Identifier
-
Mp00044:
Integer partitions
—conjugate⟶
Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St001730: Binary words ⟶ ℤ
Values
[1] => [1] => 10 => 0
[2] => [1,1] => 110 => 0
[1,1] => [2] => 100 => 1
[3] => [1,1,1] => 1110 => 0
[2,1] => [2,1] => 1010 => 0
[1,1,1] => [3] => 1000 => 1
[4] => [1,1,1,1] => 11110 => 0
[3,1] => [2,1,1] => 10110 => 0
[2,2] => [2,2] => 1100 => 0
[2,1,1] => [3,1] => 10010 => 1
[1,1,1,1] => [4] => 10000 => 1
[5] => [1,1,1,1,1] => 111110 => 0
[4,1] => [2,1,1,1] => 101110 => 0
[3,2] => [2,2,1] => 11010 => 0
[3,1,1] => [3,1,1] => 100110 => 2
[2,2,1] => [3,2] => 10100 => 1
[2,1,1,1] => [4,1] => 100010 => 1
[1,1,1,1,1] => [5] => 100000 => 1
[6] => [1,1,1,1,1,1] => 1111110 => 0
[5,1] => [2,1,1,1,1] => 1011110 => 0
[4,2] => [2,2,1,1] => 110110 => 0
[4,1,1] => [3,1,1,1] => 1001110 => 2
[3,3] => [2,2,2] => 11100 => 0
[3,2,1] => [3,2,1] => 101010 => 0
[3,1,1,1] => [4,1,1] => 1000110 => 1
[2,2,2] => [3,3] => 11000 => 1
[2,2,1,1] => [4,2] => 100100 => 1
[2,1,1,1,1] => [5,1] => 1000010 => 1
[1,1,1,1,1,1] => [6] => 1000000 => 1
[7] => [1,1,1,1,1,1,1] => 11111110 => 0
[6,1] => [2,1,1,1,1,1] => 10111110 => 0
[5,2] => [2,2,1,1,1] => 1101110 => 0
[5,1,1] => [3,1,1,1,1] => 10011110 => 2
[4,3] => [2,2,2,1] => 111010 => 0
[4,2,1] => [3,2,1,1] => 1010110 => 0
[4,1,1,1] => [4,1,1,1] => 10001110 => 2
[3,3,1] => [3,2,2] => 101100 => 0
[3,2,2] => [3,3,1] => 110010 => 0
[3,2,1,1] => [4,2,1] => 1001010 => 1
[3,1,1,1,1] => [5,1,1] => 10000110 => 1
[2,2,2,1] => [4,3] => 101000 => 1
[2,2,1,1,1] => [5,2] => 1000100 => 1
[2,1,1,1,1,1] => [6,1] => 10000010 => 1
[1,1,1,1,1,1,1] => [7] => 10000000 => 1
[8] => [1,1,1,1,1,1,1,1] => 111111110 => 0
[7,1] => [2,1,1,1,1,1,1] => 101111110 => 0
[6,2] => [2,2,1,1,1,1] => 11011110 => 0
[6,1,1] => [3,1,1,1,1,1] => 100111110 => 2
[5,3] => [2,2,2,1,1] => 1110110 => 0
[5,2,1] => [3,2,1,1,1] => 10101110 => 0
[5,1,1,1] => [4,1,1,1,1] => 100011110 => 2
[4,4] => [2,2,2,2] => 111100 => 0
[4,3,1] => [3,2,2,1] => 1011010 => 0
[4,2,2] => [3,3,1,1] => 1100110 => 0
[4,2,1,1] => [4,2,1,1] => 10010110 => 2
[4,1,1,1,1] => [5,1,1,1] => 100001110 => 1
[3,3,2] => [3,3,2] => 110100 => 0
[3,3,1,1] => [4,2,2] => 1001100 => 3
[3,2,2,1] => [4,3,1] => 1010010 => 1
[3,2,1,1,1] => [5,2,1] => 10001010 => 1
[3,1,1,1,1,1] => [6,1,1] => 100000110 => 1
[2,2,2,2] => [4,4] => 110000 => 1
[2,2,2,1,1] => [5,3] => 1001000 => 1
[2,2,1,1,1,1] => [6,2] => 10000100 => 1
[2,1,1,1,1,1,1] => [7,1] => 100000010 => 1
[1,1,1,1,1,1,1,1] => [8] => 100000000 => 1
[7,2] => [2,2,1,1,1,1,1] => 110111110 => 0
[6,3] => [2,2,2,1,1,1] => 11101110 => 0
[6,2,1] => [3,2,1,1,1,1] => 101011110 => 0
[5,4] => [2,2,2,2,1] => 1111010 => 0
[5,3,1] => [3,2,2,1,1] => 10110110 => 0
[5,2,2] => [3,3,1,1,1] => 11001110 => 0
[5,2,1,1] => [4,2,1,1,1] => 100101110 => 2
[4,4,1] => [3,2,2,2] => 1011100 => 0
[4,3,2] => [3,3,2,1] => 1101010 => 0
[4,3,1,1] => [4,2,2,1] => 10011010 => 2
[4,2,2,1] => [4,3,1,1] => 10100110 => 2
[4,2,1,1,1] => [5,2,1,1] => 100010110 => 1
[3,3,3] => [3,3,3] => 111000 => 0
[3,3,2,1] => [4,3,2] => 1010100 => 1
[3,3,1,1,1] => [5,2,2] => 10001100 => 1
[3,2,2,2] => [4,4,1] => 1100010 => 1
[3,2,2,1,1] => [5,3,1] => 10010010 => 1
[3,2,1,1,1,1] => [6,2,1] => 100001010 => 1
[2,2,2,2,1] => [5,4] => 1010000 => 1
[2,2,2,1,1,1] => [6,3] => 10001000 => 1
[2,2,1,1,1,1,1] => [7,2] => 100000100 => 1
[7,3] => [2,2,2,1,1,1,1] => 111011110 => 0
[6,4] => [2,2,2,2,1,1] => 11110110 => 0
[6,3,1] => [3,2,2,1,1,1] => 101101110 => 0
[6,2,2] => [3,3,1,1,1,1] => 110011110 => 0
[5,5] => [2,2,2,2,2] => 1111100 => 0
[5,4,1] => [3,2,2,2,1] => 10111010 => 0
[5,3,2] => [3,3,2,1,1] => 11010110 => 0
[5,3,1,1] => [4,2,2,1,1] => 100110110 => 2
[5,2,2,1] => [4,3,1,1,1] => 101001110 => 2
[4,4,2] => [3,3,2,2] => 1101100 => 0
[4,4,1,1] => [4,2,2,2] => 10011100 => 2
[4,3,3] => [3,3,3,1] => 1110010 => 0
[4,3,2,1] => [4,3,2,1] => 10101010 => 0
[4,3,1,1,1] => [5,2,2,1] => 100011010 => 1
>>> Load all 250 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of times the path corresponding to a binary word crosses the base line.
Interpret each $0$ as a step $(1,-1)$ and $1$ as a step $(1,1)$. Then this statistic counts the number of times the path crosses the $x$-axis.
Interpret each $0$ as a step $(1,-1)$ and $1$ as a step $(1,1)$. Then this statistic counts the number of times the path crosses the $x$-axis.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!