searching the database
Your data matches 41 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001850
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
St001850: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 1
[1,2] => 1
[2,1] => 1
[1,2,3] => 1
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 3
[1,2,3,4] => 1
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 0
[1,4,2,3] => 0
[1,4,3,2] => 3
[2,1,3,4] => 1
[2,1,4,3] => 1
[2,3,1,4] => 0
[2,3,4,1] => 0
[2,4,1,3] => 0
[2,4,3,1] => 0
[3,1,2,4] => 0
[3,1,4,2] => 0
[3,2,1,4] => 3
[3,2,4,1] => 0
[3,4,1,2] => 1
[3,4,2,1] => 0
[4,1,2,3] => 0
[4,1,3,2] => 0
[4,2,1,3] => 0
[4,2,3,1] => 5
[4,3,1,2] => 0
[4,3,2,1] => 7
[1,2,3,4,5] => 1
[1,2,3,5,4] => 1
[1,2,4,3,5] => 1
[1,2,4,5,3] => 0
[1,2,5,3,4] => 0
[1,2,5,4,3] => 3
[1,3,2,4,5] => 1
[1,3,2,5,4] => 1
[1,3,4,2,5] => 0
[1,3,4,5,2] => 0
[1,3,5,2,4] => 0
[1,3,5,4,2] => 0
[1,4,2,3,5] => 0
[1,4,2,5,3] => 0
[1,4,3,2,5] => 3
[1,4,3,5,2] => 0
[1,4,5,2,3] => 1
Description
The number of Hecke atoms of a permutation.
For a permutation z∈Sn, this is the cardinality of the set
{w∈Sn|w−1⋆w=z},
where ⋆ denotes the Demazure product. Note that w↦w−1⋆w is a surjection onto the set of involutions.
Matching statistic: St001570
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> ? = 1
[1,2] => ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,1}
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1}
[1,2,3] => ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {0,1,1,1,3}
[1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,3}
[2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,3}
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,3}
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,3}
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,2,3,4] => ([],4)
=> ([],4)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,2,4,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,2,4] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[2,1,3,4] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1,1,1,1,3,3,5,7}
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,2,3,4,5] => ([],5)
=> ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,3,5,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,3,5] => ([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,3,2,4,5] => ([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[2,1,3,4,5] => ([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
Description
The minimal number of edges to add to make a graph Hamiltonian.
A graph is Hamiltonian if it contains a cycle as a subgraph, which contains all vertices.
Matching statistic: St000175
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000175: Integer partitions ⟶ ℤResult quality: 8% ●values known / values provided: 78%●distinct values known / distinct values provided: 8%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000175: Integer partitions ⟶ ℤResult quality: 8% ●values known / values provided: 78%●distinct values known / distinct values provided: 8%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[2,1] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [3]
=> []
=> ?
=> ? ∊ {0,1,1,1,3}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[2,3,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[3,1,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[3,2,1] => [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,3,4] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,2,4,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,3,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,1,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,1,4,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,4,2,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[4,1,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,1,3] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,1,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,3,4,5] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,3,5,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,2,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,2,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,5,2,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,3,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,3,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,3,1,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,1,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,1,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,1,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,5,3,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,1,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,5,1,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,5,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,4,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,1,5,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,5,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,5,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,4,2,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,2,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,5,2,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,2,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,2,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,4,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,5,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
Description
Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape.
Given a partition λ with r parts, the number of semi-standard Young-tableaux of shape kλ and boxes with values in [r] grows as a polynomial in k. This follows by setting q=1 in (7.105) on page 375 of [1], which yields the polynomial
p(k)=∏i<jk(λj−λi)+j−ij−i.
The statistic of the degree of this polynomial.
For example, the partition (3,2,1,1,1) gives
p(k)=−136(k−3)(2k−3)(k−2)2(k−1)3
which has degree 7 in k. Thus, [3,2,1,1,1]↦7.
This is the same as the number of unordered pairs of different parts, which follows from:
degp(k)=∑i<j{1λj≠λi0λi=λj=∑i<jλj≠λi1
Matching statistic: St000205
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000205: Integer partitions ⟶ ℤResult quality: 8% ●values known / values provided: 78%●distinct values known / distinct values provided: 8%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000205: Integer partitions ⟶ ℤResult quality: 8% ●values known / values provided: 78%●distinct values known / distinct values provided: 8%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[2,1] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [3]
=> []
=> ?
=> ? ∊ {0,1,1,1,3}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[2,3,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[3,1,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[3,2,1] => [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,3,4] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,2,4,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,3,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,1,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,1,4,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,4,2,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[4,1,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,1,3] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,1,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,3,4,5] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,3,5,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,2,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,2,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,5,2,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,3,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,3,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,3,1,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,1,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,1,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,1,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,5,3,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,1,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,5,1,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,5,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,4,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,1,5,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,5,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,5,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,4,2,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,2,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,5,2,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,2,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,2,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,4,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,5,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight.
Given λ count how many ''integer partitions'' w (weight) there are, such that
Pλ,w is non-integral, i.e., w such that the Gelfand-Tsetlin polytope Pλ,w has at least one non-integral vertex.
Matching statistic: St000206
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000206: Integer partitions ⟶ ℤResult quality: 8% ●values known / values provided: 78%●distinct values known / distinct values provided: 8%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000206: Integer partitions ⟶ ℤResult quality: 8% ●values known / values provided: 78%●distinct values known / distinct values provided: 8%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[2,1] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [3]
=> []
=> ?
=> ? ∊ {0,1,1,1,3}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[2,3,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[3,1,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[3,2,1] => [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,3,4] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,2,4,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,3,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,1,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,1,4,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,4,2,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[4,1,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,1,3] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,1,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,3,4,5] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,3,5,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,2,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,2,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,5,2,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,3,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,3,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,3,1,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,1,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,1,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,1,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,5,3,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,1,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,5,1,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,5,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,4,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,1,5,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,5,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,5,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,4,2,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,2,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,5,2,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,2,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,2,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,4,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,5,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight.
Given λ count how many ''integer compositions'' w (weight) there are, such that
Pλ,w is non-integral, i.e., w such that the Gelfand-Tsetlin polytope Pλ,w has at least one non-integral vertex.
See also [[St000205]].
Each value in this statistic is greater than or equal to corresponding value in [[St000205]].
Matching statistic: St000225
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000225: Integer partitions ⟶ ℤResult quality: 8% ●values known / values provided: 78%●distinct values known / distinct values provided: 8%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000225: Integer partitions ⟶ ℤResult quality: 8% ●values known / values provided: 78%●distinct values known / distinct values provided: 8%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[2,1] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [3]
=> []
=> ?
=> ? ∊ {0,1,1,1,3}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[2,3,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[3,1,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[3,2,1] => [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,3,4] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,2,4,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,3,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,1,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,1,4,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,4,2,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[4,1,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,1,3] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,1,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,3,4,5] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,3,5,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,2,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,2,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,5,2,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,3,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,3,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,3,1,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,1,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,1,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,1,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,5,3,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,1,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,5,1,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,5,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,4,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,1,5,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,5,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,5,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,4,2,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,2,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,5,2,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,2,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,2,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,4,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,5,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
Description
Difference between largest and smallest parts in a partition.
Matching statistic: St000749
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000749: Integer partitions ⟶ ℤResult quality: 8% ●values known / values provided: 78%●distinct values known / distinct values provided: 8%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000749: Integer partitions ⟶ ℤResult quality: 8% ●values known / values provided: 78%●distinct values known / distinct values provided: 8%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[2,1] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [3]
=> []
=> ?
=> ? ∊ {0,1,1,1,3}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[2,3,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[3,1,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[3,2,1] => [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,3,4] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,2,4,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,3,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,1,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,1,4,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,4,2,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[4,1,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,1,3] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,1,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,3,4,5] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,3,5,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,2,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,2,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,5,2,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,3,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,3,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,3,1,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,1,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,1,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,1,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,5,3,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,1,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,5,1,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,5,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,4,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,1,5,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,5,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,5,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,4,2,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,2,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,5,2,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,2,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,2,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,4,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,5,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
Description
The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree.
For example, restricting S(6,3) to S8 yields S(5,3)⊕S(6,2) of degrees (number of standard Young tableaux) 28 and 20, none of which are odd. Restricting to S7 yields S(4,3)⊕2S(5,2)⊕S(6,1) of degrees 14, 14 and 6. However, restricting to S6 yields
S(3,3)⊕3S(4,2)⊕3S(5,1)⊕S6 of degrees 5,9,5 and 1. Therefore, the statistic on the partition (6,3) gives 3.
This is related to 2-saturations of Welter's game, see [1, Corollary 1.2].
Matching statistic: St000944
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000944: Integer partitions ⟶ ℤResult quality: 8% ●values known / values provided: 78%●distinct values known / distinct values provided: 8%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000944: Integer partitions ⟶ ℤResult quality: 8% ●values known / values provided: 78%●distinct values known / distinct values provided: 8%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[2,1] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [3]
=> []
=> ?
=> ? ∊ {0,1,1,1,3}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[2,3,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[3,1,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[3,2,1] => [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,3,4] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,2,4,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,3,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,1,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,1,4,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,4,2,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[4,1,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,1,3] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,1,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,3,4,5] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,3,5,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,2,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,2,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,5,2,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,3,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,3,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,3,1,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,1,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,1,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,1,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,5,3,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,1,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,5,1,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,5,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,4,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,1,5,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,5,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,5,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,4,2,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,2,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,5,2,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,2,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,2,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,4,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,5,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
Description
The 3-degree of an integer partition.
For an integer partition λ, this is given by the exponent of 3 in the Gram determinant of the integal Specht module of the symmetric group indexed by λ.
This stupid comment should not be accepted as an edit!
Matching statistic: St001175
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001175: Integer partitions ⟶ ℤResult quality: 8% ●values known / values provided: 78%●distinct values known / distinct values provided: 8%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001175: Integer partitions ⟶ ℤResult quality: 8% ●values known / values provided: 78%●distinct values known / distinct values provided: 8%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[2,1] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [3]
=> []
=> ?
=> ? ∊ {0,1,1,1,3}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[2,3,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[3,1,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[3,2,1] => [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,3,4] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,2,4,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,3,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,1,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,1,4,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,4,2,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[4,1,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,1,3] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,1,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,3,4,5] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,3,5,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,2,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,2,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,5,2,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,3,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,3,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,3,1,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,1,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,1,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,1,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,5,3,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,1,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,5,1,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,5,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,4,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,1,5,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,5,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,5,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,4,2,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,2,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,5,2,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,2,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,2,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,4,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,5,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
Description
The size of a partition minus the hook length of the base cell.
This is, the number of boxes in the diagram of a partition that are neither in the first row nor in the first column.
Matching statistic: St001178
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001178: Integer partitions ⟶ ℤResult quality: 8% ●values known / values provided: 78%●distinct values known / distinct values provided: 8%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001178: Integer partitions ⟶ ℤResult quality: 8% ●values known / values provided: 78%●distinct values known / distinct values provided: 8%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[2,1] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [3]
=> []
=> ?
=> ? ∊ {0,1,1,1,3}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[2,3,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[3,1,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3}
[3,2,1] => [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,3,4] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,2,4,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,3,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,3,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,1,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[2,4,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,1,4,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[3,4,2,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,5,7}
[4,1,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,1,3] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,1,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,3,4,5] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,3,5,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,4,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,2,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,2,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,5,2,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,3,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,3,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,3,1,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,4,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,1,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,3,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,1,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,1,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,4,5,3,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,1,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,5,5,5,7,7,7,9,9,35}
[2,5,1,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,5,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,4,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,1,5,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,5,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,5,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,4,2,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,2,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,5,2,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,2,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,2,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,4,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,5,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
Description
Twelve times the variance of the major index among all standard Young tableaux of a partition.
For a partition λ of n, this variance is given in [1, Proposition 3.2] by
112(n∑k=1i2−∑i,j∈λh2ij),
where the second sum ranges over all cells in λ and hij is the hook length of the cell (i,j)∈λ.
The following 31 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001586The number of odd parts smaller than the largest even part in an integer partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001498The normalised height of a Nakayama algebra with magnitude 1. St000455The second largest eigenvalue of a graph if it is integral. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000661The number of rises of length 3 of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000931The number of occurrences of the pattern UUU in a Dyck path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001141The number of occurrences of hills of size 3 in a Dyck path. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000934The 2-degree of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St001280The number of parts of an integer partition that are at least two. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001541The Gini index of an integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001851The number of Hecke atoms of a signed permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!