*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000514

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of invariant simple graphs when acting with a permutation of given cycle type.

-----------------------------------------------------------------------------
References: [1]   Bergeron, F., Labelle, G., Leroux, P. Combinatorial species and tree-like structures [[MathSciNet:1629341]]

-----------------------------------------------------------------------------
Code:
def statistic(la):
    Graphspecies = species.SimpleGraphSpecies().cycle_index_series()
    return Graphspecies.count(la)


-----------------------------------------------------------------------------
Statistic values:

[2]                       => 2
[1,1]                     => 2
[3]                       => 2
[2,1]                     => 4
[1,1,1]                   => 8
[4]                       => 4
[3,1]                     => 4
[2,2]                     => 16
[2,1,1]                   => 16
[1,1,1,1]                 => 64
[5]                       => 4
[4,1]                     => 8
[3,2]                     => 8
[3,1,1]                   => 16
[2,2,1]                   => 64
[2,1,1,1]                 => 128
[1,1,1,1,1]               => 1024
[6]                       => 8
[5,1]                     => 8
[4,2]                     => 32
[4,1,1]                   => 32
[3,3]                     => 32
[3,2,1]                   => 32
[3,1,1,1]                 => 128
[2,2,2]                   => 512
[2,2,1,1]                 => 512
[2,1,1,1,1]               => 2048
[1,1,1,1,1,1]             => 32768
[7]                       => 8
[6,1]                     => 16
[5,2]                     => 16
[5,1,1]                   => 32
[4,3]                     => 16
[4,2,1]                   => 128
[4,1,1,1]                 => 256
[3,3,1]                   => 128
[3,2,2]                   => 128
[3,2,1,1]                 => 256
[3,1,1,1,1]               => 2048
[2,2,2,1]                 => 4096
[2,2,1,1,1]               => 8192
[2,1,1,1,1,1]             => 65536
[1,1,1,1,1,1,1]           => 2097152
[8]                       => 16
[7,1]                     => 16
[6,2]                     => 64
[6,1,1]                   => 64
[5,3]                     => 16
[5,2,1]                   => 64
[5,1,1,1]                 => 256
[4,4]                     => 256
[4,3,1]                   => 64
[4,2,2]                   => 1024
[4,2,1,1]                 => 1024
[4,1,1,1,1]               => 4096
[3,3,2]                   => 256
[3,3,1,1]                 => 1024
[3,2,2,1]                 => 1024
[3,2,1,1,1]               => 4096
[3,1,1,1,1,1]             => 65536
[2,2,2,2]                 => 65536
[2,2,2,1,1]               => 65536
[2,2,1,1,1,1]             => 262144
[2,1,1,1,1,1,1]           => 4194304
[1,1,1,1,1,1,1,1]         => 268435456
[9]                       => 0
[8,1]                     => 0
[7,2]                     => 0
[7,1,1]                   => 0
[6,3]                     => 0
[6,2,1]                   => 0
[6,1,1,1]                 => 0
[5,4]                     => 0
[5,3,1]                   => 0
[5,2,2]                   => 0
[5,2,1,1]                 => 0
[5,1,1,1,1]               => 0
[4,4,1]                   => 0
[4,3,2]                   => 0
[4,3,1,1]                 => 0
[4,2,2,1]                 => 0
[4,2,1,1,1]               => 0
[4,1,1,1,1,1]             => 0
[3,3,3]                   => 0
[3,3,2,1]                 => 0
[3,3,1,1,1]               => 0
[3,2,2,2]                 => 0
[3,2,2,1,1]               => 0
[3,2,1,1,1,1]             => 0
[3,1,1,1,1,1,1]           => 0
[2,2,2,2,1]               => 0
[2,2,2,1,1,1]             => 0
[2,2,1,1,1,1,1]           => 0
[2,1,1,1,1,1,1,1]         => 0
[1,1,1,1,1,1,1,1,1]       => 0
[10]                      => 0
[9,1]                     => 0
[8,2]                     => 0
[8,1,1]                   => 0
[7,3]                     => 0
[7,2,1]                   => 0
[7,1,1,1]                 => 0
[6,4]                     => 0
[6,3,1]                   => 0
[6,2,2]                   => 0
[6,2,1,1]                 => 0
[6,1,1,1,1]               => 0
[5,5]                     => 0
[5,4,1]                   => 0
[5,3,2]                   => 0
[5,3,1,1]                 => 0
[5,2,2,1]                 => 0
[5,2,1,1,1]               => 0
[5,1,1,1,1,1]             => 0
[4,4,2]                   => 0
[4,4,1,1]                 => 0
[4,3,3]                   => 0
[4,3,2,1]                 => 0
[4,3,1,1,1]               => 0
[4,2,2,2]                 => 0
[4,2,2,1,1]               => 0
[4,2,1,1,1,1]             => 0
[4,1,1,1,1,1,1]           => 0
[3,3,3,1]                 => 0
[3,3,2,2]                 => 0
[3,3,2,1,1]               => 0
[3,3,1,1,1,1]             => 0
[3,2,2,2,1]               => 0
[3,2,2,1,1,1]             => 0
[3,2,1,1,1,1,1]           => 0
[3,1,1,1,1,1,1,1]         => 0
[2,2,2,2,2]               => 0
[2,2,2,2,1,1]             => 0
[2,2,2,1,1,1,1]           => 0
[2,2,1,1,1,1,1,1]         => 0
[2,1,1,1,1,1,1,1,1]       => 0
[1,1,1,1,1,1,1,1,1,1]     => 0
[11]                      => 0
[10,1]                    => 0
[9,2]                     => 0
[9,1,1]                   => 0
[8,3]                     => 0
[8,2,1]                   => 0
[8,1,1,1]                 => 0
[7,4]                     => 0
[7,3,1]                   => 0
[7,2,2]                   => 0
[7,2,1,1]                 => 0
[7,1,1,1,1]               => 0
[6,5]                     => 0
[6,4,1]                   => 0
[6,3,2]                   => 0
[6,3,1,1]                 => 0
[6,2,2,1]                 => 0
[6,2,1,1,1]               => 0
[6,1,1,1,1,1]             => 0
[5,5,1]                   => 0
[5,4,2]                   => 0
[5,4,1,1]                 => 0
[5,3,3]                   => 0
[5,3,2,1]                 => 0
[5,3,1,1,1]               => 0
[5,2,2,2]                 => 0
[5,2,2,1,1]               => 0
[5,2,1,1,1,1]             => 0
[5,1,1,1,1,1,1]           => 0
[4,4,3]                   => 0
[4,4,2,1]                 => 0
[4,4,1,1,1]               => 0
[4,3,3,1]                 => 0
[4,3,2,2]                 => 0
[4,3,2,1,1]               => 0
[4,3,1,1,1,1]             => 0
[4,2,2,2,1]               => 0
[4,2,2,1,1,1]             => 0
[4,2,1,1,1,1,1]           => 0
[4,1,1,1,1,1,1,1]         => 0
[3,3,3,2]                 => 0
[3,3,3,1,1]               => 0
[3,3,2,2,1]               => 0
[3,3,2,1,1,1]             => 0
[3,3,1,1,1,1,1]           => 0
[3,2,2,2,2]               => 0
[3,2,2,2,1,1]             => 0
[3,2,2,1,1,1,1]           => 0
[3,2,1,1,1,1,1,1]         => 0
[3,1,1,1,1,1,1,1,1]       => 0
[2,2,2,2,2,1]             => 0
[2,2,2,2,1,1,1]           => 0
[2,2,2,1,1,1,1,1]         => 0
[2,2,1,1,1,1,1,1,1]       => 0
[2,1,1,1,1,1,1,1,1,1]     => 0
[1,1,1,1,1,1,1,1,1,1,1]   => 0
[12]                      => 0
[11,1]                    => 0
[10,2]                    => 0
[10,1,1]                  => 0
[9,3]                     => 0
[9,2,1]                   => 0
[9,1,1,1]                 => 0
[8,4]                     => 0
[8,3,1]                   => 0
[8,2,2]                   => 0
[8,2,1,1]                 => 0
[8,1,1,1,1]               => 0
[7,5]                     => 0
[7,4,1]                   => 0
[7,3,2]                   => 0
[7,3,1,1]                 => 0
[7,2,2,1]                 => 0
[7,2,1,1,1]               => 0
[7,1,1,1,1,1]             => 0
[6,6]                     => 0
[6,5,1]                   => 0
[6,4,2]                   => 0
[6,4,1,1]                 => 0
[6,3,3]                   => 0
[6,3,2,1]                 => 0
[6,3,1,1,1]               => 0
[6,2,2,2]                 => 0
[6,2,2,1,1]               => 0
[6,2,1,1,1,1]             => 0
[6,1,1,1,1,1,1]           => 0
[5,5,2]                   => 0
[5,5,1,1]                 => 0
[5,4,3]                   => 0
[5,4,2,1]                 => 0
[5,4,1,1,1]               => 0
[5,3,3,1]                 => 0
[5,3,2,2]                 => 0
[5,3,2,1,1]               => 0
[5,3,1,1,1,1]             => 0
[5,2,2,2,1]               => 0
[5,2,2,1,1,1]             => 0
[5,2,1,1,1,1,1]           => 0
[5,1,1,1,1,1,1,1]         => 0
[4,4,4]                   => 0
[4,4,3,1]                 => 0
[4,4,2,2]                 => 0
[4,4,2,1,1]               => 0
[4,4,1,1,1,1]             => 0
[4,3,3,2]                 => 0
[4,3,3,1,1]               => 0
[4,3,2,2,1]               => 0
[4,3,2,1,1,1]             => 0
[4,3,1,1,1,1,1]           => 0
[4,2,2,2,2]               => 0
[4,2,2,2,1,1]             => 0
[4,2,2,1,1,1,1]           => 0
[4,2,1,1,1,1,1,1]         => 0
[4,1,1,1,1,1,1,1,1]       => 0
[3,3,3,3]                 => 0
[3,3,3,2,1]               => 0
[3,3,3,1,1,1]             => 0
[3,3,2,2,2]               => 0
[3,3,2,2,1,1]             => 0
[3,3,2,1,1,1,1]           => 0
[3,3,1,1,1,1,1,1]         => 0
[3,2,2,2,2,1]             => 0
[3,2,2,2,1,1,1]           => 0
[3,2,2,1,1,1,1,1]         => 0
[3,2,1,1,1,1,1,1,1]       => 0
[3,1,1,1,1,1,1,1,1,1]     => 0
[2,2,2,2,2,2]             => 0
[2,2,2,2,2,1,1]           => 0
[2,2,2,2,1,1,1,1]         => 0
[2,2,2,1,1,1,1,1,1]       => 0
[2,2,1,1,1,1,1,1,1,1]     => 0
[2,1,1,1,1,1,1,1,1,1,1]   => 0
[1,1,1,1,1,1,1,1,1,1,1,1] => 0

-----------------------------------------------------------------------------
Created: May 26, 2016 at 21:28 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: May 26, 2016 at 21:28 by Martin Rubey