Processing math: 100%

edit this statistic or download as text // json
Identifier
Values
[1] => 0
[2] => 0
[1,1] => 0
[3] => 0
[2,1] => 1
[1,1,1] => 0
[4] => 0
[3,1] => 0
[2,2] => 2
[2,1,1] => 0
[1,1,1,1] => 0
[5] => 0
[4,1] => 1
[3,2] => 0
[3,1,1] => 1
[2,2,1] => 0
[2,1,1,1] => 1
[1,1,1,1,1] => 0
[6] => 0
[5,1] => 0
[4,2] => 0
[4,1,1] => 2
[3,3] => 0
[3,2,1] => 1
[3,1,1,1] => 2
[2,2,2] => 0
[2,2,1,1] => 0
[2,1,1,1,1] => 0
[1,1,1,1,1,1] => 0
[7] => 0
[6,1] => 1
[5,2] => 1
[5,1,1] => 0
[4,3] => 1
[4,2,1] => 0
[4,1,1,1] => 3
[3,3,1] => 0
[3,2,2] => 0
[3,2,1,1] => 0
[3,1,1,1,1] => 0
[2,2,2,1] => 1
[2,2,1,1,1] => 1
[2,1,1,1,1,1] => 1
[1,1,1,1,1,1,1] => 0
[8] => 0
[7,1] => 0
[6,2] => 2
[6,1,1] => 0
[5,3] => 2
[5,2,1] => 1
[5,1,1,1] => 0
[4,4] => 2
[4,3,1] => 1
[4,2,2] => 1
[4,2,1,1] => 1
[4,1,1,1,1] => 0
[3,3,2] => 1
[3,3,1,1] => 1
[3,2,2,1] => 1
[3,2,1,1,1] => 1
[3,1,1,1,1,1] => 0
[2,2,2,2] => 2
[2,2,2,1,1] => 2
[2,2,1,1,1,1] => 2
[2,1,1,1,1,1,1] => 0
[1,1,1,1,1,1,1,1] => 0
[9] => 0
[8,1] => 1
[7,2] => 0
[7,1,1] => 1
[6,3] => 3
[6,2,1] => 0
[6,1,1,1] => 1
[5,4] => 3
[5,3,1] => 2
[5,2,2] => 2
[5,2,1,1] => 0
[5,1,1,1,1] => 1
[4,4,1] => 2
[4,3,2] => 2
[4,3,1,1] => 2
[4,2,2,1] => 2
[4,2,1,1,1] => 0
[4,1,1,1,1,1] => 1
[3,3,3] => 2
[3,3,2,1] => 2
[3,3,1,1,1] => 2
[3,2,2,2] => 2
[3,2,2,1,1] => 2
[3,2,1,1,1,1] => 0
[3,1,1,1,1,1,1] => 1
[2,2,2,2,1] => 3
[2,2,2,1,1,1] => 3
[2,2,1,1,1,1,1] => 0
[2,1,1,1,1,1,1,1] => 1
[1,1,1,1,1,1,1,1,1] => 0
[10] => 0
[9,1] => 0
[8,2] => 0
[8,1,1] => 2
[7,3] => 0
>>> Load all 287 entries. <<<
[7,2,1] => 1
[7,1,1,1] => 2
[6,4] => 4
[6,3,1] => 0
[6,2,2] => 0
[6,2,1,1] => 1
[6,1,1,1,1] => 2
[5,5] => 4
[5,4,1] => 3
[5,3,2] => 3
[5,3,1,1] => 0
[5,2,2,1] => 0
[5,2,1,1,1] => 1
[5,1,1,1,1,1] => 2
[4,4,2] => 3
[4,4,1,1] => 3
[4,3,3] => 3
[4,3,2,1] => 3
[4,3,1,1,1] => 0
[4,2,2,2] => 3
[4,2,2,1,1] => 0
[4,2,1,1,1,1] => 1
[4,1,1,1,1,1,1] => 2
[3,3,3,1] => 3
[3,3,2,2] => 3
[3,3,2,1,1] => 3
[3,3,1,1,1,1] => 0
[3,2,2,2,1] => 3
[3,2,2,1,1,1] => 0
[3,2,1,1,1,1,1] => 1
[3,1,1,1,1,1,1,1] => 2
[2,2,2,2,2] => 4
[2,2,2,2,1,1] => 4
[2,2,2,1,1,1,1] => 0
[2,2,1,1,1,1,1,1] => 0
[2,1,1,1,1,1,1,1,1] => 0
[1,1,1,1,1,1,1,1,1,1] => 0
[11] => 0
[10,1] => 1
[9,2] => 1
[9,1,1] => 0
[8,3] => 1
[8,2,1] => 0
[8,1,1,1] => 3
[7,4] => 0
[7,3,1] => 1
[7,2,2] => 0
[7,2,1,1] => 2
[7,1,1,1,1] => 3
[6,5] => 5
[6,4,1] => 0
[6,3,2] => 1
[6,3,1,1] => 1
[6,2,2,1] => 1
[6,2,1,1,1] => 2
[6,1,1,1,1,1] => 3
[5,5,1] => 4
[5,4,2] => 4
[5,4,1,1] => 0
[5,3,3] => 4
[5,3,2,1] => 1
[5,3,1,1,1] => 1
[5,2,2,2] => 0
[5,2,2,1,1] => 1
[5,2,1,1,1,1] => 2
[5,1,1,1,1,1,1] => 3
[4,4,3] => 4
[4,4,2,1] => 4
[4,4,1,1,1] => 0
[4,3,3,1] => 4
[4,3,2,2] => 4
[4,3,2,1,1] => 1
[4,3,1,1,1,1] => 1
[4,2,2,2,1] => 0
[4,2,2,1,1,1] => 1
[4,2,1,1,1,1,1] => 2
[4,1,1,1,1,1,1,1] => 3
[3,3,3,2] => 4
[3,3,3,1,1] => 4
[3,3,2,2,1] => 4
[3,3,2,1,1,1] => 1
[3,3,1,1,1,1,1] => 0
[3,2,2,2,2] => 4
[3,2,2,2,1,1] => 0
[3,2,2,1,1,1,1] => 1
[3,2,1,1,1,1,1,1] => 0
[3,1,1,1,1,1,1,1,1] => 0
[2,2,2,2,2,1] => 5
[2,2,2,2,1,1,1] => 0
[2,2,2,1,1,1,1,1] => 1
[2,2,1,1,1,1,1,1,1] => 1
[2,1,1,1,1,1,1,1,1,1] => 1
[1,1,1,1,1,1,1,1,1,1,1] => 0
[12] => 0
[11,1] => 0
[10,2] => 2
[10,1,1] => 0
[9,3] => 2
[9,2,1] => 1
[9,1,1,1] => 0
[8,4] => 0
[8,3,1] => 0
[8,2,2] => 1
[8,2,1,1] => 0
[8,1,1,1,1] => 4
[7,5] => 0
[7,4,1] => 1
[7,3,2] => 0
[7,3,1,1] => 2
[7,2,2,1] => 0
[7,2,1,1,1] => 3
[7,1,1,1,1,1] => 4
[6,6] => 6
[6,5,1] => 0
[6,4,2] => 0
[6,4,1,1] => 1
[6,3,3] => 2
[6,3,2,1] => 2
[6,3,1,1,1] => 2
[6,2,2,2] => 0
[6,2,2,1,1] => 2
[6,2,1,1,1,1] => 3
[6,1,1,1,1,1,1] => 4
[5,5,2] => 5
[5,5,1,1] => 0
[5,4,3] => 5
[5,4,2,1] => 0
[5,4,1,1,1] => 1
[5,3,3,1] => 2
[5,3,2,2] => 0
[5,3,2,1,1] => 2
[5,3,1,1,1,1] => 2
[5,2,2,2,1] => 1
[5,2,2,1,1,1] => 2
[5,2,1,1,1,1,1] => 3
[5,1,1,1,1,1,1,1] => 4
[4,4,4] => 5
[4,4,3,1] => 5
[4,4,2,2] => 5
[4,4,2,1,1] => 0
[4,4,1,1,1,1] => 0
[4,3,3,2] => 5
[4,3,3,1,1] => 2
[4,3,2,2,1] => 0
[4,3,2,1,1,1] => 2
[4,3,1,1,1,1,1] => 0
[4,2,2,2,2] => 0
[4,2,2,2,1,1] => 1
[4,2,2,1,1,1,1] => 2
[4,2,1,1,1,1,1,1] => 0
[4,1,1,1,1,1,1,1,1] => 0
[3,3,3,3] => 5
[3,3,3,2,1] => 5
[3,3,3,1,1,1] => 2
[3,3,2,2,2] => 5
[3,3,2,2,1,1] => 0
[3,3,2,1,1,1,1] => 0
[3,3,1,1,1,1,1,1] => 1
[3,2,2,2,2,1] => 0
[3,2,2,2,1,1,1] => 1
[3,2,2,1,1,1,1,1] => 0
[3,2,1,1,1,1,1,1,1] => 1
[3,1,1,1,1,1,1,1,1,1] => 0
[2,2,2,2,2,2] => 6
[2,2,2,2,2,1,1] => 0
[2,2,2,2,1,1,1,1] => 0
[2,2,2,1,1,1,1,1,1] => 2
[2,2,1,1,1,1,1,1,1,1] => 2
[2,1,1,1,1,1,1,1,1,1,1] => 0
[1,1,1,1,1,1,1,1,1,1,1,1] => 0
[5,4,3,1] => 0
[5,4,2,2] => 1
[5,4,2,1,1] => 1
[5,3,3,2] => 0
[5,3,3,1,1] => 3
[5,3,2,2,1] => 1
[4,4,3,2] => 6
[4,4,3,1,1] => 0
[4,4,2,2,1] => 1
[4,3,3,2,1] => 0
[5,4,3,2] => 1
[5,4,3,1,1] => 1
[5,4,2,2,1] => 2
[5,3,3,2,1] => 1
[4,4,3,2,1] => 1
[5,4,3,2,1] => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree.
For example, restricting S(6,3) to S8 yields S(5,3)S(6,2) of degrees (number of standard Young tableaux) 28 and 20, none of which are odd. Restricting to S7 yields S(4,3)2S(5,2)S(6,1) of degrees 14, 14 and 6. However, restricting to S6 yields
S(3,3)3S(4,2)3S(5,1)S6 of degrees 5,9,5 and 1. Therefore, the statistic on the partition (6,3) gives 3.
This is related to 2-saturations of Welter's game, see [1, Corollary 1.2].
References
[1] Irie, Y. p-Saturations of Welter's Game and the Irreducible Representations of Symmetric Groups arXiv:1604.07214
Code
def branching_symmetric_group(la, p):
    """
    Return a dictionary from partitions to multiplicities.
    """
    la = Partition(la)
    l = {la: 1}
    for i in range(la.size()-p):
        l_new = dict()
        for mu in l:
            for r, _ in mu.removable_cells():
                nu = mu.remove_cell(r)
                l_new[nu] = l_new.get(nu, 0) + l[mu]
        l = l_new
    return l

def statistic(la):
    """Return the largest number such that the restriction of the
    irreducible representation corresponding to la has a component
    relative prime to 2.
    """
    la = Partition(la)    
    for m in range(la.size(), 0, -1):
        if any(gcd(StandardTableaux(mu).cardinality(), 2) == 1
               for mu in branching_symmetric_group(la, m)):
            return la.size()-m
Created
Apr 05, 2017 at 11:28 by Martin Rubey
Updated
Sep 14, 2018 at 18:56 by Martin Rubey