Identifier
-
Mp00074:
Posets
—to graph⟶
Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001605: Integer partitions ⟶ ℤ
Values
([],4) => ([],4) => [1,1,1,1] => [1,1,1] => 2
([],5) => ([],5) => [1,1,1,1,1] => [1,1,1,1] => 6
([(3,4)],5) => ([(3,4)],5) => [2,1,1,1] => [1,1,1] => 2
([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => [2,2,1] => [2,1] => 1
([],6) => ([],6) => [1,1,1,1,1,1] => [1,1,1,1,1] => 24
([(4,5)],6) => ([(4,5)],6) => [2,1,1,1,1] => [1,1,1,1] => 6
([(3,4),(3,5)],6) => ([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 2
([(3,4),(4,5)],6) => ([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 2
([(3,5),(4,5)],6) => ([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 2
([(1,5),(2,5),(3,4)],6) => ([(1,2),(3,5),(4,5)],6) => [3,2,1] => [2,1] => 1
([(0,5),(1,5),(2,3),(2,4)],6) => ([(0,5),(1,5),(2,4),(3,4)],6) => [3,3] => [3] => 1
([(0,5),(1,5),(2,3),(3,4)],6) => ([(0,5),(1,5),(2,4),(3,4)],6) => [3,3] => [3] => 1
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,5),(1,5),(2,4),(3,4)],6) => [3,3] => [3] => 1
([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => [2,2,1,1] => [2,1,1] => 3
([(1,5),(2,3),(2,4)],6) => ([(1,2),(3,5),(4,5)],6) => [3,2,1] => [2,1] => 1
([(0,4),(0,5),(1,2),(1,3)],6) => ([(0,5),(1,5),(2,4),(3,4)],6) => [3,3] => [3] => 1
([(0,5),(1,3),(1,4),(5,2)],6) => ([(0,5),(1,5),(2,4),(3,4)],6) => [3,3] => [3] => 1
([(1,3),(2,4),(4,5)],6) => ([(1,2),(3,5),(4,5)],6) => [3,2,1] => [2,1] => 1
([(0,5),(1,4),(4,2),(5,3)],6) => ([(0,5),(1,5),(2,4),(3,4)],6) => [3,3] => [3] => 1
([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => [2,2,2] => [2,2] => 2
([],7) => ([],7) => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => 120
([(5,6)],7) => ([(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,1] => 24
([(4,5),(4,6)],7) => ([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 6
([(3,4),(3,5),(3,6)],7) => ([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 2
([(3,4),(3,5),(5,6)],7) => ([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => 2
([(3,4),(3,5),(4,6),(5,6)],7) => ([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => 2
([(4,5),(5,6)],7) => ([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 6
([(3,4),(4,5),(4,6)],7) => ([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 2
([(3,4),(4,6),(6,5)],7) => ([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => 2
([(4,6),(5,6)],7) => ([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 6
([(3,6),(4,6),(6,5)],7) => ([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 2
([(3,6),(4,6),(5,6)],7) => ([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 2
([(1,6),(2,6),(3,6),(4,5)],7) => ([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 1
([(0,6),(1,6),(2,6),(3,4),(3,5)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 1
([(0,6),(1,6),(2,6),(3,4),(4,5)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 1
([(2,6),(3,6),(4,5)],7) => ([(2,3),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => 3
([(1,6),(2,6),(3,4),(6,5)],7) => ([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 1
([(1,6),(2,6),(3,4),(3,5)],7) => ([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 1
([(0,6),(1,6),(2,3),(2,4),(6,5)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 1
([(0,6),(1,6),(2,3),(2,4),(2,5)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 1
([(0,6),(1,6),(2,3),(2,4),(4,5)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 1
([(0,5),(1,5),(2,3),(2,4),(3,6),(4,6)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,3] => [3] => 1
([(1,6),(2,6),(3,4),(4,5)],7) => ([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 1
([(0,6),(1,6),(2,3),(3,5),(6,4)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 1
([(0,3),(1,6),(2,6),(3,4),(3,5)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 1
([(0,3),(1,6),(2,6),(3,5),(5,4)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 1
([(1,6),(2,6),(3,5),(4,5)],7) => ([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 1
([(0,6),(1,6),(2,5),(3,5),(6,4)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 1
([(0,6),(1,6),(2,5),(3,4)],7) => ([(0,3),(1,2),(4,6),(5,6)],7) => [3,2,2] => [2,2] => 2
([(0,5),(1,5),(2,6),(3,4),(3,6)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 1
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,3] => [3] => 1
([(0,6),(1,5),(2,5),(3,4),(4,6)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 1
([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => [2,2,1,1,1] => [2,1,1,1] => 12
([(3,6),(4,5),(4,6)],7) => ([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => 2
([(3,5),(3,6),(4,5),(4,6)],7) => ([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => 2
([(1,5),(1,6),(2,5),(2,6),(3,4)],7) => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => [2,1] => 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,3] => [3] => 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,3] => [3] => 1
([(2,6),(3,4),(3,5)],7) => ([(2,3),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => 3
([(1,6),(2,3),(2,4),(2,5)],7) => ([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 1
([(0,6),(1,3),(1,4),(1,5),(6,2)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 1
([(1,5),(2,4),(2,6),(6,3)],7) => ([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => 1
([(0,6),(1,4),(1,5),(5,3),(6,2)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 1
([(1,3),(2,4),(2,5),(4,6),(5,6)],7) => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => [2,1] => 1
([(0,5),(1,3),(1,4),(3,6),(4,6),(5,2)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,3] => [3] => 1
([(1,5),(1,6),(2,3),(2,4)],7) => ([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 1
([(0,5),(0,6),(1,2),(1,3),(1,4)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 1
([(0,3),(0,4),(1,5),(1,6),(6,2)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 1
([(0,2),(0,3),(1,4),(1,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,3] => [3] => 1
([(1,6),(2,4),(2,5),(6,3)],7) => ([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 1
([(0,6),(1,4),(1,5),(6,2),(6,3)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 1
([(3,6),(4,5),(5,6)],7) => ([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => 2
([(2,4),(3,5),(5,6)],7) => ([(2,3),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => 3
([(1,5),(2,6),(6,3),(6,4)],7) => ([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 1
([(1,6),(2,5),(5,3),(6,4)],7) => ([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 1
([(0,6),(1,5),(5,4),(6,2),(6,3)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 1
([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [2,2,1] => 6
([(1,6),(2,5),(3,4),(3,6)],7) => ([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => 1
([(0,6),(1,5),(1,6),(2,3),(2,4)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 1
([(0,6),(1,4),(2,3),(2,6),(4,5)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 1
([(0,6),(1,5),(2,3),(2,4)],7) => ([(0,3),(1,2),(4,6),(5,6)],7) => [3,2,2] => [2,2] => 2
([(0,6),(1,3),(1,4),(5,2),(6,5)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 1
([(0,6),(1,5),(2,3),(2,4),(5,6)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 1
([(1,6),(2,4),(5,3),(6,5)],7) => ([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => 1
([(0,5),(1,6),(4,3),(5,4),(6,2)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 1
([(1,6),(2,4),(3,5),(5,6)],7) => ([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => 1
([(0,5),(1,4),(2,6),(6,3)],7) => ([(0,3),(1,2),(4,6),(5,6)],7) => [3,2,2] => [2,2] => 2
([(0,6),(1,3),(2,4),(3,5),(4,6)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 1
([(3,7),(4,7),(5,7),(6,7)],8) => ([(3,7),(4,7),(5,7),(6,7)],8) => [5,1,1,1] => [1,1,1] => 2
([(4,6),(4,7),(5,6),(5,7)],8) => ([(4,6),(4,7),(5,6),(5,7)],8) => [4,1,1,1,1] => [1,1,1,1] => 6
([(4,7),(5,6),(5,7)],8) => ([(4,7),(5,6),(6,7)],8) => [4,1,1,1,1] => [1,1,1,1] => 6
([],8) => ([],8) => [1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => 720
([(0,7),(1,6),(2,4),(2,7),(5,3),(6,5)],8) => ([(0,7),(1,5),(2,4),(3,6),(4,5),(6,7)],8) => [4,4] => [4] => 1
([(0,7),(1,4),(1,6),(5,3),(6,2),(7,5)],8) => ([(0,7),(1,5),(2,4),(3,6),(4,5),(6,7)],8) => [4,4] => [4] => 1
([(0,7),(1,6),(2,4),(4,7),(5,3),(6,5)],8) => ([(0,7),(1,5),(2,4),(3,6),(4,5),(6,7)],8) => [4,4] => [4] => 1
([(0,7),(1,6),(4,2),(5,3),(6,4),(7,5)],8) => ([(0,7),(1,5),(2,4),(3,6),(4,5),(6,7)],8) => [4,4] => [4] => 1
([(4,5),(5,7),(7,6)],8) => ([(4,7),(5,6),(6,7)],8) => [4,1,1,1,1] => [1,1,1,1] => 6
([(0,6),(0,7),(1,6),(1,7),(2,5),(3,4)],8) => ([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8) => [4,2,2] => [2,2] => 2
([(4,7),(5,6)],8) => ([(4,7),(5,6)],8) => [2,2,1,1,1,1] => [2,1,1,1,1] => 60
([(0,7),(1,6),(2,5),(3,4)],8) => ([(0,7),(1,6),(2,5),(3,4)],8) => [2,2,2,2] => [2,2,2] => 16
>>> Load all 115 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The number of colourings of a cycle such that the multiplicities of colours are given by a partition.
Two colourings are considered equal, if they are obtained by an action of the cyclic group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Two colourings are considered equal, if they are obtained by an action of the cyclic group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Map
first row removal
Description
Removes the first entry of an integer partition
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!