Identifier
Identifier
• St000015: ⟶ ℤ (values match St000053The number of valleys of the Dyck path., St001068Number of torsionless simple modules in the corresponding Nakayama algebra., St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra.)
Values
[1,0] => 1
[1,0,1,0] => 2
[1,1,0,0] => 1
[1,0,1,0,1,0] => 3
[1,0,1,1,0,0] => 2
[1,1,0,0,1,0] => 2
[1,1,0,1,0,0] => 2
[1,1,1,0,0,0] => 1
[1,0,1,0,1,0,1,0] => 4
[1,0,1,0,1,1,0,0] => 3
[1,0,1,1,0,0,1,0] => 3
[1,0,1,1,0,1,0,0] => 3
[1,0,1,1,1,0,0,0] => 2
[1,1,0,0,1,0,1,0] => 3
[1,1,0,0,1,1,0,0] => 2
[1,1,0,1,0,0,1,0] => 3
[1,1,0,1,0,1,0,0] => 3
[1,1,0,1,1,0,0,0] => 2
[1,1,1,0,0,0,1,0] => 2
[1,1,1,0,0,1,0,0] => 2
[1,1,1,0,1,0,0,0] => 2
[1,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,0,1,1,0,0] => 4
[1,0,1,0,1,1,0,0,1,0] => 4
[1,0,1,0,1,1,0,1,0,0] => 4
[1,0,1,0,1,1,1,0,0,0] => 3
[1,0,1,1,0,0,1,0,1,0] => 4
[1,0,1,1,0,0,1,1,0,0] => 3
[1,0,1,1,0,1,0,0,1,0] => 4
[1,0,1,1,0,1,0,1,0,0] => 4
[1,0,1,1,0,1,1,0,0,0] => 3
[1,0,1,1,1,0,0,0,1,0] => 3
[1,0,1,1,1,0,0,1,0,0] => 3
[1,0,1,1,1,0,1,0,0,0] => 3
[1,0,1,1,1,1,0,0,0,0] => 2
[1,1,0,0,1,0,1,0,1,0] => 4
[1,1,0,0,1,0,1,1,0,0] => 3
[1,1,0,0,1,1,0,0,1,0] => 3
[1,1,0,0,1,1,0,1,0,0] => 3
[1,1,0,0,1,1,1,0,0,0] => 2
[1,1,0,1,0,0,1,0,1,0] => 4
[1,1,0,1,0,0,1,1,0,0] => 3
[1,1,0,1,0,1,0,0,1,0] => 4
[1,1,0,1,0,1,0,1,0,0] => 4
[1,1,0,1,0,1,1,0,0,0] => 3
[1,1,0,1,1,0,0,0,1,0] => 3
[1,1,0,1,1,0,0,1,0,0] => 3
[1,1,0,1,1,0,1,0,0,0] => 3
[1,1,0,1,1,1,0,0,0,0] => 2
[1,1,1,0,0,0,1,0,1,0] => 3
[1,1,1,0,0,0,1,1,0,0] => 2
[1,1,1,0,0,1,0,0,1,0] => 3
[1,1,1,0,0,1,0,1,0,0] => 3
[1,1,1,0,0,1,1,0,0,0] => 2
[1,1,1,0,1,0,0,0,1,0] => 3
[1,1,1,0,1,0,0,1,0,0] => 3
[1,1,1,0,1,0,1,0,0,0] => 3
[1,1,1,0,1,1,0,0,0,0] => 2
[1,1,1,1,0,0,0,0,1,0] => 2
[1,1,1,1,0,0,0,1,0,0] => 2
[1,1,1,1,0,0,1,0,0,0] => 2
[1,1,1,1,0,1,0,0,0,0] => 2
[1,1,1,1,1,0,0,0,0,0] => 1
[1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,0,1,0,1,1,0,0] => 5
[1,0,1,0,1,0,1,1,0,0,1,0] => 5
[1,0,1,0,1,0,1,1,0,1,0,0] => 5
[1,0,1,0,1,0,1,1,1,0,0,0] => 4
[1,0,1,0,1,1,0,0,1,0,1,0] => 5
[1,0,1,0,1,1,0,0,1,1,0,0] => 4
[1,0,1,0,1,1,0,1,0,0,1,0] => 5
[1,0,1,0,1,1,0,1,0,1,0,0] => 5
[1,0,1,0,1,1,0,1,1,0,0,0] => 4
[1,0,1,0,1,1,1,0,0,0,1,0] => 4
[1,0,1,0,1,1,1,0,0,1,0,0] => 4
[1,0,1,0,1,1,1,0,1,0,0,0] => 4
[1,0,1,0,1,1,1,1,0,0,0,0] => 3
[1,0,1,1,0,0,1,0,1,0,1,0] => 5
[1,0,1,1,0,0,1,0,1,1,0,0] => 4
[1,0,1,1,0,0,1,1,0,0,1,0] => 4
[1,0,1,1,0,0,1,1,0,1,0,0] => 4
[1,0,1,1,0,0,1,1,1,0,0,0] => 3
[1,0,1,1,0,1,0,0,1,0,1,0] => 5
[1,0,1,1,0,1,0,0,1,1,0,0] => 4
[1,0,1,1,0,1,0,1,0,0,1,0] => 5
[1,0,1,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,0,1,0,1,1,0,0,0] => 4
[1,0,1,1,0,1,1,0,0,0,1,0] => 4
[1,0,1,1,0,1,1,0,0,1,0,0] => 4
[1,0,1,1,0,1,1,0,1,0,0,0] => 4
[1,0,1,1,0,1,1,1,0,0,0,0] => 3
[1,0,1,1,1,0,0,0,1,0,1,0] => 4
[1,0,1,1,1,0,0,0,1,1,0,0] => 3
[1,0,1,1,1,0,0,1,0,0,1,0] => 4
[1,0,1,1,1,0,0,1,0,1,0,0] => 4
[1,0,1,1,1,0,0,1,1,0,0,0] => 3
[1,0,1,1,1,0,1,0,0,0,1,0] => 4
[1,0,1,1,1,0,1,0,0,1,0,0] => 4
[1,0,1,1,1,0,1,0,1,0,0,0] => 4
[1,0,1,1,1,0,1,1,0,0,0,0] => 3
[1,0,1,1,1,1,0,0,0,0,1,0] => 3
[1,0,1,1,1,1,0,0,0,1,0,0] => 3
[1,0,1,1,1,1,0,0,1,0,0,0] => 3
[1,0,1,1,1,1,0,1,0,0,0,0] => 3
[1,0,1,1,1,1,1,0,0,0,0,0] => 2
[1,1,0,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,0,1,0,1,0,1,1,0,0] => 4
[1,1,0,0,1,0,1,1,0,0,1,0] => 4
[1,1,0,0,1,0,1,1,0,1,0,0] => 4
[1,1,0,0,1,0,1,1,1,0,0,0] => 3
[1,1,0,0,1,1,0,0,1,0,1,0] => 4
[1,1,0,0,1,1,0,0,1,1,0,0] => 3
[1,1,0,0,1,1,0,1,0,0,1,0] => 4
[1,1,0,0,1,1,0,1,0,1,0,0] => 4
[1,1,0,0,1,1,0,1,1,0,0,0] => 3
[1,1,0,0,1,1,1,0,0,0,1,0] => 3
[1,1,0,0,1,1,1,0,0,1,0,0] => 3
[1,1,0,0,1,1,1,0,1,0,0,0] => 3
[1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,0,1,0,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,0,1,0,1,1,0,0] => 4
[1,1,0,1,0,0,1,1,0,0,1,0] => 4
[1,1,0,1,0,0,1,1,0,1,0,0] => 4
[1,1,0,1,0,0,1,1,1,0,0,0] => 3
[1,1,0,1,0,1,0,0,1,0,1,0] => 5
[1,1,0,1,0,1,0,0,1,1,0,0] => 4
[1,1,0,1,0,1,0,1,0,0,1,0] => 5
[1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,1,0,1,0,1,0,1,1,0,0,0] => 4
[1,1,0,1,0,1,1,0,0,0,1,0] => 4
[1,1,0,1,0,1,1,0,0,1,0,0] => 4
[1,1,0,1,0,1,1,0,1,0,0,0] => 4
[1,1,0,1,0,1,1,1,0,0,0,0] => 3
[1,1,0,1,1,0,0,0,1,0,1,0] => 4
[1,1,0,1,1,0,0,0,1,1,0,0] => 3
[1,1,0,1,1,0,0,1,0,0,1,0] => 4
[1,1,0,1,1,0,0,1,0,1,0,0] => 4
[1,1,0,1,1,0,0,1,1,0,0,0] => 3
[1,1,0,1,1,0,1,0,0,0,1,0] => 4
[1,1,0,1,1,0,1,0,0,1,0,0] => 4
[1,1,0,1,1,0,1,0,1,0,0,0] => 4
[1,1,0,1,1,0,1,1,0,0,0,0] => 3
[1,1,0,1,1,1,0,0,0,0,1,0] => 3
[1,1,0,1,1,1,0,0,0,1,0,0] => 3
[1,1,0,1,1,1,0,0,1,0,0,0] => 3
[1,1,0,1,1,1,0,1,0,0,0,0] => 3
[1,1,0,1,1,1,1,0,0,0,0,0] => 2
[1,1,1,0,0,0,1,0,1,0,1,0] => 4
[1,1,1,0,0,0,1,0,1,1,0,0] => 3
[1,1,1,0,0,0,1,1,0,0,1,0] => 3
[1,1,1,0,0,0,1,1,0,1,0,0] => 3
[1,1,1,0,0,0,1,1,1,0,0,0] => 2
[1,1,1,0,0,1,0,0,1,0,1,0] => 4
[1,1,1,0,0,1,0,0,1,1,0,0] => 3
[1,1,1,0,0,1,0,1,0,0,1,0] => 4
[1,1,1,0,0,1,0,1,0,1,0,0] => 4
[1,1,1,0,0,1,0,1,1,0,0,0] => 3
[1,1,1,0,0,1,1,0,0,0,1,0] => 3
[1,1,1,0,0,1,1,0,0,1,0,0] => 3
[1,1,1,0,0,1,1,0,1,0,0,0] => 3
[1,1,1,0,0,1,1,1,0,0,0,0] => 2
[1,1,1,0,1,0,0,0,1,0,1,0] => 4
[1,1,1,0,1,0,0,0,1,1,0,0] => 3
[1,1,1,0,1,0,0,1,0,0,1,0] => 4
[1,1,1,0,1,0,0,1,0,1,0,0] => 4
[1,1,1,0,1,0,0,1,1,0,0,0] => 3
[1,1,1,0,1,0,1,0,0,0,1,0] => 4
[1,1,1,0,1,0,1,0,0,1,0,0] => 4
[1,1,1,0,1,0,1,0,1,0,0,0] => 4
[1,1,1,0,1,0,1,1,0,0,0,0] => 3
[1,1,1,0,1,1,0,0,0,0,1,0] => 3
[1,1,1,0,1,1,0,0,0,1,0,0] => 3
[1,1,1,0,1,1,0,0,1,0,0,0] => 3
[1,1,1,0,1,1,0,1,0,0,0,0] => 3
[1,1,1,0,1,1,1,0,0,0,0,0] => 2
[1,1,1,1,0,0,0,0,1,0,1,0] => 3
[1,1,1,1,0,0,0,0,1,1,0,0] => 2
[1,1,1,1,0,0,0,1,0,0,1,0] => 3
[1,1,1,1,0,0,0,1,0,1,0,0] => 3
[1,1,1,1,0,0,0,1,1,0,0,0] => 2
[1,1,1,1,0,0,1,0,0,0,1,0] => 3
[1,1,1,1,0,0,1,0,0,1,0,0] => 3
[1,1,1,1,0,0,1,0,1,0,0,0] => 3
[1,1,1,1,0,0,1,1,0,0,0,0] => 2
[1,1,1,1,0,1,0,0,0,0,1,0] => 3
[1,1,1,1,0,1,0,0,0,1,0,0] => 3
[1,1,1,1,0,1,0,0,1,0,0,0] => 3
[1,1,1,1,0,1,0,1,0,0,0,0] => 3
[1,1,1,1,0,1,1,0,0,0,0,0] => 2
[1,1,1,1,1,0,0,0,0,0,1,0] => 2
[1,1,1,1,1,0,0,0,0,1,0,0] => 2
[1,1,1,1,1,0,0,0,1,0,0,0] => 2
[1,1,1,1,1,0,0,1,0,0,0,0] => 2
[1,1,1,1,1,0,1,0,0,0,0,0] => 2
[1,1,1,1,1,1,0,0,0,0,0,0] => 1
Description
The number of peaks of a Dyck path.
Code
def statistic(x):
return x.number_of_peaks()

Created
Sep 27, 2011 at 19:32 by Chris Berg
Updated
Sep 13, 2014 at 20:34 by Martin Rubey