searching the database
Your data matches 35 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001661
(load all 33 compositions to match this statistic)
(load all 33 compositions to match this statistic)
St001661: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 1
[1,2] => 2
[2,1] => 1
[1,2,3] => 4
[1,3,2] => 2
[2,1,3] => 2
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 2
[1,2,3,4] => 8
[1,2,4,3] => 4
[1,3,2,4] => 4
[1,3,4,2] => 2
[1,4,2,3] => 2
[1,4,3,2] => 4
[2,1,3,4] => 4
[2,1,4,3] => 2
[2,3,1,4] => 2
[2,3,4,1] => 1
[2,4,1,3] => 1
[2,4,3,1] => 2
[3,1,2,4] => 2
[3,1,4,2] => 1
[3,2,1,4] => 4
[3,2,4,1] => 2
[3,4,1,2] => 2
[3,4,2,1] => 1
[4,1,2,3] => 1
[4,1,3,2] => 2
[4,2,1,3] => 2
[4,2,3,1] => 4
[4,3,1,2] => 1
[4,3,2,1] => 2
[1,2,3,4,5] => 16
[1,2,3,5,4] => 8
[1,2,4,3,5] => 8
[1,2,4,5,3] => 4
[1,2,5,3,4] => 4
[1,2,5,4,3] => 8
[1,3,2,4,5] => 8
[1,3,2,5,4] => 4
[1,3,4,2,5] => 4
[1,3,4,5,2] => 2
[1,3,5,2,4] => 2
[1,3,5,4,2] => 4
[1,4,2,3,5] => 4
[1,4,2,5,3] => 2
[1,4,3,2,5] => 8
[1,4,3,5,2] => 4
[1,4,5,2,3] => 4
Description
Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation.
Matching statistic: St000511
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000511: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000511: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> []
=> 1
[1,2] => [1,1]
=> [1]
=> 2
[2,1] => [2]
=> []
=> 1
[1,2,3] => [1,1,1]
=> [1,1]
=> 4
[1,3,2] => [2,1]
=> [1]
=> 2
[2,1,3] => [2,1]
=> [1]
=> 2
[2,3,1] => [3]
=> []
=> 1
[3,1,2] => [3]
=> []
=> 1
[3,2,1] => [2,1]
=> [1]
=> 2
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 8
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 4
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 4
[1,3,4,2] => [3,1]
=> [1]
=> 2
[1,4,2,3] => [3,1]
=> [1]
=> 2
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 4
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 4
[2,1,4,3] => [2,2]
=> [2]
=> 2
[2,3,1,4] => [3,1]
=> [1]
=> 2
[2,3,4,1] => [4]
=> []
=> 1
[2,4,1,3] => [4]
=> []
=> 1
[2,4,3,1] => [3,1]
=> [1]
=> 2
[3,1,2,4] => [3,1]
=> [1]
=> 2
[3,1,4,2] => [4]
=> []
=> 1
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 4
[3,2,4,1] => [3,1]
=> [1]
=> 2
[3,4,1,2] => [2,2]
=> [2]
=> 2
[3,4,2,1] => [4]
=> []
=> 1
[4,1,2,3] => [4]
=> []
=> 1
[4,1,3,2] => [3,1]
=> [1]
=> 2
[4,2,1,3] => [3,1]
=> [1]
=> 2
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 4
[4,3,1,2] => [4]
=> []
=> 1
[4,3,2,1] => [2,2]
=> [2]
=> 2
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 16
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 8
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 8
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> 4
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> 4
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 8
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 8
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 4
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> 4
[1,3,4,5,2] => [4,1]
=> [1]
=> 2
[1,3,5,2,4] => [4,1]
=> [1]
=> 2
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> 4
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> 4
[1,4,2,5,3] => [4,1]
=> [1]
=> 2
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> 8
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> 4
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 4
Description
The number of invariant subsets when acting with a permutation of given cycle type.
Matching statistic: St000514
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000514: Integer partitions ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 67%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000514: Integer partitions ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 67%
Values
[1] => [1]
=> []
=> []
=> ? = 1
[1,2] => [1,1]
=> [1]
=> [1]
=> ? ∊ {1,2}
[2,1] => [2]
=> []
=> []
=> ? ∊ {1,2}
[1,2,3] => [1,1,1]
=> [1,1]
=> [2]
=> 2
[1,3,2] => [2,1]
=> [1]
=> [1]
=> ? ∊ {1,1,2,2,4}
[2,1,3] => [2,1]
=> [1]
=> [1]
=> ? ∊ {1,1,2,2,4}
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {1,1,2,2,4}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {1,1,2,2,4}
[3,2,1] => [2,1]
=> [1]
=> [1]
=> ? ∊ {1,1,2,2,4}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [2]
=> 2
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [2]
=> 2
[1,3,4,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,4,4,4,4,4,4,8}
[1,4,2,3] => [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,4,4,4,4,4,4,8}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [2]
=> 2
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [2]
=> 2
[2,1,4,3] => [2,2]
=> [2]
=> [1,1]
=> 2
[2,3,1,4] => [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,4,4,4,4,4,4,8}
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,4,4,4,4,4,4,8}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,4,4,4,4,4,4,8}
[2,4,3,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,4,4,4,4,4,4,8}
[3,1,2,4] => [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,4,4,4,4,4,4,8}
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,4,4,4,4,4,4,8}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [2]
=> 2
[3,2,4,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,4,4,4,4,4,4,8}
[3,4,1,2] => [2,2]
=> [2]
=> [1,1]
=> 2
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,4,4,4,4,4,4,8}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,4,4,4,4,4,4,8}
[4,1,3,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,4,4,4,4,4,4,8}
[4,2,1,3] => [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,4,4,4,4,4,4,8}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [2]
=> 2
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,4,4,4,4,4,4,8}
[4,3,2,1] => [2,2]
=> [2]
=> [1,1]
=> 2
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 4
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [3]
=> 2
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [3]
=> 2
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [2]
=> 2
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [2]
=> 2
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [3]
=> 2
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [3]
=> 2
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [2,1]
=> 4
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [2]
=> 2
[1,3,4,5,2] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,5,2,4] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [2]
=> 2
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [2]
=> 2
[1,4,2,5,3] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [3]
=> 2
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [2]
=> 2
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [2,1]
=> 4
[1,4,5,3,2] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,2,3,4] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [2]
=> 2
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [2]
=> 2
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [3]
=> 2
[1,5,4,2,3] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [2,1]
=> 4
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [3]
=> 2
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [2,1]
=> 4
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [2,1]
=> 4
[2,1,4,5,3] => [3,2]
=> [2]
=> [1,1]
=> 2
[2,1,5,3,4] => [3,2]
=> [2]
=> [1,1]
=> 2
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [2,1]
=> 4
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [2]
=> 2
[2,3,1,5,4] => [3,2]
=> [2]
=> [1,1]
=> 2
[2,3,4,1,5] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,3,5,4,1] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,4,1,3,5] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [2]
=> 2
[2,4,3,5,1] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,4,5,1,3] => [3,2]
=> [2]
=> [1,1]
=> 2
[2,4,5,3,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,5,1,3,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,5,1,4,3] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,5,3,1,4] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [2]
=> 2
[2,5,4,1,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,5,4,3,1] => [3,2]
=> [2]
=> [1,1]
=> 2
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [2]
=> 2
[3,1,2,5,4] => [3,2]
=> [2]
=> [1,1]
=> 2
[3,1,4,2,5] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,1,4,5,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,1,5,2,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,1,5,4,2] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [3]
=> 2
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [2,1]
=> 4
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [2]
=> 2
[3,2,4,5,1] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,2,5,1,4] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [2]
=> 2
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [2,1]
=> 4
[3,4,1,5,2] => [3,2]
=> [2]
=> [1,1]
=> 2
[3,4,2,1,5] => [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,2,5,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,5,1,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,5,2,1] => [3,2]
=> [2]
=> [1,1]
=> 2
[3,5,2,1,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
Description
The number of invariant simple graphs when acting with a permutation of given cycle type.
Matching statistic: St000260
(load all 15 compositions to match this statistic)
(load all 15 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 50%●distinct values known / distinct values provided: 33%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 50%●distinct values known / distinct values provided: 33%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 0 = 1 - 1
[1,2] => [2] => ([],2)
=> ([],2)
=> ? = 2 - 1
[2,1] => [1,1] => ([(0,1)],2)
=> ([],1)
=> 0 = 1 - 1
[1,2,3] => [3] => ([],3)
=> ([],3)
=> ? ∊ {1,2,4} - 1
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[2,1,3] => [1,2] => ([(1,2)],3)
=> ([],2)
=> ? ∊ {1,2,4} - 1
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[3,1,2] => [1,2] => ([(1,2)],3)
=> ([],2)
=> ? ∊ {1,2,4} - 1
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 0 = 1 - 1
[1,2,3,4] => [4] => ([],4)
=> ([],4)
=> ? ∊ {1,1,2,2,2,4,4,4,4,4,4,8} - 1
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,2,2,4,4,4,4,4,4,8} - 1
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,2,2,4,4,4,4,4,4,8} - 1
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0 = 1 - 1
[2,1,3,4] => [1,3] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {1,1,2,2,2,4,4,4,4,4,4,8} - 1
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,2,2,4,4,4,4,4,4,8} - 1
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,2,2,4,4,4,4,4,4,8} - 1
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0 = 1 - 1
[3,1,2,4] => [1,3] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {1,1,2,2,2,4,4,4,4,4,4,8} - 1
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {1,1,2,2,2,4,4,4,4,4,4,8} - 1
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,2,2,4,4,4,4,4,4,8} - 1
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0 = 1 - 1
[4,1,2,3] => [1,3] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {1,1,2,2,2,4,4,4,4,4,4,8} - 1
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {1,1,2,2,2,4,4,4,4,4,4,8} - 1
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {1,1,2,2,2,4,4,4,4,4,4,8} - 1
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0 = 1 - 1
[1,2,3,4,5] => [5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[1,5,2,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,5,3,2,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,5,4,2,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[2,1,3,4,5] => [1,4] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[2,1,3,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,1,4,3,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[2,1,4,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,1,5,3,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[2,1,5,4,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[2,3,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[2,3,1,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[2,3,4,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[2,3,5,1,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[2,3,5,4,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[2,4,1,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[2,4,1,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[2,4,3,1,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[2,4,3,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[2,4,5,1,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[2,4,5,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[2,5,1,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[2,5,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[2,5,3,1,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[2,5,3,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[2,5,4,1,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[2,5,4,3,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[3,1,2,4,5] => [1,4] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[3,1,2,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,1,4,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[3,1,4,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,1,5,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[3,1,5,4,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[3,2,1,4,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[3,2,1,5,4] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[3,2,4,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[3,2,4,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,2,5,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[3,2,5,4,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[3,4,1,2,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[3,4,1,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[3,4,2,1,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[3,4,2,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[3,4,5,1,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
[3,4,5,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[3,5,1,2,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16} - 1
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St001568
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00204: Permutations —LLPS⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001568: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 48%●distinct values known / distinct values provided: 33%
Mp00204: Permutations —LLPS⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001568: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 48%●distinct values known / distinct values provided: 33%
Values
[1] => [1] => [1]
=> []
=> ? = 1
[1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,2}
[2,1] => [2,1] => [2]
=> []
=> ? ∊ {1,2}
[1,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 2
[1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,2,2,4}
[2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,2,2,4}
[2,3,1] => [3,2,1] => [3]
=> []
=> ? ∊ {1,1,2,2,4}
[3,1,2] => [3,2,1] => [3]
=> []
=> ? ∊ {1,1,2,2,4}
[3,2,1] => [3,2,1] => [3]
=> []
=> ? ∊ {1,1,2,2,4}
[1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 2
[1,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 2
[1,3,4,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[1,4,2,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[1,4,3,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[2,1,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 2
[2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,3,1,4] => [3,2,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[2,3,4,1] => [4,2,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[2,4,1,3] => [3,4,1,2] => [2,1,1]
=> [1,1]
=> 2
[2,4,3,1] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[3,1,2,4] => [3,2,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[3,1,4,2] => [4,2,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[3,2,1,4] => [3,2,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[3,2,4,1] => [4,2,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[3,4,1,2] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[3,4,2,1] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[4,1,2,3] => [4,2,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[4,1,3,2] => [4,2,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[4,2,1,3] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[4,2,3,1] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[4,3,1,2] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[4,3,2,1] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[1,2,3,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 2
[1,2,3,5,4] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,4,3,5] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,4,5,3] => [1,2,5,4,3] => [3,1,1]
=> [1,1]
=> 2
[1,2,5,3,4] => [1,2,5,4,3] => [3,1,1]
=> [1,1]
=> 2
[1,2,5,4,3] => [1,2,5,4,3] => [3,1,1]
=> [1,1]
=> 2
[1,3,2,4,5] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,3,2,5,4] => [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,3,4,2,5] => [1,4,3,2,5] => [3,1,1]
=> [1,1]
=> 2
[1,3,4,5,2] => [1,5,3,4,2] => [3,1,1]
=> [1,1]
=> 2
[1,3,5,2,4] => [1,4,5,2,3] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,3,5,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,2,3,5] => [1,4,3,2,5] => [3,1,1]
=> [1,1]
=> 2
[1,4,2,5,3] => [1,5,3,4,2] => [3,1,1]
=> [1,1]
=> 2
[1,4,3,2,5] => [1,4,3,2,5] => [3,1,1]
=> [1,1]
=> 2
[1,4,3,5,2] => [1,5,3,4,2] => [3,1,1]
=> [1,1]
=> 2
[1,4,5,2,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,5,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,2,3,4] => [1,5,3,4,2] => [3,1,1]
=> [1,1]
=> 2
[1,5,2,4,3] => [1,5,3,4,2] => [3,1,1]
=> [1,1]
=> 2
[1,5,3,2,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,3,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,4,2,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,4,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,1,3,4,5] => [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[2,1,3,5,4] => [2,1,3,5,4] => [2,2,1]
=> [2,1]
=> 1
[2,1,4,3,5] => [2,1,4,3,5] => [2,2,1]
=> [2,1]
=> 1
[2,1,4,5,3] => [2,1,5,4,3] => [3,2]
=> [2]
=> 1
[2,1,5,3,4] => [2,1,5,4,3] => [3,2]
=> [2]
=> 1
[2,1,5,4,3] => [2,1,5,4,3] => [3,2]
=> [2]
=> 1
[2,3,1,4,5] => [3,2,1,4,5] => [3,1,1]
=> [1,1]
=> 2
[2,3,1,5,4] => [3,2,1,5,4] => [3,2]
=> [2]
=> 1
[2,3,4,1,5] => [4,2,3,1,5] => [3,1,1]
=> [1,1]
=> 2
[2,3,4,5,1] => [5,2,3,4,1] => [3,1,1]
=> [1,1]
=> 2
[2,3,5,1,4] => [4,2,5,1,3] => [3,1,1]
=> [1,1]
=> 2
[2,3,5,4,1] => [5,2,4,3,1] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,4,1,3,5] => [3,4,1,2,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[2,4,1,5,3] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 2
[2,4,3,1,5] => [4,3,2,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,4,3,5,1] => [5,3,2,4,1] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,4,5,1,3] => [4,5,3,1,2] => [3,1,1]
=> [1,1]
=> 2
[2,4,5,3,1] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,5,1,3,4] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 2
[2,5,1,4,3] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 2
[2,5,3,1,4] => [4,5,3,1,2] => [3,1,1]
=> [1,1]
=> 2
[2,5,3,4,1] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,5,4,1,3] => [4,5,3,1,2] => [3,1,1]
=> [1,1]
=> 2
[2,5,4,3,1] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,1,2,4,5] => [3,2,1,4,5] => [3,1,1]
=> [1,1]
=> 2
[3,1,2,5,4] => [3,2,1,5,4] => [3,2]
=> [2]
=> 1
[3,1,4,2,5] => [4,2,3,1,5] => [3,1,1]
=> [1,1]
=> 2
[3,1,4,5,2] => [5,2,3,4,1] => [3,1,1]
=> [1,1]
=> 2
[3,1,5,2,4] => [4,2,5,1,3] => [3,1,1]
=> [1,1]
=> 2
[3,1,5,4,2] => [5,2,4,3,1] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,2,1,4,5] => [3,2,1,4,5] => [3,1,1]
=> [1,1]
=> 2
[3,2,1,5,4] => [3,2,1,5,4] => [3,2]
=> [2]
=> 1
[3,2,4,1,5] => [4,2,3,1,5] => [3,1,1]
=> [1,1]
=> 2
[3,2,5,4,1] => [5,2,4,3,1] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,1,2,5] => [4,3,2,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,1,5,2] => [5,3,2,4,1] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,2,1,5] => [4,3,2,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,2,5,1] => [5,3,2,4,1] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,5,1,2] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,5,2,1] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,5,1,4,2] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,5,2,4,1] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,5,4,1,2] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
Description
The smallest positive integer that does not appear twice in the partition.
Matching statistic: St001198
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 37%●distinct values known / distinct values provided: 17%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 37%●distinct values known / distinct values provided: 17%
Values
[1] => [1] => [1] => [1,0]
=> ? = 1
[1,2] => [1,2] => [1,2] => [1,0,1,0]
=> 2
[2,1] => [2,1] => [2,1] => [1,1,0,0]
=> ? = 1
[1,2,3] => [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2
[1,3,2] => [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2
[2,1,3] => [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 2
[2,3,1] => [2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {1,1,4}
[3,1,2] => [3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {1,1,4}
[3,2,1] => [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {1,1,4}
[1,2,3,4] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,2,4,3] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,3,4,2] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[2,1,3,4] => [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2
[2,3,4,1] => [2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[2,4,1,3] => [2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2
[2,4,3,1] => [2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[3,1,2,4] => [3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[3,1,4,2] => [3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
[3,2,4,1] => [3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[3,4,1,2] => [3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[3,4,2,1] => [3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[4,1,2,3] => [4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[4,1,3,2] => [4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[4,2,1,3] => [4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[4,2,3,1] => [4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[4,3,1,2] => [4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[1,2,3,4,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,3,5,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,4,3,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,4,5,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,5,3,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,5,4,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,2,4,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,2,5,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,4,2,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,4,5,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,5,2,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,2,3,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,2,5,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,3,2,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,3,5,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,5,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,2,3,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,2,4,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,3,2,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,4,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[2,1,3,4,5] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,1,3,5,4] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,1,4,3,5] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,1,4,5,3] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,1,5,3,4] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,3,1,4,5] => [2,5,1,4,3] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[2,3,1,5,4] => [2,5,1,4,3] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[2,3,4,1,5] => [2,5,4,1,3] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2
[2,3,4,5,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,3,5,1,4] => [2,5,4,1,3] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2
[2,3,5,4,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,4,1,3,5] => [2,5,1,4,3] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[2,4,3,5,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,4,5,3,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,5,3,4,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,5,4,3,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,1,2,4,5] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,1,2,5,4] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,1,4,2,5] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,1,4,5,2] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,1,5,2,4] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,1,5,4,2] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,2,4,5,1] => [3,2,5,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,2,5,4,1] => [3,2,5,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,1,2,5] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,1,5,2] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,2,5,1] => [3,5,2,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,5,1,2] => [3,5,4,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,5,2,1] => [3,5,4,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,5,1,2,4] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,5,1,4,2] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,5,2,4,1] => [3,5,2,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,5,4,1,2] => [3,5,4,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,5,4,2,1] => [3,5,4,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[4,1,2,3,5] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[4,1,2,5,3] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[4,1,3,2,5] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[4,1,3,5,2] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[4,1,5,2,3] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[4,1,5,3,2] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[4,2,1,3,5] => [4,2,1,5,3] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[4,2,1,5,3] => [4,2,1,5,3] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
Description
The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001206
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 37%●distinct values known / distinct values provided: 17%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 37%●distinct values known / distinct values provided: 17%
Values
[1] => [1] => [1] => [1,0]
=> ? = 1
[1,2] => [1,2] => [1,2] => [1,0,1,0]
=> 2
[2,1] => [2,1] => [2,1] => [1,1,0,0]
=> ? = 1
[1,2,3] => [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2
[1,3,2] => [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2
[2,1,3] => [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 2
[2,3,1] => [2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {1,1,4}
[3,1,2] => [3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {1,1,4}
[3,2,1] => [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {1,1,4}
[1,2,3,4] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,2,4,3] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,3,4,2] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[2,1,3,4] => [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2
[2,3,4,1] => [2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[2,4,1,3] => [2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2
[2,4,3,1] => [2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[3,1,2,4] => [3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[3,1,4,2] => [3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
[3,2,4,1] => [3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[3,4,1,2] => [3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[3,4,2,1] => [3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[4,1,2,3] => [4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[4,1,3,2] => [4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[4,2,1,3] => [4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[4,2,3,1] => [4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[4,3,1,2] => [4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,4,4,4,4,4,4,8}
[1,2,3,4,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,3,5,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,4,3,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,4,5,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,5,3,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,5,4,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,2,4,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,2,5,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,4,2,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,4,5,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,5,2,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,2,3,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,2,5,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,3,2,5] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,3,5,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,5,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,2,3,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,2,4,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,3,2,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,4,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[2,1,3,4,5] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,1,3,5,4] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,1,4,3,5] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,1,4,5,3] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,1,5,3,4] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,3,1,4,5] => [2,5,1,4,3] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[2,3,1,5,4] => [2,5,1,4,3] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[2,3,4,1,5] => [2,5,4,1,3] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2
[2,3,4,5,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,3,5,1,4] => [2,5,4,1,3] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2
[2,3,5,4,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,4,1,3,5] => [2,5,1,4,3] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[2,4,3,5,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,4,5,3,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,5,3,4,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,5,4,3,1] => [2,5,4,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,1,2,4,5] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,1,2,5,4] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,1,4,2,5] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,1,4,5,2] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,1,5,2,4] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,1,5,4,2] => [3,1,5,4,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,2,4,5,1] => [3,2,5,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,2,5,4,1] => [3,2,5,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,1,2,5] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,1,5,2] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,2,5,1] => [3,5,2,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,5,1,2] => [3,5,4,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,4,5,2,1] => [3,5,4,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,5,1,2,4] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,5,1,4,2] => [3,5,1,4,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,5,2,4,1] => [3,5,2,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,5,4,1,2] => [3,5,4,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[3,5,4,2,1] => [3,5,4,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[4,1,2,3,5] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[4,1,2,5,3] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[4,1,3,2,5] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[4,1,3,5,2] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[4,1,5,2,3] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[4,1,5,3,2] => [4,1,5,3,2] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[4,2,1,3,5] => [4,2,1,5,3] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[4,2,1,5,3] => [4,2,1,5,3] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
Description
The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.
Matching statistic: St001630
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00252: Permutations —restriction⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001630: Lattices ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 33%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001630: Lattices ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 33%
Values
[1] => [] => ([],0)
=> ?
=> ? = 1
[1,2] => [1] => ([],1)
=> ([],1)
=> ? ∊ {1,2}
[2,1] => [1] => ([],1)
=> ([],1)
=> ? ∊ {1,2}
[1,2,3] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,4}
[1,3,2] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,4}
[2,1,3] => [2,1] => ([],2)
=> ([],1)
=> ? ∊ {1,1,2,2,2,4}
[2,3,1] => [2,1] => ([],2)
=> ([],1)
=> ? ∊ {1,1,2,2,2,4}
[3,1,2] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,4}
[3,2,1] => [2,1] => ([],2)
=> ([],1)
=> ? ∊ {1,1,2,2,2,4}
[1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,2,4,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,2,4] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[1,3,4,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[1,4,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,4,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[2,1,3,4] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[2,1,4,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[2,3,1,4] => [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[2,3,4,1] => [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[2,4,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[2,4,3,1] => [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[3,1,2,4] => [3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[3,1,4,2] => [3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[3,2,1,4] => [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[3,2,4,1] => [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[3,4,1,2] => [3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[3,4,2,1] => [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[4,1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[4,2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[4,2,3,1] => [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[4,3,1,2] => [3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[4,3,2,1] => [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,8}
[1,2,3,4,5] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,2,3,5,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,2,4,3,5] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,2,4,5,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,2,5,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,2,5,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,2,4,5] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,2,5,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,4,2,5] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,4,5,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,5,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,5,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,2,3,5] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,2,5,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,3,2,5] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,3,5,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,5,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,5,3,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,5,2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,3,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,4,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,4,3,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,1,3,4,5] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,3,4,1,5] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[2,3,4,5,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[2,3,5,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[2,4,1,3,5] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[2,4,1,5,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[2,4,5,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[2,5,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[2,5,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[3,1,4,2,5] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[3,1,4,5,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[3,1,5,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[3,4,1,2,5] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,4,1,5,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,4,5,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,5,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[3,5,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,1,2,3,5] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[4,1,2,5,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[4,1,5,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[4,5,1,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[5,1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[5,2,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[5,2,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[5,3,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[5,3,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[5,4,1,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[1,2,3,4,5,6] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,4,6,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,6,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,6,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,3,4,5,2,6] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,4,5,6,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,4,6,5,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,5,2,4,6] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,5,2,6,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,5,6,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,6,4,5,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,6,5,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,4,2,5,3,6] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,4,2,5,6,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,4,2,6,5,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,4,5,2,3,6] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St001878
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> ? = 1
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2}
[2,1] => ([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2}
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,4}
[2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,4}
[2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,4}
[3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,4}
[3,2,1] => ([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,4}
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,4,2,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[4,3,1,2] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[4,3,2,1] => ([],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,8}
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,5,3,4] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,2,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,4,2,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[5,4,1,2,3] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,4,5,6,3] => ([(0,5),(3,4),(4,2),(5,1),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,4,6,3,5] => ([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,5,3,6,4] => ([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,5,6,3,4] => ([(0,5),(3,2),(4,1),(5,3),(5,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,6,3,4,5] => ([(0,5),(3,4),(4,2),(5,1),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2,5,6,4] => ([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2,6,4,5] => ([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,4,2,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,5,2,4,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,2,3,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,2,5,3,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,5,6,3,2] => ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,6,3,5,2] => ([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,5,3,6,4,2] => ([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,5,6,3,4,2] => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,5,6,4,2,3] => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,6,3,4,5,2] => ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St000264
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 17% ●values known / values provided: 19%●distinct values known / distinct values provided: 17%
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 17% ●values known / values provided: 19%●distinct values known / distinct values provided: 17%
Values
[1] => [1,0]
=> [1] => ([],1)
=> ? = 1
[1,2] => [1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> ? ∊ {1,2}
[2,1] => [1,1,0,0]
=> [1,2] => ([],2)
=> ? ∊ {1,2}
[1,2,3] => [1,0,1,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,2,2,2,4}
[1,3,2] => [1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {1,1,2,2,2,4}
[2,1,3] => [1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {1,1,2,2,2,4}
[2,3,1] => [1,1,0,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,2,2,2,4}
[3,1,2] => [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,2,2,2,4}
[3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,2,2,2,4}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,8}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,16}
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,2,3,6,4,5] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,2,3,6,5,4] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,2,4,6,3,5] => [1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,4,5,1,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,2,4,6,5,3] => [1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,4,5,1,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,2,5,6,3,4] => [1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,2,5,6,4,3] => [1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,2,6,3,4,5] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,2,6,3,5,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,2,6,4,3,5] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,2,6,4,5,3] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,2,6,5,3,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,2,6,5,4,3] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,3,2,5,4,6] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,5,6,3,4] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,3,2,5,6,4] => [1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,3,2,6,4,5] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,3,2,6,5,4] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,3,6,2,4,5] => [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,3,6,2,5,4] => [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,3,6,4,2,5] => [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,3,6,4,5,2] => [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,3,6,5,2,4] => [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,3,6,5,4,2] => [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[2,1,3,4,6,5] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [3,4,1,2,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,3,5,6,4] => [1,1,0,0,1,0,1,1,0,1,0,0]
=> [3,4,1,6,2,5] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4
[2,1,3,6,4,5] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[2,1,3,6,5,4] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[2,1,4,3,6,5] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [3,4,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,4,5,6,3] => [1,1,0,0,1,1,0,1,0,1,0,0]
=> [3,4,1,5,2,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[2,1,4,6,3,5] => [1,1,0,0,1,1,0,1,1,0,0,0]
=> [3,4,5,1,2,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,4,6,5,3] => [1,1,0,0,1,1,0,1,1,0,0,0]
=> [3,4,5,1,2,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,5,3,6,4] => [1,1,0,0,1,1,1,0,0,1,0,0]
=> [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[2,1,5,4,6,3] => [1,1,0,0,1,1,1,0,0,1,0,0]
=> [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[2,1,5,6,3,4] => [1,1,0,0,1,1,1,0,1,0,0,0]
=> [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,5,6,4,3] => [1,1,0,0,1,1,1,0,1,0,0,0]
=> [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
The following 25 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001128The exponens consonantiae of a partition. St000284The Plancherel distribution on integer partitions. St000668The least common multiple of the parts of the partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000933The number of multipartitions of sizes given by an integer partition. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000460The hook length of the last cell along the main diagonal of an integer partition. St000474Dyson's crank of a partition. St000667The greatest common divisor of the parts of the partition. St000997The even-odd crank of an integer partition. St001571The Cartan determinant of the integer partition. St000454The largest eigenvalue of a graph if it is integral. St000402Half the size of the symmetry class of a permutation. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000455The second largest eigenvalue of a graph if it is integral. St001877Number of indecomposable injective modules with projective dimension 2. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001621The number of atoms of a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!