = 0 + 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [1,3,5,2,4] => 1 = 0 + 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [1,4,2,3,5] => 1 = 0 + 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [1,5,2,3,4] => 1 = 0 + 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [2,3,5,1,4] => 1 = 0 + 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [2,4,1,3,5] => 1 = 0 + 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [2,5,1,3,4] => 1 = 0 + 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => 1 = 0 + 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [3,5,1,2,4] => 2 = 1 + 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => 1 = 0 + 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => 1 = 0 + 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5] => [1,2,3,6,4,5] => 1 = 0 + 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,6,4] => [1,2,4,6,3,5] => 1 = 0 + 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,6] => [1,2,5,3,4,6] => 1 = 0 + 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,1,4,6,5] => [1,2,6,3,4,5] => 1 = 0 + 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,5,6,3] => [1,3,4,6,2,5] => 1 = 0 + 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,5,3,6] => [1,3,5,2,4,6] => 1 = 0 + 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5] => [1,3,6,2,4,5] => 1 = 0 + 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,5,6] => [1,4,2,3,5,6] => 1 = 0 + 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,3,5,6,4] => [1,4,6,2,3,5] => 2 = 1 + 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => [1,5,2,3,4,6] => 1 = 0 + 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => [1,6,2,3,4,5] => 1 = 0 + 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => [2,3,4,6,1,5] => 1 = 0 + 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => [2,3,5,1,4,6] => 1 = 0 + 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5] => [2,3,6,1,4,5] => 1 = 0 + 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => [2,4,1,3,5,6] => 1 = 0 + 1
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4] => [2,4,6,1,3,5] => 2 = 1 + 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => [2,5,1,3,4,6] => 1 = 0 + 1
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,6,5] => [2,6,1,3,4,5] => 1 = 0 + 1
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => [3,1,2,4,5,6] => 1 = 0 + 1
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,4,5,6,3] => [3,4,6,1,2,5] => 2 = 1 + 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => [3,5,1,2,4,6] => 2 = 1 + 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => [3,6,1,2,4,5] => 2 = 1 + 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => [4,1,2,3,5,6] => 1 = 0 + 1
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,2,3,5,6,4] => [4,6,1,2,3,5] => 2 = 1 + 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => [5,1,2,3,4,6] => 1 = 0 + 1
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => [6,1,2,3,4,5] => 1 = 0 + 1
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,5,1,7,6] => [1,2,3,4,7,5,6] => 1 = 0 + 1
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,4,1,6,7,5] => [1,2,3,5,7,4,6] => 1 = 0 + 1
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => [1,2,3,6,4,5,7] => 1 = 0 + 1
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,4,1,5,7,6] => [1,2,3,7,4,5,6] => 1 = 0 + 1
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,1,5,6,7,4] => [1,2,4,5,7,3,6] => 1 = 0 + 1
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => [1,2,4,6,3,5,7] => 1 = 0 + 1
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,7,6] => [1,2,4,7,3,5,6] => 1 = 0 + 1
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => [1,2,5,3,4,6,7] => 1 = 0 + 1
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,1,3,5,4,7,6] => [1,4,7,2,3,5,6] => ? = 1 + 1
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => [1,5,2,3,4,6,7] => ? = 0 + 1
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,1,3,4,6,7,5] => [1,5,7,2,3,4,6] => ? = 1 + 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,3,4,6,5,7] => [1,6,2,3,4,5,7] => ? = 0 + 1
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => [1,7,2,3,4,5,6] => ? = 0 + 1
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,7,2] => [2,3,4,5,7,1,6] => ? = 0 + 1
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,6,2,7] => [2,3,4,6,1,5,7] => ? = 0 + 1
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,3,4,5,2,7,6] => [2,3,4,7,1,5,6] => ? = 0 + 1
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,3,4,5,2,6,7] => [2,3,5,1,4,6,7] => ? = 0 + 1
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,3,4,2,6,7,5] => [2,3,5,7,1,4,6] => ? = 1 + 1
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5,7] => [2,3,6,1,4,5,7] => ? = 0 + 1
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,3,4,2,5,7,6] => [2,3,7,1,4,5,6] => ? = 0 + 1
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,3,4,2,5,6,7] => [2,4,1,3,5,6,7] => ? = 0 + 1
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,5,6,7,4] => [2,4,5,7,1,3,6] => ? = 1 + 1
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,5,6,4,7] => [2,4,6,1,3,5,7] => ? = 1 + 1
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,7,6] => [2,4,7,1,3,5,6] => ? = 1 + 1
[2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,5,4,6,7] => [2,5,1,3,4,6,7] => ? = 0 + 1
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,2,4,6,7,5] => [2,5,7,1,3,4,6] => ? = 1 + 1
[2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2,4,6,5,7] => [2,6,1,3,4,5,7] => ? = 0 + 1
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,3,2,4,5,7,6] => [2,7,1,3,4,5,6] => ? = 0 + 1
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,3,2,4,5,6,7] => [3,1,2,4,5,6,7] => ? = 0 + 1
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,6,7,3] => [3,4,5,7,1,2,6] => ? = 1 + 1
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,2,4,5,6,3,7] => [3,4,6,1,2,5,7] => ? = 1 + 1
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,2,4,5,3,7,6] => [3,4,7,1,2,5,6] => ? = 1 + 1
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,2,4,5,3,6,7] => [3,5,1,2,4,6,7] => ? = 1 + 1
[3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,6,7,5] => [3,5,7,1,2,4,6] => ? = 1 + 1
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5,7] => [3,6,1,2,4,5,7] => ? = 1 + 1
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,2,4,3,5,7,6] => [3,7,1,2,4,5,6] => ? = 1 + 1
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,2,4,3,5,6,7] => [4,1,2,3,5,6,7] => ? = 0 + 1
[4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,2,3,5,6,7,4] => [4,5,7,1,2,3,6] => ? = 1 + 1
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,5,6,4,7] => [4,6,1,2,3,5,7] => ? = 1 + 1
[4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6] => [4,7,1,2,3,5,6] => ? = 1 + 1
[4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => ? = 0 + 1
[5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,6,7,5] => [5,7,1,2,3,4,6] => ? = 1 + 1
[5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => ? = 0 + 1
[6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => ? = 0 + 1
[1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,5,6,1,8,7] => [1,2,3,4,5,8,6,7] => ? = 0 + 1
[1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,4,5,1,7,8,6] => [1,2,3,4,6,8,5,7] => ? = 0 + 1
[1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,5,1,7,6,8] => [1,2,3,4,7,5,6,8] => ? = 0 + 1
[1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,6,7,8,5] => [1,2,3,5,6,8,4,7] => ? = 0 + 1
[1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,4,1,6,7,5,8] => [1,2,3,5,7,4,6,8] => ? = 0 + 1
[1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5,8,7] => [1,2,3,5,8,4,6,7] => ? = 0 + 1
[1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,3,4,1,5,7,6,8] => [1,2,3,7,4,5,6,8] => ? = 0 + 1
[1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,1,5,6,7,8,4] => [1,2,4,5,6,8,3,7] => ? = 0 + 1
[1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,3,1,5,6,7,4,8] => [1,2,4,5,7,3,6,8] => ? = 0 + 1
[1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,6,4,8,7] => ? => ? = 0 + 1
[1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,4,7,8,6] => ? => ? = 1 + 1
[1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,7,6,8] => [1,2,4,7,3,5,6,8] => ? = 0 + 1
[1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1,5,4,6,8,7] => ? => ? = 0 + 1
[1,1,3,1,2] => [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,1,4,6,7,5,8] => [1,2,5,7,3,4,6,8] => ? = 1 + 1
Description
The maximal multiplicity of a letter in a reduced word of a permutation. For example, the permutation $3421$ has the reduced word $s_2 s_1 s_2 s_3 s_2$, where $s_2$ appears three times.
Mp00231: Integer compositions bounce pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00024: Dyck paths to 321-avoiding permutationPermutations
St001549: Permutations ⟶ ℤResult quality: 29% values known / values provided: 29%distinct values known / distinct values provided: 67%
Values
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => 0
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 0
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1,2,4] => 0
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => 0
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,2,5,3,4] => 0
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,4] => 0
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,4,2,3,5] => 0
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,3] => 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 0
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,3,5] => 0
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1,2,5,3] => 0
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => 0
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => 0
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,2,3,6,4,5] => 0
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,2,6,3,4,5] => 0
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,2,5,3,4,6] => 0
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,2,5,3,6,4] => 0
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,5] => 0
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,2,3,4,6] => 0
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,3,6,4] => 0
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,4,2,3,6,5] => 0
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,5,2,6,3,4] => 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,4,2,6,3,5] => 0
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,2,5,3,6] => 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => 0
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => 0
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [5,1,2,3,6,4] => 0
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,1,2,3,6,5] => 0
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [5,1,2,6,3,4] => 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [4,1,2,6,3,5] => 0
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => 0
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4,6] => 0
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [5,1,6,2,3,4] => 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,6,2,3,5] => 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [4,1,5,2,3,6] => 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4,6] => 0
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [4,1,5,2,6,3] => 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,5,2,6,4] => 0
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,4,2,6,5] => 0
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,2,3,4,7,5,6] => 0
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,2,3,7,4,5,6] => 0
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,2,3,6,4,5,7] => 0
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,2,3,6,4,7,5] => 0
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,2,7,3,4,5,6] => 0
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,2,6,3,4,5,7] => 0
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,2,6,3,4,7,5] => 0
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [1,2,5,3,4,7,6] => 0
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,7,2,3,4,5,6] => ? = 0
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,5,7] => ? = 0
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,6,2,3,4,7,5] => ? = 0
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,5,2,3,4,7,6] => ? = 0
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,6,2,3,7,4,5] => ? = 1
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,5,2,3,7,4,6] => ? = 0
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,5,2,3,6,4,7] => ? = 0
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,6,2,7,3,4,5] => ? = 1
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,5,2,7,3,4,6] => ? = 1
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,5,2,6,3,4,7] => ? = 1
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,5,2,6,3,7,4] => ? = 1
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 0
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => ? = 0
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [6,1,2,3,4,7,5] => ? = 0
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [5,1,2,3,4,7,6] => ? = 0
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [6,1,2,3,7,4,5] => ? = 1
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [5,1,2,3,7,4,6] => ? = 0
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [5,1,2,3,6,4,7] => ? = 0
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [4,1,2,3,6,5,7] => ? = 0
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [6,1,2,7,3,4,5] => ? = 1
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [5,1,2,7,3,4,6] => ? = 1
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [5,1,2,6,3,4,7] => ? = 1
[2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [4,1,2,6,3,5,7] => ? = 0
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [5,1,2,6,3,7,4] => ? = 1
[2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [4,1,2,6,3,7,5] => ? = 0
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [4,1,2,5,3,7,6] => ? = 0
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4,7,6] => ? = 0
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [6,1,7,2,3,4,5] => ? = 1
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [5,1,7,2,3,4,6] => ? = 1
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [5,1,6,2,3,4,7] => ? = 1
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [4,1,6,2,3,5,7] => ? = 1
[3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [5,1,6,2,3,7,4] => ? = 1
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [4,1,6,2,3,7,5] => ? = 1
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [4,1,5,2,3,7,6] => ? = 1
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4,7,6] => ? = 0
[4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [5,1,6,2,7,3,4] => ? = 1
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [4,1,6,2,7,3,5] => ? = 1
[4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [4,1,5,2,7,3,6] => ? = 1
[4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 0
[5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [4,1,5,2,6,3,7] => ? = 1
[5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,5,2,6,4,7] => ? = 0
[6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [3,1,4,2,6,5,7] => ? = 0
[1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,2,3,4,5,8,6,7] => ? = 0
[1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,2,3,4,8,5,6,7] => ? = 0
[1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,2,3,4,7,5,6,8] => ? = 0
[1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,2,3,8,4,5,6,7] => ? = 0
[1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,1,0,0,0,0]
=> [1,2,3,7,4,5,6,8] => ? = 0
[1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0]
=> [1,2,3,7,4,5,8,6] => ? = 0
[1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,1,0,0,0,0]
=> [1,2,3,6,4,8,5,7] => ? = 0
[1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,2,8,3,4,5,6,7] => ? = 0
Description
The number of restricted non-inversions between exceedances. This is for a permutation $\sigma$ of length $n$ given by $$\operatorname{nie}(\sigma) = \#\{1 \leq i, j \leq n \mid i < j < \sigma(i) < \sigma(j) \}.$$
Mp00231: Integer compositions bounce pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00024: Dyck paths to 321-avoiding permutationPermutations
St000034: Permutations ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 67%
Values
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => 0
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 0
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1,2,4] => 0
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => 0
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,2,5,3,4] => 0
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,4] => 0
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,4,2,3,5] => 0
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,3] => 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 0
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,3,5] => 0
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1,2,5,3] => 0
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => 0
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => 0
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,2,3,6,4,5] => 0
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,2,6,3,4,5] => 0
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,2,5,3,4,6] => 0
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,2,5,3,6,4] => 0
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,5] => 0
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,2,3,4,6] => 0
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,3,6,4] => 0
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,4,2,3,6,5] => 0
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,5,2,6,3,4] => 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,4,2,6,3,5] => 0
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,2,5,3,6] => 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => 0
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => 0
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [5,1,2,3,6,4] => 0
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,1,2,3,6,5] => 0
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [5,1,2,6,3,4] => 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [4,1,2,6,3,5] => 0
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => 0
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4,6] => 0
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [5,1,6,2,3,4] => 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,6,2,3,5] => 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [4,1,5,2,3,6] => 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4,6] => 0
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [4,1,5,2,6,3] => 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,5,2,6,4] => 0
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,4,2,6,5] => 0
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,2,3,4,7,5,6] => ? = 0
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,2,3,7,4,5,6] => ? = 0
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,2,3,6,4,5,7] => ? = 0
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,2,3,6,4,7,5] => ? = 0
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,2,7,3,4,5,6] => ? = 0
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,2,6,3,4,5,7] => ? = 0
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,2,6,3,4,7,5] => ? = 0
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [1,2,5,3,4,7,6] => ? = 0
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,2,6,3,7,4,5] => ? = 1
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [1,2,5,3,7,4,6] => ? = 0
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,2,5,3,6,4,7] => ? = 0
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,7,2,3,4,5,6] => ? = 0
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,5,7] => ? = 0
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,6,2,3,4,7,5] => ? = 0
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,5,2,3,4,7,6] => ? = 0
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,6,2,3,7,4,5] => ? = 1
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,5,2,3,7,4,6] => ? = 0
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,5,2,3,6,4,7] => ? = 0
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,4,2,3,6,5,7] => ? = 0
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,6,2,7,3,4,5] => ? = 1
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,5,2,7,3,4,6] => ? = 1
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,5,2,6,3,4,7] => ? = 1
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,4,2,6,3,5,7] => ? = 0
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,5,2,6,3,7,4] => ? = 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,4,2,6,3,7,5] => ? = 0
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,4,2,5,3,7,6] => ? = 0
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 0
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => ? = 0
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [6,1,2,3,4,7,5] => ? = 0
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [5,1,2,3,4,7,6] => ? = 0
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [6,1,2,3,7,4,5] => ? = 1
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [5,1,2,3,7,4,6] => ? = 0
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [5,1,2,3,6,4,7] => ? = 0
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [4,1,2,3,6,5,7] => ? = 0
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [6,1,2,7,3,4,5] => ? = 1
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [5,1,2,7,3,4,6] => ? = 1
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [5,1,2,6,3,4,7] => ? = 1
[2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [4,1,2,6,3,5,7] => ? = 0
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [5,1,2,6,3,7,4] => ? = 1
[2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [4,1,2,6,3,7,5] => ? = 0
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [4,1,2,5,3,7,6] => ? = 0
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4,7,6] => ? = 0
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [6,1,7,2,3,4,5] => ? = 1
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [5,1,7,2,3,4,6] => ? = 1
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [5,1,6,2,3,4,7] => ? = 1
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [4,1,6,2,3,5,7] => ? = 1
[3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [5,1,6,2,3,7,4] => ? = 1
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [4,1,6,2,3,7,5] => ? = 1
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [4,1,5,2,3,7,6] => ? = 1
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4,7,6] => ? = 0
Description
The maximum defect over any reduced expression for a permutation and any subexpression.
Matching statistic: St001181
Mp00231: Integer compositions bounce pathDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
St001181: Dyck paths ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 67%
Values
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1 = 0 + 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1 = 0 + 1
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> ? = 0 + 1
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 0 + 1
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 0 + 1
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 0 + 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> ? = 0 + 1
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 0 + 1
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 0 + 1
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> ? = 0 + 1
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> ? = 0 + 1
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0 + 1
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0 + 1
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 0 + 1
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 0 + 1
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 0 + 1
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 0 + 1
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 1 + 1
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 0 + 1
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 0 + 1
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> ? = 0 + 1
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 1 + 1
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> ? = 0 + 1
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 0 + 1
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 0 + 1
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 0 + 1
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 1 + 1
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 0 + 1
Description
Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra.
Matching statistic: St001266
Mp00231: Integer compositions bounce pathDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
St001266: Dyck paths ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 67%
Values
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1 = 0 + 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1 = 0 + 1
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> ? = 0 + 1
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 0 + 1
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 0 + 1
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 0 + 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> ? = 0 + 1
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 0 + 1
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 0 + 1
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> ? = 0 + 1
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> ? = 0 + 1
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0 + 1
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0 + 1
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 0 + 1
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 0 + 1
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 0 + 1
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 0 + 1
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 1 + 1
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 0 + 1
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 0 + 1
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> ? = 0 + 1
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 1 + 1
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> ? = 0 + 1
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 0 + 1
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 0 + 1
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 0 + 1
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 1 + 1
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 0 + 1
Description
The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra.
The following 36 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001363The Euler characteristic of a graph according to Knill. St001496The number of graphs with the same Laplacian spectrum as the given graph. St000455The second largest eigenvalue of a graph if it is integral. St000322The skewness of a graph. St001307The number of induced stars on four vertices in a graph. St001339The irredundance number of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St000315The number of isolated vertices of a graph. St001578The minimal number of edges to add or remove to make a graph a line graph. St000287The number of connected components of a graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St001765The number of connected components of the friends and strangers graph. St000095The number of triangles of a graph. St000096The number of spanning trees of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000274The number of perfect matchings of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001871The number of triconnected components of a graph. St000286The number of connected components of the complement of a graph. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001570The minimal number of edges to add to make a graph Hamiltonian. St000741The Colin de Verdière graph invariant.