edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[2]=>2 [1,1]=>2 [3]=>2 [2,1]=>4 [1,1,1]=>8 [4]=>4 [3,1]=>4 [2,2]=>16 [2,1,1]=>16 [1,1,1,1]=>64 [5]=>4 [4,1]=>8 [3,2]=>8 [3,1,1]=>16 [2,2,1]=>64 [2,1,1,1]=>128 [1,1,1,1,1]=>1024 [6]=>8 [5,1]=>8 [4,2]=>32 [4,1,1]=>32 [3,3]=>32 [3,2,1]=>32 [3,1,1,1]=>128 [2,2,2]=>512 [2,2,1,1]=>512 [2,1,1,1,1]=>2048 [1,1,1,1,1,1]=>32768 [7]=>8 [6,1]=>16 [5,2]=>16 [5,1,1]=>32 [4,3]=>16 [4,2,1]=>128 [4,1,1,1]=>256 [3,3,1]=>128 [3,2,2]=>128 [3,2,1,1]=>256 [3,1,1,1,1]=>2048 [2,2,2,1]=>4096 [2,2,1,1,1]=>8192 [2,1,1,1,1,1]=>65536 [1,1,1,1,1,1,1]=>2097152 [8]=>16 [7,1]=>16 [6,2]=>64 [6,1,1]=>64 [5,3]=>16 [5,2,1]=>64 [5,1,1,1]=>256 [4,4]=>256 [4,3,1]=>64 [4,2,2]=>1024 [4,2,1,1]=>1024 [4,1,1,1,1]=>4096 [3,3,2]=>256 [3,3,1,1]=>1024 [3,2,2,1]=>1024 [3,2,1,1,1]=>4096 [3,1,1,1,1,1]=>65536 [2,2,2,2]=>65536 [2,2,2,1,1]=>65536 [2,2,1,1,1,1]=>262144 [2,1,1,1,1,1,1]=>4194304 [1,1,1,1,1,1,1,1]=>268435456
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of invariant simple graphs when acting with a permutation of given cycle type.
Put differently, let $o$ be the number of orbits of the action of a permutation of given cycle type on the set of edges of the complete graph. Then this statistic is $2^o$.
References
[1] Bergeron, F., Labelle, G., Leroux, P. Combinatorial species and tree-like structures MathSciNet:1629341
Code
def statistic(la):
    G = LazyCombinatorialSpecies(QQ, "X").Graphs().cycle_index_series()
    return la.aut() * G[la.size()].coefficient(la)
Created
May 26, 2016 at 21:28 by Martin Rubey
Updated
Sep 27, 2025 at 01:40 by Martin Rubey