searching the database
Your data matches 127 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000052
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
St000052: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
St000052: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> [1,0]
=> 0
[1,2] => [.,[.,.]]
=> [1,1,0,0]
=> 0
[2,1] => [[.,.],.]
=> [1,0,1,0]
=> 0
[1,2,3] => [.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> 0
[1,3,2] => [.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> 1
[2,1,3] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 0
[2,3,1] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 0
[3,1,2] => [[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> 0
[3,2,1] => [[[.,.],.],.]
=> [1,0,1,0,1,0]
=> 0
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> 2
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 0
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 0
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 0
[2,4,1,3] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,4,3,1] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> 1
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[3,1,4,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 0
[3,2,4,1] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 0
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[3,4,2,1] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 0
[4,1,2,3] => [[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> 0
[4,1,3,2] => [[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> 1
[4,2,1,3] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 0
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 0
[4,3,1,2] => [[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> 0
[4,3,2,1] => [[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
Description
The number of valleys of a Dyck path not on the x-axis.
That is, the number of valleys of nonminimal height. This corresponds to the number of -1's in an inclusion of Dyck paths into alternating sign matrices.
Matching statistic: St000204
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
St000204: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
St000204: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> [1] => [.,.]
=> 0
[1,2] => [.,[.,.]]
=> [2,1] => [[.,.],.]
=> 0
[2,1] => [[.,.],.]
=> [1,2] => [.,[.,.]]
=> 0
[1,2,3] => [.,[.,[.,.]]]
=> [3,2,1] => [[[.,.],.],.]
=> 0
[1,3,2] => [.,[[.,.],.]]
=> [2,3,1] => [[.,[.,.]],.]
=> 1
[2,1,3] => [[.,.],[.,.]]
=> [3,1,2] => [[.,.],[.,.]]
=> 0
[2,3,1] => [[.,[.,.]],.]
=> [2,1,3] => [[.,.],[.,.]]
=> 0
[3,1,2] => [[.,.],[.,.]]
=> [3,1,2] => [[.,.],[.,.]]
=> 0
[3,2,1] => [[[.,.],.],.]
=> [1,2,3] => [.,[.,[.,.]]]
=> 0
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> 0
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [[[.,[.,.]],.],.]
=> 1
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [4,2,3,1] => [[[.,.],[.,.]],.]
=> 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [[[.,.],[.,.]],.]
=> 1
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> [4,2,3,1] => [[[.,.],[.,.]],.]
=> 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [2,3,4,1] => [[.,[.,[.,.]]],.]
=> 2
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [4,3,1,2] => [[[.,.],.],[.,.]]
=> 0
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> 1
[2,3,1,4] => [[.,[.,.]],[.,.]]
=> [4,2,1,3] => [[[.,.],.],[.,.]]
=> 0
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> 0
[2,4,1,3] => [[.,[.,.]],[.,.]]
=> [4,2,1,3] => [[[.,.],.],[.,.]]
=> 0
[2,4,3,1] => [[.,[[.,.],.]],.]
=> [2,3,1,4] => [[.,[.,.]],[.,.]]
=> 1
[3,1,2,4] => [[.,.],[.,[.,.]]]
=> [4,3,1,2] => [[[.,.],.],[.,.]]
=> 0
[3,1,4,2] => [[.,.],[[.,.],.]]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> 1
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> 0
[3,2,4,1] => [[[.,.],[.,.]],.]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> 0
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [4,2,1,3] => [[[.,.],.],[.,.]]
=> 0
[3,4,2,1] => [[[.,[.,.]],.],.]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> 0
[4,1,2,3] => [[.,.],[.,[.,.]]]
=> [4,3,1,2] => [[[.,.],.],[.,.]]
=> 0
[4,1,3,2] => [[.,.],[[.,.],.]]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> 1
[4,2,1,3] => [[[.,.],.],[.,.]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> 0
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> 0
[4,3,1,2] => [[[.,.],.],[.,.]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> 0
[4,3,2,1] => [[[[.,.],.],.],.]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 0
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> 0
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [[[[.,[.,.]],.],.],.]
=> 1
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [[[[.,.],[.,.]],.],.]
=> 1
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [[[[.,.],[.,.]],.],.]
=> 1
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [[[[.,.],[.,.]],.],.]
=> 1
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> 2
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [[[[.,.],.],[.,.]],.]
=> 1
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [[[.,[.,.]],[.,.]],.]
=> 2
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [[[[.,.],.],[.,.]],.]
=> 1
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [[[[.,.],.],[.,.]],.]
=> 1
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [[[[.,.],.],[.,.]],.]
=> 1
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [[[.,[.,.]],[.,.]],.]
=> 2
[1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [[[[.,.],.],[.,.]],.]
=> 1
[1,4,2,5,3] => [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [[[.,[.,.]],[.,.]],.]
=> 2
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [[[.,.],[.,[.,.]]],.]
=> 2
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [[[.,.],[.,[.,.]]],.]
=> 2
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [[[[.,.],.],[.,.]],.]
=> 1
Description
The number of internal nodes of a binary tree.
That is, the total number of nodes of the tree minus [[St000203]]. A counting formula for the total number of internal nodes across all binary trees of size $n$ is given in [1]. This is equivalent to the number of internal triangles in all triangulations of an $(n+1)$-gon.
Matching statistic: St001167
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00012: Binary trees —to Dyck path: up step, left tree, down step, right tree⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001167: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00012: Binary trees —to Dyck path: up step, left tree, down step, right tree⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001167: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> [1,0]
=> [1,0]
=> 0
[1,2] => [.,[.,.]]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
[2,1] => [[.,.],.]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,2,3] => [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,3,2] => [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[2,1,3] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0
[2,3,1] => [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 0
[3,1,2] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0
[3,2,1] => [[[.,.],.],.]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 0
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[2,3,1,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[2,4,1,3] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[2,4,3,1] => [[.,[[.,.],.]],.]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[3,1,2,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[3,1,4,2] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[3,2,4,1] => [[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[3,4,2,1] => [[[.,[.,.]],.],.]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[4,1,2,3] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[4,1,3,2] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[4,2,1,3] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[4,3,1,2] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[4,3,2,1] => [[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,4,2,5,3] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
Description
The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra.
The top of a module is the cokernel of the inclusion of the radical of the module into the module.
For Nakayama algebras with at most 8 simple modules, the statistic also coincides with the number of simple modules with projective dimension at least 3 in the corresponding Nakayama algebra.
Matching statistic: St001323
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001323: Graphs ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001323: Graphs ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> [1] => ([],1)
=> 0
[1,2] => [.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> 0
[2,1] => [[.,.],.]
=> [1,2] => ([],2)
=> 0
[1,2,3] => [.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,3,2] => [.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[2,1,3] => [[.,.],[.,.]]
=> [1,3,2] => ([(1,2)],3)
=> 0
[2,3,1] => [[.,.],[.,.]]
=> [1,3,2] => ([(1,2)],3)
=> 0
[3,1,2] => [[.,[.,.]],.]
=> [2,1,3] => ([(1,2)],3)
=> 0
[3,2,1] => [[[.,.],.],.]
=> [1,2,3] => ([],3)
=> 0
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> 1
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[2,4,1,3] => [[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> 1
[2,4,3,1] => [[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> 1
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 0
[3,1,4,2] => [[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 0
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> 0
[3,2,4,1] => [[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> 0
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 0
[3,4,2,1] => [[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> 0
[4,1,2,3] => [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 0
[4,1,3,2] => [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 1
[4,2,1,3] => [[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(2,3)],4)
=> 0
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(2,3)],4)
=> 0
[4,3,1,2] => [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(2,3)],4)
=> 0
[4,3,2,1] => [[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> 0
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,6,5,7] => [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,6,7,5] => [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,7,5,6] => [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,5,4,6,7] => [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,5,6,4,7] => [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,5,6,7,4] => [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,6,4,5,7] => [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,6,4,7,5] => [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,6,7,4,5] => [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,7,4,5,6] => [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,3,5,6,7] => [.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [3,7,6,5,4,2,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,5,3,6,7] => [.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [3,7,6,5,4,2,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,5,6,3,7] => [.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [3,7,6,5,4,2,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,5,6,7,3] => [.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [3,7,6,5,4,2,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,7,3,4,5,6] => [.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [6,5,4,3,7,2,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4,5,6,7] => [.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [2,7,6,5,4,3,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2,5,6,7] => [.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [2,7,6,5,4,3,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,2,6,7] => [.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [2,7,6,5,4,3,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,6,2,7] => [.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [2,7,6,5,4,3,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,6,7,2] => [.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [2,7,6,5,4,3,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,7,2,3,4,5,6] => [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [6,5,4,3,2,7,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4,5,6,7] => [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4,5,6,7] => [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1,5,6,7] => [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,5,1,6,7] => [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,5,6,1,7] => [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,5,6,7,1] => [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[7,1,2,3,4,5,6] => [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> [6,5,4,3,2,1,7] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
Description
The independence gap of a graph.
This is the difference between the independence number [[St000093]] and the minimal size of a maximally independent set of a graph.
In particular, this statistic is $0$ for well covered graphs
Matching statistic: St000771
(load all 27 compositions to match this statistic)
(load all 27 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 67% ●values known / values provided: 68%●distinct values known / distinct values provided: 67%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 67% ●values known / values provided: 68%●distinct values known / distinct values provided: 67%
Values
[1] => [1] => [1] => ([],1)
=> 1 = 0 + 1
[1,2] => [2] => [1] => ([],1)
=> 1 = 0 + 1
[2,1] => [1,1] => [2] => ([],2)
=> ? = 0 + 1
[1,2,3] => [3] => [1] => ([],1)
=> 1 = 0 + 1
[1,3,2] => [2,1] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[2,1,3] => [1,2] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[2,3,1] => [2,1] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[3,1,2] => [1,2] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[3,2,1] => [1,1,1] => [3] => ([],3)
=> ? = 1 + 1
[1,2,3,4] => [4] => [1] => ([],1)
=> 1 = 0 + 1
[1,2,4,3] => [3,1] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,3,2,4] => [2,2] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,2} + 1
[1,3,4,2] => [3,1] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,4,2,3] => [2,2] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,2} + 1
[1,4,3,2] => [2,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,1,1,1,2} + 1
[2,1,3,4] => [1,3] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[2,1,4,3] => [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,3,1,4] => [2,2] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,2} + 1
[2,3,4,1] => [3,1] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[2,4,1,3] => [2,2] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,2} + 1
[2,4,3,1] => [2,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,1,1,1,2} + 1
[3,1,2,4] => [1,3] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[3,1,4,2] => [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,2,1,4] => [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,2,4,1] => [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,4,1,2] => [2,2] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,2} + 1
[3,4,2,1] => [2,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,1,1,1,2} + 1
[4,1,2,3] => [1,3] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[4,1,3,2] => [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,2,1,3] => [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[4,2,3,1] => [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,3,1,2] => [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[4,3,2,1] => [1,1,1,1] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2} + 1
[1,2,3,4,5] => [5] => [1] => ([],1)
=> 1 = 0 + 1
[1,2,3,5,4] => [4,1] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,2,4,3,5] => [3,2] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,2,4,5,3] => [4,1] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,2,5,3,4] => [3,2] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,2,5,4,3] => [3,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[1,3,2,4,5] => [2,3] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,3,2,5,4] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,3,4,2,5] => [3,2] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,3,4,5,2] => [4,1] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,3,5,2,4] => [3,2] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,3,5,4,2] => [3,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[1,4,2,3,5] => [2,3] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,4,2,5,3] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,4,3,2,5] => [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,4,3,5,2] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,4,5,2,3] => [3,2] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,4,5,3,2] => [3,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[1,5,2,3,4] => [2,3] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,5,2,4,3] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,5,3,2,4] => [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,5,3,4,2] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,5,4,2,3] => [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,5,4,3,2] => [2,1,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[2,1,3,4,5] => [1,4] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[2,1,3,5,4] => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,1,4,3,5] => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[2,1,4,5,3] => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,1,5,3,4] => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[2,1,5,4,3] => [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[2,3,1,4,5] => [2,3] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[2,3,1,5,4] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,3,4,1,5] => [3,2] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[2,3,4,5,1] => [4,1] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[2,3,5,1,4] => [3,2] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[2,3,5,4,1] => [3,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[2,4,5,3,1] => [3,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[2,5,4,3,1] => [2,1,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[3,1,4,2,5] => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[3,1,5,2,4] => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[3,1,5,4,2] => [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[3,2,4,1,5] => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[3,2,5,1,4] => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[3,2,5,4,1] => [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[3,4,5,2,1] => [3,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[3,5,4,2,1] => [2,1,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[4,1,3,2,5] => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[4,1,5,2,3] => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[4,1,5,3,2] => [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[4,2,3,1,5] => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[4,2,5,1,3] => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[4,2,5,3,1] => [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[4,3,5,1,2] => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[4,3,5,2,1] => [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[4,5,3,2,1] => [2,1,1,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[5,1,3,2,4] => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[5,1,4,2,3] => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[5,1,4,3,2] => [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[5,2,3,1,4] => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[5,2,4,1,3] => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[5,2,4,3,1] => [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[5,3,4,1,2] => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[5,3,4,2,1] => [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[5,4,3,2,1] => [1,1,1,1,1] => [5] => ([],5)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3} + 1
[1,2,3,6,5,4] => [4,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4} + 1
[1,2,4,3,5,6] => [3,3] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4} + 1
[1,2,4,6,5,3] => [4,1,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4} + 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000476
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000476: Dyck paths ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 83%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000476: Dyck paths ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 83%
Values
[1] => [1]
=> []
=> []
=> ? = 0
[1,2] => [1,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> []
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,2] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,1}
[2,1,3] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,1}
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {0,0,0,0,1}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {0,0,0,0,1}
[3,2,1] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,1}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,4,2,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,3,1,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,4,3,1] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,1,2,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,4,1,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,1,3,2] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,2,1,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,3,2,1] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,3,5,2,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,4,5,3,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,1,4,5,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,1,5,3,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,3,1,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,3,4,1,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,5,4,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,1,3,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,4,3,5,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,5,1,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,4,5,3,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,1,3,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,1,4,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,3,1,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,5,4,1,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,4,3,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,1,2,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,1,4,2,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,1,4,5,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,1,5,2,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,1,5,4,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,2,4,5,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,2,5,1,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,4,1,5,2] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,2,1,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,4,2,5,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,4,5,1,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,4,5,2,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,5,2,1,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
Description
The sum of the semi-lengths of tunnels before a valley of a Dyck path.
For each valley $v$ in a Dyck path $D$ there is a corresponding tunnel, which
is the factor $T_v = s_i\dots s_j$ of $D$ where $s_i$ is the step after the first intersection of $D$ with the line $y = ht(v)$ to the left of $s_j$. This statistic is
$$
\sum_v (j_v-i_v)/2.
$$
Matching statistic: St000620
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St000620: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 68%●distinct values known / distinct values provided: 67%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St000620: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 68%●distinct values known / distinct values provided: 67%
Values
[1] => [1]
=> []
=> ?
=> ? = 0
[1,2] => [1,1]
=> [1]
=> [1]
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [2]
=> 0
[1,3,2] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,1}
[2,1,3] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,1}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,1}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,1}
[3,2,1] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,1}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [2]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [2]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,4,2,3] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [2]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [2]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> [1,1]
=> 1
[2,3,1,4] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,4,3,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,1,2,4] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [2]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,4,1,2] => [2,2]
=> [2]
=> [1,1]
=> 1
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,1,3,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,2,1,3] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [2]
=> 0
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,3,2,1] => [2,2]
=> [2]
=> [1,1]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [2,2]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,3,5,2,4] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 1
[1,4,5,3,2] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,5,2,3,4] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 1
[2,1,4,5,3] => [3,2]
=> [2]
=> [1,1]
=> 1
[2,1,5,3,4] => [3,2]
=> [2]
=> [1,1]
=> 1
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[2,3,1,5,4] => [3,2]
=> [2]
=> [1,1]
=> 1
[2,3,4,1,5] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,5,4,1] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,1,3,5] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[2,4,3,5,1] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,5,1,3] => [3,2]
=> [2]
=> [1,1]
=> 1
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,1,4,3] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,3,1,4] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,4,3,1] => [3,2]
=> [2]
=> [1,1]
=> 1
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[3,1,2,5,4] => [3,2]
=> [2]
=> [1,1]
=> 1
[3,1,4,2,5] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,1,4,5,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,1,5,2,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,1,5,4,2] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[3,2,4,5,1] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,2,5,1,4] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 1
[3,4,1,5,2] => [3,2]
=> [2]
=> [1,1]
=> 1
[3,4,2,1,5] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,4,2,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,4,5,1,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,4,5,2,1] => [3,2]
=> [2]
=> [1,1]
=> 1
[3,5,2,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
Description
The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd.
To be precise, this is given for a partition $\lambda \vdash n$ by the number of standard tableaux $T$ of shape $\lambda$ such that $\min\big( \operatorname{Des}(T) \cup \{n\} \big)$ is odd.
The case of an even minimum is [[St000621]].
Matching statistic: St000932
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000932: Dyck paths ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 83%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000932: Dyck paths ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 83%
Values
[1] => [1]
=> []
=> []
=> ? = 0
[1,2] => [1,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> []
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,2] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,1}
[2,1,3] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,1}
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {0,0,0,0,1}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {0,0,0,0,1}
[3,2,1] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,1}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,4,2,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,3,1,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,4,3,1] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,1,2,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,4,1,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,1,3,2] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,2,1,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,3,2,1] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,3,5,2,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,4,5,3,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,1,4,5,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,1,5,3,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,3,1,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,3,4,1,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,5,4,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,1,3,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,4,3,5,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,5,1,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,4,5,3,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,1,3,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,1,4,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,3,1,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,5,4,1,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,4,3,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,1,2,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,1,4,2,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,1,4,5,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,1,5,2,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,1,5,4,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,2,4,5,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,2,5,1,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,4,1,5,2] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,2,1,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,4,2,5,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,4,5,1,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,4,5,2,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,5,2,1,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
Description
The number of occurrences of the pattern UDU in a Dyck path.
The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Matching statistic: St000681
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00252: Permutations —restriction⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000681: Integer partitions ⟶ ℤResult quality: 62% ●values known / values provided: 62%●distinct values known / distinct values provided: 83%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000681: Integer partitions ⟶ ℤResult quality: 62% ●values known / values provided: 62%●distinct values known / distinct values provided: 83%
Values
[1] => [] => []
=> ?
=> ? = 0
[1,2] => [1] => [1]
=> []
=> ? ∊ {0,0}
[2,1] => [1] => [1]
=> []
=> ? ∊ {0,0}
[1,2,3] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1}
[1,3,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1}
[2,1,3] => [2,1] => [2]
=> []
=> ? ∊ {0,0,0,0,0,1}
[2,3,1] => [2,1] => [2]
=> []
=> ? ∊ {0,0,0,0,0,1}
[3,1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1}
[3,2,1] => [2,1] => [2]
=> []
=> ? ∊ {0,0,0,0,0,1}
[1,2,3,4] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,3,4,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,4,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,1,3,4] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,1,4,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,3,1,4] => [2,3,1] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,3,4,1] => [2,3,1] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,4,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,4,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,1,2,4] => [3,1,2] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,1,4,2] => [3,1,2] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,2,1,4] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,2,4,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,4,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,4,2,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,1,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[4,1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,2,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,3,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,3,2,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,2,3,4,5] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,3,5,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,4,3,5] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,5,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,4,2,5] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[1,3,4,5,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[1,3,5,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,5,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[1,4,2,3,5] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[1,4,2,5,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[1,4,3,2,5] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,5,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[1,4,5,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,5,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,5,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,5,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,5,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[1,5,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[1,5,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4,5] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3,5] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,4,5,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,5,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,5,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,3,1,4,5] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,1,5,4] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,4,1,5] => [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,4,5,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,5,1,4] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,5,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,1,3,5] => [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,1,5,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,3,1,5] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,3,5,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,5,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,5,3,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,1,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,5,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,5,3,1,4] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3}
[3,2,1,4,5] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,5,1,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2,5] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,4,1,5,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,4,5,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,5,2,1,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,5,4,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[4,2,3,1,5] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,2,3,5,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,2,5,3,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1,5] => [4,3,2,1] => [2,2]
=> [2]
=> 1
[4,3,2,5,1] => [4,3,2,1] => [2,2]
=> [2]
=> 1
[4,3,5,2,1] => [4,3,2,1] => [2,2]
=> [2]
=> 1
[4,5,2,3,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,5,3,2,1] => [4,3,2,1] => [2,2]
=> [2]
=> 1
[5,1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[5,1,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[5,1,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[5,1,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[5,2,1,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[5,2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
Description
The Grundy value of Chomp on Ferrers diagrams.
Players take turns and choose a cell of the diagram, cutting off all cells below and to the right of this cell in English notation. The player who is left with the single cell partition looses. The traditional version is played on chocolate bars, see [1].
This statistic is the Grundy value of the partition, that is, the smallest non-negative integer which does not occur as value of a partition obtained by a single move.
Matching statistic: St000698
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00252: Permutations —restriction⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000698: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 62%●distinct values known / distinct values provided: 50%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000698: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 62%●distinct values known / distinct values provided: 50%
Values
[1] => [] => []
=> ?
=> ? = 0
[1,2] => [1] => [1]
=> []
=> ? ∊ {0,0}
[2,1] => [1] => [1]
=> []
=> ? ∊ {0,0}
[1,2,3] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1}
[1,3,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1}
[2,1,3] => [2,1] => [2]
=> []
=> ? ∊ {0,0,0,0,0,1}
[2,3,1] => [2,1] => [2]
=> []
=> ? ∊ {0,0,0,0,0,1}
[3,1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1}
[3,2,1] => [2,1] => [2]
=> []
=> ? ∊ {0,0,0,0,0,1}
[1,2,3,4] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,3,4,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,4,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,1,3,4] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,1,4,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,3,1,4] => [2,3,1] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,3,4,1] => [2,3,1] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,4,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,4,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,1,2,4] => [3,1,2] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,1,4,2] => [3,1,2] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,2,1,4] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,2,4,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,4,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,4,2,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,1,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[4,1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,2,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,3,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,3,2,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,2,3,4,5] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,4,2,5] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,3,4,5,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,3,5,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,5,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,4,2,3,5] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,4,2,5,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,4,3,2,5] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,5,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,4,5,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,5,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,5,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,5,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,5,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[1,5,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4,5] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3,5] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,4,5,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,5,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,5,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,3,1,4,5] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,1,5,4] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,4,1,5] => [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,4,5,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,5,1,4] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,3,5,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,1,3,5] => [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,1,5,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,3,1,5] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,3,5,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,5,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,4,5,3,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[2,5,1,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,5,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,5,3,1,4] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,2,1,4,5] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,5,1,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2,5] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,4,1,5,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,4,5,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,5,2,1,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,5,4,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[4,2,3,1,5] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,2,3,5,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,2,5,3,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1,5] => [4,3,2,1] => [2,2]
=> [2]
=> 1
[4,3,2,5,1] => [4,3,2,1] => [2,2]
=> [2]
=> 1
[4,3,5,2,1] => [4,3,2,1] => [2,2]
=> [2]
=> 1
[4,5,2,3,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,5,3,2,1] => [4,3,2,1] => [2,2]
=> [2]
=> 1
[5,1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[5,1,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[5,1,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[5,1,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[5,2,1,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[5,2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
Description
The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core.
For any positive integer $k$, one associates a $k$-core to a partition by repeatedly removing all rim hooks of size $k$.
This statistic counts the $2$-rim hooks that are removed in this process to obtain a $2$-core.
The following 117 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000711The number of big exceedences of a permutation. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000937The number of positive values of the symmetric group character corresponding to the partition. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000137The Grundy value of an integer partition. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001933The largest multiplicity of a part in an integer partition. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001571The Cartan determinant of the integer partition. St000065The number of entries equal to -1 in an alternating sign matrix. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001091The number of parts in an integer partition whose next smaller part has the same size. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St000260The radius of a connected graph. St000993The multiplicity of the largest part of an integer partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001568The smallest positive integer that does not appear twice in the partition. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000356The number of occurrences of the pattern 13-2. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St000454The largest eigenvalue of a graph if it is integral. St001083The number of boxed occurrences of 132 in a permutation. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000668The least common multiple of the parts of the partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000815The number of semistandard Young tableaux of partition weight of given shape. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000941The number of characters of the symmetric group whose value on the partition is even. St001128The exponens consonantiae of a partition. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001877Number of indecomposable injective modules with projective dimension 2. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St001570The minimal number of edges to add to make a graph Hamiltonian. St000358The number of occurrences of the pattern 31-2. St000317The cycle descent number of a permutation. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001176The size of a partition minus its first part. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001964The interval resolution global dimension of a poset. St001651The Frankl number of a lattice. St000455The second largest eigenvalue of a graph if it is integral. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St001820The size of the image of the pop stack sorting operator. St001845The number of join irreducibles minus the rank of a lattice. St001960The number of descents of a permutation minus one if its first entry is not one. St000259The diameter of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St001330The hat guessing number of a graph. St001487The number of inner corners of a skew partition. St001435The number of missing boxes in the first row. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001862The number of crossings of a signed permutation. St001866The nesting alignments of a signed permutation. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001846The number of elements which do not have a complement in the lattice. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001429The number of negative entries in a signed permutation. St001875The number of simple modules with projective dimension at most 1. St000527The width of the poset. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000632The jump number of the poset. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001902The number of potential covers of a poset. St000181The number of connected components of the Hasse diagram for the poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000908The length of the shortest maximal antichain in a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001472The permanent of the Coxeter matrix of the poset. St001510The number of self-evacuating linear extensions of a finite poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001779The order of promotion on the set of linear extensions of a poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St001438The number of missing boxes of a skew partition.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!