*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000749

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree.

For example, restricting $S_{(6,3)}$ to $\mathfrak S_8$ yields $$S_{(5,3)}\oplus S_{(6,2)}$$ of degrees (number of standard Young tableaux) 28 and 20, none of which are odd.  Restricting to $\mathfrak S_7$ yields $$S_{(4,3)}\oplus 2S_{(5,2)}\oplus S_{(6,1)}$$ of degrees 14, 14 and 6.  However, restricting to $\mathfrak S_6$ yields
$$S_{(3,3)}\oplus 3S_{(4,2)}\oplus 3S_{(5,1)}\oplus S_6$$ of degrees 5,9,5 and 1.  Therefore, the statistic on the partition $(6,3)$ gives 3.

This is related to $2$-saturations of Welter's game, see [1, Corollary 1.2].

-----------------------------------------------------------------------------
References: [1]   Irie, Y. p-Saturations of Welter's Game and the Irreducible Representations of Symmetric Groups [[arXiv:1604.07214]]

-----------------------------------------------------------------------------
Code:
def branching_symmetric_group(la, p):
    """
    Return a dictionary from partitions to multiplicities.
    """
    la = Partition(la)
    l = {la: 1}
    for i in range(la.size()-p):
        l_new = dict()
        for mu in l:
            for r, _ in mu.removable_cells():
                nu = mu.remove_cell(r)
                l_new[nu] = l_new.get(nu, 0) + l[mu]
        l = l_new
    return l

def statistic(la):
    """Return the largest number such that the restriction of the
    irreducible representation corresponding to la has a component
    relative prime to 2.
    """
    la = Partition(la)    
    for m in range(la.size(), 0, -1):
        if any(gcd(StandardTableaux(mu).cardinality(), 2) == 1
               for mu in branching_symmetric_group(la, m)):
            return la.size()-m

-----------------------------------------------------------------------------
Statistic values:

[1]                       => 0
[2]                       => 0
[1,1]                     => 0
[3]                       => 0
[2,1]                     => 1
[1,1,1]                   => 0
[4]                       => 0
[3,1]                     => 0
[2,2]                     => 2
[2,1,1]                   => 0
[1,1,1,1]                 => 0
[5]                       => 0
[4,1]                     => 1
[3,2]                     => 0
[3,1,1]                   => 1
[2,2,1]                   => 0
[2,1,1,1]                 => 1
[1,1,1,1,1]               => 0
[6]                       => 0
[5,1]                     => 0
[4,2]                     => 0
[4,1,1]                   => 2
[3,3]                     => 0
[3,2,1]                   => 1
[3,1,1,1]                 => 2
[2,2,2]                   => 0
[2,2,1,1]                 => 0
[2,1,1,1,1]               => 0
[1,1,1,1,1,1]             => 0
[7]                       => 0
[6,1]                     => 1
[5,2]                     => 1
[5,1,1]                   => 0
[4,3]                     => 1
[4,2,1]                   => 0
[4,1,1,1]                 => 3
[3,3,1]                   => 0
[3,2,2]                   => 0
[3,2,1,1]                 => 0
[3,1,1,1,1]               => 0
[2,2,2,1]                 => 1
[2,2,1,1,1]               => 1
[2,1,1,1,1,1]             => 1
[1,1,1,1,1,1,1]           => 0
[8]                       => 0
[7,1]                     => 0
[6,2]                     => 2
[6,1,1]                   => 0
[5,3]                     => 2
[5,2,1]                   => 1
[5,1,1,1]                 => 0
[4,4]                     => 2
[4,3,1]                   => 1
[4,2,2]                   => 1
[4,2,1,1]                 => 1
[4,1,1,1,1]               => 0
[3,3,2]                   => 1
[3,3,1,1]                 => 1
[3,2,2,1]                 => 1
[3,2,1,1,1]               => 1
[3,1,1,1,1,1]             => 0
[2,2,2,2]                 => 2
[2,2,2,1,1]               => 2
[2,2,1,1,1,1]             => 2
[2,1,1,1,1,1,1]           => 0
[1,1,1,1,1,1,1,1]         => 0
[9]                       => 0
[8,1]                     => 1
[7,2]                     => 0
[7,1,1]                   => 1
[6,3]                     => 3
[6,2,1]                   => 0
[6,1,1,1]                 => 1
[5,4]                     => 3
[5,3,1]                   => 2
[5,2,2]                   => 2
[5,2,1,1]                 => 0
[5,1,1,1,1]               => 1
[4,4,1]                   => 2
[4,3,2]                   => 2
[4,3,1,1]                 => 2
[4,2,2,1]                 => 2
[4,2,1,1,1]               => 0
[4,1,1,1,1,1]             => 1
[3,3,3]                   => 2
[3,3,2,1]                 => 2
[3,3,1,1,1]               => 2
[3,2,2,2]                 => 2
[3,2,2,1,1]               => 2
[3,2,1,1,1,1]             => 0
[3,1,1,1,1,1,1]           => 1
[2,2,2,2,1]               => 3
[2,2,2,1,1,1]             => 3
[2,2,1,1,1,1,1]           => 0
[2,1,1,1,1,1,1,1]         => 1
[1,1,1,1,1,1,1,1,1]       => 0
[10]                      => 0
[9,1]                     => 0
[8,2]                     => 0
[8,1,1]                   => 2
[7,3]                     => 0
[7,2,1]                   => 1
[7,1,1,1]                 => 2
[6,4]                     => 4
[6,3,1]                   => 0
[6,2,2]                   => 0
[6,2,1,1]                 => 1
[6,1,1,1,1]               => 2
[5,5]                     => 4
[5,4,1]                   => 3
[5,3,2]                   => 3
[5,3,1,1]                 => 0
[5,2,2,1]                 => 0
[5,2,1,1,1]               => 1
[5,1,1,1,1,1]             => 2
[4,4,2]                   => 3
[4,4,1,1]                 => 3
[4,3,3]                   => 3
[4,3,2,1]                 => 3
[4,3,1,1,1]               => 0
[4,2,2,2]                 => 3
[4,2,2,1,1]               => 0
[4,2,1,1,1,1]             => 1
[4,1,1,1,1,1,1]           => 2
[3,3,3,1]                 => 3
[3,3,2,2]                 => 3
[3,3,2,1,1]               => 3
[3,3,1,1,1,1]             => 0
[3,2,2,2,1]               => 3
[3,2,2,1,1,1]             => 0
[3,2,1,1,1,1,1]           => 1
[3,1,1,1,1,1,1,1]         => 2
[2,2,2,2,2]               => 4
[2,2,2,2,1,1]             => 4
[2,2,2,1,1,1,1]           => 0
[2,2,1,1,1,1,1,1]         => 0
[2,1,1,1,1,1,1,1,1]       => 0
[1,1,1,1,1,1,1,1,1,1]     => 0
[11]                      => 0
[10,1]                    => 1
[9,2]                     => 1
[9,1,1]                   => 0
[8,3]                     => 1
[8,2,1]                   => 0
[8,1,1,1]                 => 3
[7,4]                     => 0
[7,3,1]                   => 1
[7,2,2]                   => 0
[7,2,1,1]                 => 2
[7,1,1,1,1]               => 3
[6,5]                     => 5
[6,4,1]                   => 0
[6,3,2]                   => 1
[6,3,1,1]                 => 1
[6,2,2,1]                 => 1
[6,2,1,1,1]               => 2
[6,1,1,1,1,1]             => 3
[5,5,1]                   => 4
[5,4,2]                   => 4
[5,4,1,1]                 => 0
[5,3,3]                   => 4
[5,3,2,1]                 => 1
[5,3,1,1,1]               => 1
[5,2,2,2]                 => 0
[5,2,2,1,1]               => 1
[5,2,1,1,1,1]             => 2
[5,1,1,1,1,1,1]           => 3
[4,4,3]                   => 4
[4,4,2,1]                 => 4
[4,4,1,1,1]               => 0
[4,3,3,1]                 => 4
[4,3,2,2]                 => 4
[4,3,2,1,1]               => 1
[4,3,1,1,1,1]             => 1
[4,2,2,2,1]               => 0
[4,2,2,1,1,1]             => 1
[4,2,1,1,1,1,1]           => 2
[4,1,1,1,1,1,1,1]         => 3
[3,3,3,2]                 => 4
[3,3,3,1,1]               => 4
[3,3,2,2,1]               => 4
[3,3,2,1,1,1]             => 1
[3,3,1,1,1,1,1]           => 0
[3,2,2,2,2]               => 4
[3,2,2,2,1,1]             => 0
[3,2,2,1,1,1,1]           => 1
[3,2,1,1,1,1,1,1]         => 0
[3,1,1,1,1,1,1,1,1]       => 0
[2,2,2,2,2,1]             => 5
[2,2,2,2,1,1,1]           => 0
[2,2,2,1,1,1,1,1]         => 1
[2,2,1,1,1,1,1,1,1]       => 1
[2,1,1,1,1,1,1,1,1,1]     => 1
[1,1,1,1,1,1,1,1,1,1,1]   => 0
[12]                      => 0
[11,1]                    => 0
[10,2]                    => 2
[10,1,1]                  => 0
[9,3]                     => 2
[9,2,1]                   => 1
[9,1,1,1]                 => 0
[8,4]                     => 0
[8,3,1]                   => 0
[8,2,2]                   => 1
[8,2,1,1]                 => 0
[8,1,1,1,1]               => 4
[7,5]                     => 0
[7,4,1]                   => 1
[7,3,2]                   => 0
[7,3,1,1]                 => 2
[7,2,2,1]                 => 0
[7,2,1,1,1]               => 3
[7,1,1,1,1,1]             => 4
[6,6]                     => 6
[6,5,1]                   => 0
[6,4,2]                   => 0
[6,4,1,1]                 => 1
[6,3,3]                   => 2
[6,3,2,1]                 => 2
[6,3,1,1,1]               => 2
[6,2,2,2]                 => 0
[6,2,2,1,1]               => 2
[6,2,1,1,1,1]             => 3
[6,1,1,1,1,1,1]           => 4
[5,5,2]                   => 5
[5,5,1,1]                 => 0
[5,4,3]                   => 5
[5,4,2,1]                 => 0
[5,4,1,1,1]               => 1
[5,3,3,1]                 => 2
[5,3,2,2]                 => 0
[5,3,2,1,1]               => 2
[5,3,1,1,1,1]             => 2
[5,2,2,2,1]               => 1
[5,2,2,1,1,1]             => 2
[5,2,1,1,1,1,1]           => 3
[5,1,1,1,1,1,1,1]         => 4
[4,4,4]                   => 5
[4,4,3,1]                 => 5
[4,4,2,2]                 => 5
[4,4,2,1,1]               => 0
[4,4,1,1,1,1]             => 0
[4,3,3,2]                 => 5
[4,3,3,1,1]               => 2
[4,3,2,2,1]               => 0
[4,3,2,1,1,1]             => 2
[4,3,1,1,1,1,1]           => 0
[4,2,2,2,2]               => 0
[4,2,2,2,1,1]             => 1
[4,2,2,1,1,1,1]           => 2
[4,2,1,1,1,1,1,1]         => 0
[4,1,1,1,1,1,1,1,1]       => 0
[3,3,3,3]                 => 5
[3,3,3,2,1]               => 5
[3,3,3,1,1,1]             => 2
[3,3,2,2,2]               => 5
[3,3,2,2,1,1]             => 0
[3,3,2,1,1,1,1]           => 0
[3,3,1,1,1,1,1,1]         => 1
[3,2,2,2,2,1]             => 0
[3,2,2,2,1,1,1]           => 1
[3,2,2,1,1,1,1,1]         => 0
[3,2,1,1,1,1,1,1,1]       => 1
[3,1,1,1,1,1,1,1,1,1]     => 0
[2,2,2,2,2,2]             => 6
[2,2,2,2,2,1,1]           => 0
[2,2,2,2,1,1,1,1]         => 0
[2,2,2,1,1,1,1,1,1]       => 2
[2,2,1,1,1,1,1,1,1,1]     => 2
[2,1,1,1,1,1,1,1,1,1,1]   => 0
[1,1,1,1,1,1,1,1,1,1,1,1] => 0
[5,4,3,1]                 => 0
[5,4,2,2]                 => 1
[5,4,2,1,1]               => 1
[5,3,3,2]                 => 0
[5,3,3,1,1]               => 3
[5,3,2,2,1]               => 1
[4,4,3,2]                 => 6
[4,4,3,1,1]               => 0
[4,4,2,2,1]               => 1
[4,3,3,2,1]               => 0
[5,4,3,2]                 => 1
[5,4,3,1,1]               => 1
[5,4,2,2,1]               => 2
[5,3,3,2,1]               => 1
[4,4,3,2,1]               => 1
[5,4,3,2,1]               => 2

-----------------------------------------------------------------------------
Created: Apr 05, 2017 at 11:28 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Sep 14, 2018 at 18:56 by Martin Rubey