Identifier
Identifier
Values
([],1) generating graphics... => 1
([],2) generating graphics... => 1
([(0,1)],2) generating graphics... => 1
([],3) generating graphics... => 3
([(1,2)],3) generating graphics... => 2
([(0,1),(0,2)],3) generating graphics... => 1
([(0,2),(2,1)],3) generating graphics... => 1
([(0,2),(1,2)],3) generating graphics... => 1
([],4) generating graphics... => 11
([(2,3)],4) generating graphics... => 6
([(1,2),(1,3)],4) generating graphics... => 4
([(0,1),(0,2),(0,3)],4) generating graphics... => 3
([(0,2),(0,3),(3,1)],4) generating graphics... => 2
([(0,1),(0,2),(1,3),(2,3)],4) generating graphics... => 1
([(1,2),(2,3)],4) generating graphics... => 3
([(0,3),(3,1),(3,2)],4) generating graphics... => 1
([(1,3),(2,3)],4) generating graphics... => 4
([(0,3),(1,3),(3,2)],4) generating graphics... => 1
([(0,3),(1,3),(2,3)],4) generating graphics... => 3
([(0,3),(1,2)],4) generating graphics... => 4
([(0,3),(1,2),(1,3)],4) generating graphics... => 3
([(0,2),(0,3),(1,2),(1,3)],4) generating graphics... => 2
([(0,3),(2,1),(3,2)],4) generating graphics... => 1
([(0,3),(1,2),(2,3)],4) generating graphics... => 2
([],5) generating graphics... => 50
([(3,4)],5) generating graphics... => 26
([(2,3),(2,4)],5) generating graphics... => 19
([(1,2),(1,3),(1,4)],5) generating graphics... => 14
([(0,1),(0,2),(0,3),(0,4)],5) generating graphics... => 11
([(0,2),(0,3),(0,4),(4,1)],5) generating graphics... => 6
([(0,1),(0,2),(0,3),(2,4),(3,4)],5) generating graphics... => 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) generating graphics... => 3
([(1,3),(1,4),(4,2)],5) generating graphics... => 8
([(0,3),(0,4),(4,1),(4,2)],5) generating graphics... => 4
([(1,2),(1,3),(2,4),(3,4)],5) generating graphics... => 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) generating graphics... => 1
([(0,3),(0,4),(3,2),(4,1)],5) generating graphics... => 4
([(0,2),(0,3),(2,4),(3,1),(3,4)],5) generating graphics... => 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 2
([(2,3),(3,4)],5) generating graphics... => 12
([(1,4),(4,2),(4,3)],5) generating graphics... => 5
([(0,4),(4,1),(4,2),(4,3)],5) generating graphics... => 3
([(2,4),(3,4)],5) generating graphics... => 19
([(1,4),(2,4),(4,3)],5) generating graphics... => 5
([(0,4),(1,4),(4,2),(4,3)],5) generating graphics... => 2
([(1,4),(2,4),(3,4)],5) generating graphics... => 14
([(0,4),(1,4),(2,4),(4,3)],5) generating graphics... => 3
([(0,4),(1,4),(2,4),(3,4)],5) generating graphics... => 11
([(0,4),(1,4),(2,3)],5) generating graphics... => 10
([(0,4),(1,3),(2,3),(2,4)],5) generating graphics... => 7
([(0,4),(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 6
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 5
([(0,4),(1,4),(2,3),(4,2)],5) generating graphics... => 1
([(0,4),(1,3),(2,3),(3,4)],5) generating graphics... => 4
([(0,4),(1,4),(2,3),(2,4)],5) generating graphics... => 9
([(0,4),(1,4),(2,3),(3,4)],5) generating graphics... => 6
([(1,4),(2,3)],5) generating graphics... => 17
([(1,4),(2,3),(2,4)],5) generating graphics... => 13
([(0,4),(1,2),(1,4),(2,3)],5) generating graphics... => 5
([(0,3),(1,2),(1,3),(2,4),(3,4)],5) generating graphics... => 3
([(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 9
([(0,3),(0,4),(1,3),(1,4),(4,2)],5) generating graphics... => 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) generating graphics... => 2
([(0,4),(1,2),(1,4),(4,3)],5) generating graphics... => 4
([(0,4),(1,2),(1,3)],5) generating graphics... => 10
([(0,4),(1,2),(1,3),(1,4)],5) generating graphics... => 9
([(0,2),(0,4),(3,1),(4,3)],5) generating graphics... => 3
([(0,4),(1,2),(1,3),(3,4)],5) generating graphics... => 5
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) generating graphics... => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) generating graphics... => 4
([(0,3),(0,4),(1,2),(1,4)],5) generating graphics... => 7
([(0,3),(0,4),(1,2),(1,3),(1,4)],5) generating graphics... => 6
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5) generating graphics... => 5
([(0,3),(0,4),(1,2),(1,3),(2,4)],5) generating graphics... => 4
([(0,3),(1,2),(1,4),(3,4)],5) generating graphics... => 5
([(0,3),(0,4),(1,2),(2,3),(2,4)],5) generating graphics... => 3
([(1,4),(3,2),(4,3)],5) generating graphics... => 4
([(0,3),(3,4),(4,1),(4,2)],5) generating graphics... => 1
([(1,4),(2,3),(3,4)],5) generating graphics... => 8
([(0,4),(1,2),(2,4),(4,3)],5) generating graphics... => 2
([(0,3),(1,4),(4,2)],5) generating graphics... => 6
([(0,4),(3,2),(4,1),(4,3)],5) generating graphics... => 2
([(0,4),(1,2),(2,3),(2,4)],5) generating graphics... => 4
([(0,4),(2,3),(3,1),(4,2)],5) generating graphics... => 1
([(0,3),(1,2),(2,4),(3,4)],5) generating graphics... => 4
([(0,4),(1,2),(2,3),(3,4)],5) generating graphics... => 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) generating graphics... => 1
([],6) generating graphics... => 274
([(4,5)],6) generating graphics... => 154
([(3,4),(3,5)],6) generating graphics... => 107
([(2,3),(2,4),(2,5)],6) generating graphics... => 78
([(1,2),(1,3),(1,4),(1,5)],6) generating graphics... => 61
([(0,1),(0,2),(0,3),(0,4),(0,5)],6) generating graphics... => 50
([(0,2),(0,3),(0,4),(0,5),(5,1)],6) generating graphics... => 26
([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6) generating graphics... => 19
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6) generating graphics... => 14
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 11
([(1,3),(1,4),(1,5),(5,2)],6) generating graphics... => 31
([(0,3),(0,4),(0,5),(5,1),(5,2)],6) generating graphics... => 19
([(1,2),(1,3),(1,4),(3,5),(4,5)],6) generating graphics... => 23
([(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) generating graphics... => 17
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) generating graphics... => 3
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6) generating graphics... => 10
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6) generating graphics... => 7
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 6
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 5
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6) generating graphics... => 9
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => 4
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6) generating graphics... => 5
([(0,3),(0,4),(0,5),(4,2),(5,1)],6) generating graphics... => 17
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6) generating graphics... => 13
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 9
([(2,3),(2,4),(4,5)],6) generating graphics... => 40
([(1,4),(1,5),(5,2),(5,3)],6) generating graphics... => 23
([(0,4),(0,5),(5,1),(5,2),(5,3)],6) generating graphics... => 14
([(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 29
([(1,2),(1,3),(2,5),(3,5),(5,4)],6) generating graphics... => 6
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) generating graphics... => 2
([(1,4),(1,5),(4,3),(5,2)],6) generating graphics... => 21
([(1,3),(1,4),(3,5),(4,2),(4,5)],6) generating graphics... => 16
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 11
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6) generating graphics... => 3
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) generating graphics... => 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6) generating graphics... => 4
([(0,4),(0,5),(4,3),(5,1),(5,2)],6) generating graphics... => 10
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6) generating graphics... => 9
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) generating graphics... => 7
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6) generating graphics... => 6
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 5
([(3,4),(4,5)],6) generating graphics... => 60
([(2,3),(3,4),(3,5)],6) generating graphics... => 29
([(1,5),(5,2),(5,3),(5,4)],6) generating graphics... => 17
([(0,5),(5,1),(5,2),(5,3),(5,4)],6) generating graphics... => 11
([(2,3),(3,5),(5,4)],6) generating graphics... => 20
([(1,4),(4,5),(5,2),(5,3)],6) generating graphics... => 6
([(0,4),(4,5),(5,1),(5,2),(5,3)],6) generating graphics... => 3
([(3,5),(4,5)],6) generating graphics... => 107
([(2,5),(3,5),(5,4)],6) generating graphics... => 29
([(1,5),(2,5),(5,3),(5,4)],6) generating graphics... => 11
([(0,5),(1,5),(5,2),(5,3),(5,4)],6) generating graphics... => 5
([(2,5),(3,5),(4,5)],6) generating graphics... => 78
([(1,5),(2,5),(3,5),(5,4)],6) generating graphics... => 17
([(0,5),(1,5),(2,5),(5,3),(5,4)],6) generating graphics... => 5
([(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 61
([(0,5),(1,5),(2,5),(3,5),(5,4)],6) generating graphics... => 11
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 50
([(0,5),(1,5),(2,5),(3,4)],6) generating graphics... => 37
([(0,5),(1,5),(2,5),(3,4),(5,3)],6) generating graphics... => 3
([(0,5),(1,5),(2,5),(3,4),(5,4)],6) generating graphics... => 14
([(0,5),(1,5),(2,5),(3,4),(3,5)],6) generating graphics... => 35
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) generating graphics... => 26
([(1,5),(2,5),(3,4)],6) generating graphics... => 52
([(1,5),(2,4),(3,4),(3,5)],6) generating graphics... => 37
([(0,5),(1,4),(2,4),(2,5),(5,3)],6) generating graphics... => 12
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 7
([(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 32
([(0,5),(1,4),(1,5),(2,4),(2,5),(4,3)],6) generating graphics... => 11
([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6) generating graphics... => 6
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 27
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6) generating graphics... => 8
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) generating graphics... => 5
([(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6) generating graphics... => 9
([(1,5),(2,5),(3,4),(5,3)],6) generating graphics... => 6
([(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => 23
([(0,5),(1,4),(2,4),(4,5),(5,3)],6) generating graphics... => 4
([(0,5),(1,5),(2,3),(5,4)],6) generating graphics... => 15
([(0,5),(1,5),(4,2),(5,3),(5,4)],6) generating graphics... => 3
([(0,5),(1,5),(2,4),(5,3),(5,4)],6) generating graphics... => 8
([(1,5),(2,5),(3,4),(3,5)],6) generating graphics... => 47
([(0,5),(1,5),(2,3),(2,5),(5,4)],6) generating graphics... => 12
([(0,5),(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => 20
([(0,5),(1,5),(2,3),(2,5),(3,4),(5,4)],6) generating graphics... => 9
([(0,5),(1,5),(2,3),(2,4)],6) generating graphics... => 33
([(0,5),(1,5),(4,2),(4,3),(5,4)],6) generating graphics... => 2
([(0,4),(1,4),(2,3),(2,5),(4,5)],6) generating graphics... => 14
([(0,3),(1,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 7
([(0,5),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 31
([(0,5),(1,2),(1,4),(3,5),(4,3)],6) generating graphics... => 11
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6) generating graphics... => 5
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) generating graphics... => 4
([(0,5),(1,5),(2,3),(2,4),(4,5)],6) generating graphics... => 24
([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6) generating graphics... => 8
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) generating graphics... => 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 19
([(1,5),(2,5),(3,4),(4,5)],6) generating graphics... => 31
([(0,5),(1,5),(2,3),(3,5),(5,4)],6) generating graphics... => 6
([(0,5),(1,5),(2,3),(3,4)],6) generating graphics... => 21
([(0,5),(1,5),(3,2),(4,3),(5,4)],6) generating graphics... => 1
([(0,4),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 10
([(0,5),(1,4),(3,5),(4,2),(4,3)],6) generating graphics... => 7
([(0,4),(2,5),(3,5),(4,1),(4,2),(4,3)],6) generating graphics... => 4
([(0,5),(1,5),(2,3),(3,4),(3,5)],6) generating graphics... => 17
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) generating graphics... => 12
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6) generating graphics... => 5
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) generating graphics... => 3
([(0,5),(1,5),(2,4),(3,4)],6) generating graphics... => 33
([(0,5),(1,5),(2,4),(3,4),(3,5)],6) generating graphics... => 28
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 25
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 23
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 20
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 17
([(0,5),(1,4),(2,4),(3,5),(4,3)],6) generating graphics... => 5
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) generating graphics... => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => 19
([(2,5),(3,4)],6) generating graphics... => 89
([(2,5),(3,4),(3,5)],6) generating graphics... => 69
([(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => 28
([(0,5),(1,4),(1,5),(4,2),(4,3)],6) generating graphics... => 14
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6) generating graphics... => 6
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6) generating graphics... => 4
([(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 16
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6) generating graphics... => 3
([(0,5),(1,4),(1,5),(4,2),(5,3)],6) generating graphics... => 7
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6) generating graphics... => 5
([(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 49
([(1,4),(1,5),(2,4),(2,5),(5,3)],6) generating graphics... => 17
([(0,4),(0,5),(1,4),(1,5),(5,2),(5,3)],6) generating graphics... => 7
([(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 11
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6) generating graphics... => 5
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6) generating graphics... => 4
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6) generating graphics... => 3
([(0,4),(0,5),(1,4),(1,5),(2,3)],6) generating graphics... => 25
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6) generating graphics... => 4
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) generating graphics... => 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6) generating graphics... => 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(4,5)],6) generating graphics... => 13
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 9
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6) generating graphics... => 21
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => 10
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 19
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) generating graphics... => 14
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,5)],6) generating graphics... => 15
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6) generating graphics... => 11
([(1,5),(2,3),(2,5),(5,4)],6) generating graphics... => 22
([(0,5),(1,2),(1,5),(5,3),(5,4)],6) generating graphics... => 8
([(1,5),(2,3),(2,4)],6) generating graphics... => 52
([(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 47
([(0,5),(1,3),(1,4),(1,5),(4,2)],6) generating graphics... => 22
([(0,4),(1,2),(1,3),(1,4),(3,5),(4,5)],6) generating graphics... => 12
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5)],6) generating graphics... => 14
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) generating graphics... => 9
([(0,5),(1,2),(1,3),(1,5),(5,4)],6) generating graphics... => 17
([(0,5),(1,2),(1,3),(1,4)],6) generating graphics... => 37
([(0,5),(1,2),(1,3),(1,4),(1,5)],6) generating graphics... => 35
([(0,2),(0,3),(0,5),(4,1),(5,4)],6) generating graphics... => 12
([(0,5),(1,2),(1,3),(1,4),(4,5)],6) generating graphics... => 24
([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6) generating graphics... => 8
([(0,5),(1,2),(1,3),(1,4),(3,5),(4,5)],6) generating graphics... => 18
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) generating graphics... => 6
([(0,5),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) generating graphics... => 14
([(0,4),(1,2),(1,3),(1,5),(4,5)],6) generating graphics... => 20
([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6) generating graphics... => 11
([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 8
([(1,3),(1,5),(4,2),(5,4)],6) generating graphics... => 15
([(0,3),(0,4),(4,5),(5,1),(5,2)],6) generating graphics... => 5
([(0,4),(0,5),(3,2),(4,3),(5,1)],6) generating graphics... => 6
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) generating graphics... => 5
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) generating graphics... => 3
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6) generating graphics... => 5
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6) generating graphics... => 4
([(1,5),(2,3),(2,4),(4,5)],6) generating graphics... => 30
([(0,5),(1,2),(1,3),(3,5),(5,4)],6) generating graphics... => 7
([(1,3),(1,4),(2,5),(3,5),(4,2)],6) generating graphics... => 10
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) generating graphics... => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 23
([(0,5),(1,2),(1,3),(2,5),(3,5),(5,4)],6) generating graphics... => 4
([(0,5),(1,3),(1,4),(3,5),(4,2)],6) generating graphics... => 14
([(0,4),(1,2),(1,3),(2,5),(3,4),(3,5)],6) generating graphics... => 10
([(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 8
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6) generating graphics... => 5
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6) generating graphics... => 5
([(0,5),(1,3),(1,4),(3,5),(4,2),(4,5)],6) generating graphics... => 12
([(0,4),(1,3),(1,5),(5,2)],6) generating graphics... => 24
([(0,3),(0,5),(4,2),(5,1),(5,4)],6) generating graphics... => 8
([(0,5),(1,3),(1,4),(4,2),(4,5)],6) generating graphics... => 17
([(0,4),(1,2),(1,3),(3,5),(4,5)],6) generating graphics... => 14
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) generating graphics... => 3
([(0,4),(1,2),(1,3),(2,5),(3,5)],6) generating graphics... => 15
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) generating graphics... => 10
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) generating graphics... => 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6) generating graphics... => 5
([(1,4),(1,5),(2,3),(2,5)],6) generating graphics... => 37
([(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 32
([(0,4),(0,5),(1,3),(1,4),(1,5),(5,2)],6) generating graphics... => 13
([(0,4),(0,5),(1,2),(1,4),(1,5),(4,3),(5,3)],6) generating graphics... => 8
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 27
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(5,2)],6) generating graphics... => 11
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(4,2),(5,2)],6) generating graphics... => 7
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) generating graphics... => 5
([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3)],6) generating graphics... => 15
([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(5,3)],6) generating graphics... => 9
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) generating graphics... => 6
([(0,4),(0,5),(1,3),(1,5),(5,2)],6) generating graphics... => 15
([(1,4),(1,5),(2,3),(2,4),(3,5)],6) generating graphics... => 23
([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6) generating graphics... => 7
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6) generating graphics... => 5
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6) generating graphics... => 4
([(0,3),(0,5),(1,4),(1,5),(4,2)],6) generating graphics... => 17
([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6) generating graphics... => 10
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6) generating graphics... => 11
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6) generating graphics... => 6
([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5)],6) generating graphics... => 11
([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5),(4,5)],6) generating graphics... => 7
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6) generating graphics... => 6
([(0,4),(0,5),(1,2),(1,3)],6) generating graphics... => 33
([(0,4),(0,5),(1,2),(1,3),(1,5)],6) generating graphics... => 28
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) generating graphics... => 25
([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6) generating graphics... => 18
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6) generating graphics... => 13
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6) generating graphics... => 23
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) generating graphics... => 20
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) generating graphics... => 17
([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6) generating graphics... => 14
([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6) generating graphics... => 16
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6) generating graphics... => 10
([(0,4),(0,5),(1,2),(1,3),(3,5)],6) generating graphics... => 20
([(0,4),(0,5),(1,2),(1,3),(3,4),(3,5)],6) generating graphics... => 13
([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6) generating graphics... => 3
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6) generating graphics... => 4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,5)],6) generating graphics... => 14
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) generating graphics... => 11
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4),(3,5)],6) generating graphics... => 9
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 7
([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6) generating graphics... => 9
([(1,4),(2,3),(2,5),(4,5)],6) generating graphics... => 28
([(0,4),(1,3),(1,5),(4,5),(5,2)],6) generating graphics... => 6
([(1,4),(1,5),(2,3),(3,4),(3,5)],6) generating graphics... => 17
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6) generating graphics... => 4
([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) generating graphics... => 3
([(0,3),(1,4),(1,5),(3,5),(4,2)],6) generating graphics... => 9
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) generating graphics... => 5
([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6) generating graphics... => 7
([(0,5),(1,3),(1,4),(5,2)],6) generating graphics... => 21
([(0,2),(0,5),(3,4),(4,1),(5,3)],6) generating graphics... => 4
([(0,5),(4,2),(4,3),(5,1),(5,4)],6) generating graphics... => 4
([(0,4),(1,3),(1,5),(4,2),(4,5)],6) generating graphics... => 12
([(0,4),(0,5),(1,2),(2,3),(2,4),(2,5)],6) generating graphics... => 9
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6) generating graphics... => 5
([(2,5),(3,4),(4,5)],6) generating graphics... => 40
([(1,5),(2,3),(3,5),(5,4)],6) generating graphics... => 10
([(0,5),(1,2),(2,5),(5,3),(5,4)],6) generating graphics... => 3
([(1,3),(2,4),(4,5)],6) generating graphics... => 33
([(1,5),(4,3),(5,2),(5,4)],6) generating graphics... => 10
([(1,5),(2,3),(3,4),(3,5)],6) generating graphics... => 22
([(0,5),(1,4),(4,2),(4,5),(5,3)],6) generating graphics... => 5
([(0,4),(1,5),(5,2),(5,3)],6) generating graphics... => 15
([(0,5),(4,3),(5,1),(5,2),(5,4)],6) generating graphics... => 6
([(0,5),(1,4),(4,2),(4,3),(4,5)],6) generating graphics... => 12
([(1,5),(3,4),(4,2),(5,3)],6) generating graphics... => 5
([(0,4),(3,5),(4,3),(5,1),(5,2)],6) generating graphics... => 1
([(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 21
([(0,4),(1,3),(3,5),(4,5),(5,2)],6) generating graphics... => 4
([(0,5),(1,4),(4,2),(5,3)],6) generating graphics... => 9
([(0,5),(3,4),(4,2),(5,1),(5,3)],6) generating graphics... => 3
([(0,3),(1,4),(3,5),(4,2),(4,5)],6) generating graphics... => 7
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 5
([(1,5),(2,3),(3,4),(4,5)],6) generating graphics... => 15
([(1,4),(2,5),(3,5),(4,2),(4,3)],6) generating graphics... => 6
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) generating graphics... => 1
([(0,5),(1,4),(2,5),(4,2),(5,3)],6) generating graphics... => 3
([(0,5),(1,4),(2,3)],6) generating graphics... => 43
([(0,5),(1,3),(2,4),(2,5)],6) generating graphics... => 34
([(0,5),(1,4),(2,3),(2,4),(2,5)],6) generating graphics... => 29
([(0,5),(1,4),(1,5),(3,2),(4,3)],6) generating graphics... => 7
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 5
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) generating graphics... => 20
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6) generating graphics... => 4
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 13
([(0,5),(1,3),(1,5),(4,2),(5,4)],6) generating graphics... => 5
([(0,5),(1,4),(2,3),(2,4),(4,5)],6) generating graphics... => 17
([(0,4),(1,4),(1,5),(2,3),(2,5)],6) generating graphics... => 26
([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 21
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 19
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6) generating graphics... => 19
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 17
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 15
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 13
([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6) generating graphics... => 11
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 24
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) generating graphics... => 18
([(0,5),(1,4),(1,5),(2,3),(2,5)],6) generating graphics... => 29
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => 16
([(0,4),(1,4),(1,5),(2,3),(3,5)],6) generating graphics... => 17
([(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6) generating graphics... => 13
([(0,4),(1,3),(1,5),(2,5),(4,2)],6) generating graphics... => 7
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6) generating graphics... => 4
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6) generating graphics... => 2
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6) generating graphics... => 3
([(0,5),(1,4),(2,3),(2,5),(4,5)],6) generating graphics... => 22
([(0,5),(1,3),(4,2),(5,4)],6) generating graphics... => 8
([(0,5),(3,2),(4,1),(5,3),(5,4)],6) generating graphics... => 4
([(0,5),(1,4),(3,2),(4,3),(4,5)],6) generating graphics... => 6
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6) generating graphics... => 4
([(0,4),(3,2),(4,5),(5,1),(5,3)],6) generating graphics... => 2
([(0,5),(1,3),(3,4),(4,2),(4,5)],6) generating graphics... => 5
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) generating graphics... => 1
([(0,5),(1,3),(2,4),(4,5)],6) generating graphics... => 24
([(0,5),(1,4),(2,3),(3,4),(3,5)],6) generating graphics... => 15
([(0,5),(1,3),(3,5),(4,2),(5,4)],6) generating graphics... => 2
([(0,5),(1,4),(2,3),(3,5),(5,4)],6) generating graphics... => 8
([(0,5),(1,4),(2,5),(3,2),(4,3)],6) generating graphics... => 4
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) generating graphics... => 1
([(0,3),(1,4),(2,5),(3,5),(4,2)],6) generating graphics... => 6
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) generating graphics... => 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 17
([],7) generating graphics... => 1764
([(5,6)],7) generating graphics... => 1044
([(4,5),(4,6)],7) generating graphics... => 702
([(3,4),(3,5),(3,6)],7) generating graphics... => 508
([(2,3),(2,4),(2,5),(2,6)],7) generating graphics... => 396
([(1,2),(1,3),(1,4),(1,5),(1,6)],7) generating graphics... => 324
([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6)],7) generating graphics... => 274
([(0,2),(0,3),(0,4),(0,5),(0,6),(6,1)],7) generating graphics... => 154
([(0,1),(0,2),(0,3),(0,4),(0,5),(4,6),(5,6)],7) generating graphics... => 107
([(0,1),(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,6)],7) generating graphics... => 78
([(0,1),(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 61
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 50
([(1,3),(1,4),(1,5),(1,6),(6,2)],7) generating graphics... => 180
([(0,3),(0,4),(0,5),(0,6),(6,1),(6,2)],7) generating graphics... => 107
([(1,2),(1,3),(1,4),(1,5),(4,6),(5,6)],7) generating graphics... => 126
([(1,2),(1,3),(1,4),(1,5),(3,6),(4,6),(5,6)],7) generating graphics... => 92
([(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 72
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7) generating graphics... => 11
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1)],7) generating graphics... => 37
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1),(5,6)],7) generating graphics... => 35
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) generating graphics... => 14
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1)],7) generating graphics... => 17
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,1)],7) generating graphics... => 52
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6)],7) generating graphics... => 37
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 32
([(0,1),(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 27
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,6)],7) generating graphics... => 47
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5)],7) generating graphics... => 33
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(4,6)],7) generating graphics... => 28
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 25
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 23
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 20
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 17
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 19
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 23
([(0,2),(0,3),(0,4),(0,5),(4,6),(5,6),(6,1)],7) generating graphics... => 29
([(0,3),(0,4),(0,5),(0,6),(5,2),(6,1)],7) generating graphics... => 89
([(0,2),(0,3),(0,4),(0,5),(4,6),(5,1),(5,6)],7) generating graphics... => 69
([(0,1),(0,2),(0,3),(0,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 49
([(2,4),(2,5),(2,6),(6,3)],7) generating graphics... => 216
([(1,4),(1,5),(1,6),(6,2),(6,3)],7) generating graphics... => 126
([(0,4),(0,5),(0,6),(6,1),(6,2),(6,3)],7) generating graphics... => 78
([(2,3),(2,4),(2,5),(4,6),(5,6)],7) generating graphics... => 153
([(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => 112
([(1,2),(1,3),(1,4),(2,6),(3,6),(4,6),(6,5)],7) generating graphics... => 20
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7) generating graphics... => 5
([(1,3),(1,4),(1,5),(3,6),(4,6),(5,2)],7) generating graphics... => 62
([(1,2),(1,3),(1,4),(2,6),(3,5),(4,5),(4,6)],7) generating graphics... => 44
([(1,2),(1,3),(1,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 38
([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 32
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7) generating graphics... => 8
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) generating graphics... => 5
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,1)],7) generating graphics... => 11
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) generating graphics... => 6
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7) generating graphics... => 9
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(6,1)],7) generating graphics... => 12
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 7
([(1,3),(1,4),(1,5),(3,6),(4,6),(5,2),(5,6)],7) generating graphics... => 56
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,6),(6,2)],7) generating graphics... => 12
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,2)],7) generating graphics... => 33
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,2),(5,6)],7) generating graphics... => 31
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,6),(5,6)],7) generating graphics... => 14
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 7
([(1,2),(1,3),(1,4),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 27
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) generating graphics... => 4
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(6,2)],7) generating graphics... => 15
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,5),(6,1),(6,5)],7) generating graphics... => 8
([(1,2),(1,3),(1,4),(3,6),(4,6),(6,5)],7) generating graphics... => 34
([(0,3),(0,4),(0,5),(4,6),(5,6),(6,1),(6,2)],7) generating graphics... => 11
([(1,4),(1,5),(1,6),(5,3),(6,2)],7) generating graphics... => 106
([(1,3),(1,4),(1,5),(4,6),(5,2),(5,6)],7) generating graphics... => 82
([(1,2),(1,3),(1,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 58
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,1)],7) generating graphics... => 25
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,1),(4,6)],7) generating graphics... => 21
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7) generating graphics... => 19
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 10
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) generating graphics... => 13
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,2),(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(6,1)],7) generating graphics... => 17
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 11
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,6),(6,2)],7) generating graphics... => 22
([(0,4),(0,5),(0,6),(5,3),(6,1),(6,2)],7) generating graphics... => 52
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,2),(5,6)],7) generating graphics... => 47
([(0,3),(0,4),(0,5),(4,2),(4,6),(5,1),(5,6)],7) generating graphics... => 37
([(0,2),(0,3),(0,4),(3,5),(3,6),(4,1),(4,5),(4,6)],7) generating graphics... => 32
([(0,1),(0,2),(0,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 27
([(0,4),(0,5),(0,6),(4,3),(5,2),(6,1)],7) generating graphics... => 43
([(0,3),(0,4),(0,5),(3,6),(4,2),(5,1),(5,6)],7) generating graphics... => 34
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,1),(4,5),(4,6)],7) generating graphics... => 29
([(0,2),(0,3),(0,4),(2,5),(3,5),(3,6),(4,1),(4,6)],7) generating graphics... => 26
([(0,1),(0,2),(0,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 21
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 19
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5)],7) generating graphics... => 19
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 17
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 15
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 13
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7) generating graphics... => 24
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,6),(3,4),(3,5),(5,6)],7) generating graphics... => 11
([(0,3),(0,4),(0,5),(3,6),(4,2),(4,6),(5,1),(5,6)],7) generating graphics... => 29
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,1),(4,5),(5,6)],7) generating graphics... => 17
([(3,4),(3,5),(5,6)],7) generating graphics... => 268
([(2,5),(2,6),(6,3),(6,4)],7) generating graphics... => 153
([(1,5),(1,6),(6,2),(6,3),(6,4)],7) generating graphics... => 92
([(0,5),(0,6),(6,1),(6,2),(6,3),(6,4)],7) generating graphics... => 61
([(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 194
([(2,3),(2,4),(3,6),(4,6),(6,5)],7) generating graphics... => 41
([(1,2),(1,3),(2,6),(3,6),(6,4),(6,5)],7) generating graphics... => 13
([(0,4),(0,5),(4,6),(5,6),(6,1),(6,2),(6,3)],7) generating graphics... => 5
([(2,5),(2,6),(5,4),(6,3)],7) generating graphics... => 131
([(2,3),(2,4),(3,6),(4,5),(4,6)],7) generating graphics... => 101
([(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 71
([(1,3),(1,4),(3,5),(3,6),(4,5),(4,6),(6,2)],7) generating graphics... => 20
([(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(6,1),(6,2)],7) generating graphics... => 7
([(1,2),(1,3),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) generating graphics... => 13
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7) generating graphics... => 2
([(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(5,2),(6,1)],7) generating graphics... => 5
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7) generating graphics... => 4
([(0,1),(0,2),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7) generating graphics... => 3
([(1,3),(1,5),(3,6),(5,2),(5,6),(6,4)],7) generating graphics... => 26
([(0,4),(0,5),(4,6),(5,1),(5,6),(6,2),(6,3)],7) generating graphics... => 8
([(1,5),(1,6),(5,4),(6,2),(6,3)],7) generating graphics... => 62
([(1,4),(1,5),(4,6),(5,2),(5,3),(5,6)],7) generating graphics... => 56
([(0,4),(0,5),(4,6),(5,1),(5,2),(5,6),(6,3)],7) generating graphics... => 17
([(0,5),(0,6),(5,4),(6,1),(6,2),(6,3)],7) generating graphics... => 37
([(0,4),(0,5),(4,6),(5,1),(5,2),(5,3),(5,6)],7) generating graphics... => 35
([(1,4),(1,5),(4,3),(4,6),(5,2),(5,6)],7) generating graphics... => 44
([(1,3),(1,4),(3,5),(3,6),(4,2),(4,5),(4,6)],7) generating graphics... => 38
([(1,2),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 32
([(0,2),(0,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(6,1)],7) generating graphics... => 11
([(0,1),(0,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(5,3),(6,3)],7) generating graphics... => 7
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => 5
([(0,3),(0,4),(3,5),(3,6),(4,2),(4,5),(4,6),(6,1)],7) generating graphics... => 13
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,4),(0,5),(4,2),(4,6),(5,1),(5,6),(6,3)],7) generating graphics... => 15
([(0,5),(0,6),(5,3),(5,4),(6,1),(6,2)],7) generating graphics... => 33
([(0,4),(0,5),(4,3),(4,6),(5,1),(5,2),(5,6)],7) generating graphics... => 28
([(0,3),(0,4),(3,5),(3,6),(4,1),(4,2),(4,5),(4,6)],7) generating graphics... => 25
([(0,3),(0,4),(3,2),(3,5),(3,6),(4,1),(4,5),(4,6)],7) generating graphics... => 23
([(0,2),(0,3),(2,4),(2,5),(2,6),(3,1),(3,4),(3,5),(3,6)],7) generating graphics... => 20
([(0,1),(0,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7) generating graphics... => 17
([(2,3),(2,4),(3,5),(4,6),(5,6)],7) generating graphics... => 60
([(1,3),(1,5),(2,6),(3,6),(5,2),(6,4)],7) generating graphics... => 12
([(0,4),(0,5),(1,6),(4,6),(5,1),(6,2),(6,3)],7) generating graphics... => 3
([(4,5),(5,6)],7) generating graphics... => 360
([(3,4),(4,5),(4,6)],7) generating graphics... => 194
([(2,6),(6,3),(6,4),(6,5)],7) generating graphics... => 112
([(1,6),(6,2),(6,3),(6,4),(6,5)],7) generating graphics... => 72
([(0,6),(6,1),(6,2),(6,3),(6,4),(6,5)],7) generating graphics... => 50
([(3,4),(4,6),(6,5)],7) generating graphics... => 120
([(2,5),(5,6),(6,3),(6,4)],7) generating graphics... => 41
([(1,5),(5,6),(6,2),(6,3),(6,4)],7) generating graphics... => 20
([(0,5),(5,6),(6,1),(6,2),(6,3),(6,4)],7) generating graphics... => 11
([(4,6),(5,6)],7) generating graphics... => 702
([(3,6),(4,6),(6,5)],7) generating graphics... => 194
([(2,6),(3,6),(6,4),(6,5)],7) generating graphics... => 71
([(1,6),(2,6),(6,3),(6,4),(6,5)],7) generating graphics... => 32
([(0,6),(1,6),(6,2),(6,3),(6,4),(6,5)],7) generating graphics... => 17
([(3,6),(4,6),(5,6)],7) generating graphics... => 508
([(2,6),(3,6),(4,6),(6,5)],7) generating graphics... => 112
([(1,6),(2,6),(3,6),(6,4),(6,5)],7) generating graphics... => 32
([(0,6),(1,6),(2,6),(6,3),(6,4),(6,5)],7) generating graphics... => 13
([(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 396
([(1,6),(2,6),(3,6),(4,6),(6,5)],7) generating graphics... => 72
([(0,6),(1,6),(2,6),(3,6),(6,4),(6,5)],7) generating graphics... => 17
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 324
([(0,6),(1,6),(2,6),(3,6),(4,6),(6,5)],7) generating graphics... => 50
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 274
([(0,6),(1,6),(2,6),(3,6),(4,5)],7) generating graphics... => 200
([(0,6),(1,6),(2,6),(3,6),(4,5),(6,4)],7) generating graphics... => 11
([(0,6),(1,6),(2,6),(3,6),(4,5),(6,5)],7) generating graphics... => 61
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6)],7) generating graphics... => 189
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) generating graphics... => 154
([(1,6),(2,6),(3,6),(4,5)],7) generating graphics... => 247
([(1,6),(2,6),(3,6),(4,5),(6,4)],7) generating graphics... => 20
([(1,6),(2,6),(3,6),(4,5),(6,5)],7) generating graphics... => 92
([(0,6),(1,6),(2,6),(3,4),(6,5)],7) generating graphics... => 53
([(0,6),(1,6),(2,6),(4,5),(6,3),(6,4)],7) generating graphics... => 8
([(0,6),(1,6),(2,6),(3,5),(6,4),(6,5)],7) generating graphics... => 24
([(1,6),(2,6),(3,6),(4,5),(4,6)],7) generating graphics... => 227
([(0,6),(1,6),(2,6),(3,4),(3,6),(6,5)],7) generating graphics... => 46
([(0,6),(1,6),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 97
([(0,6),(1,6),(2,6),(3,4),(3,6),(4,5),(6,5)],7) generating graphics... => 35
([(0,6),(1,6),(2,6),(3,4),(3,5)],7) generating graphics... => 176
([(0,6),(1,6),(2,6),(3,4),(3,5),(6,3)],7) generating graphics... => 5
([(0,6),(1,6),(2,6),(3,4),(3,5),(6,5)],7) generating graphics... => 51
([(0,6),(1,6),(2,6),(3,4),(3,5),(6,4),(6,5)],7) generating graphics... => 22
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 171
([(0,6),(1,6),(2,6),(3,4),(3,5),(5,6)],7) generating graphics... => 133
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 107
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) generating graphics... => 180
([(0,6),(1,6),(2,6),(3,4),(4,6),(6,5)],7) generating graphics... => 26
([(0,6),(1,6),(2,6),(3,4),(4,5)],7) generating graphics... => 99
([(0,6),(1,6),(2,6),(3,5),(5,4),(6,3)],7) generating graphics... => 3
([(0,6),(1,6),(2,6),(3,5),(5,4),(6,5)],7) generating graphics... => 14
([(0,6),(1,6),(2,6),(3,4),(4,5),(6,5)],7) generating graphics... => 37
([(0,6),(1,6),(2,6),(3,4),(4,5),(4,6)],7) generating graphics... => 86
([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7) generating graphics... => 20
([(0,6),(1,4),(2,6),(3,6),(4,5),(5,2),(5,3)],7) generating graphics... => 6
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) generating graphics... => 3
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) generating graphics... => 60
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) generating graphics... => 170
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) generating graphics... => 141
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 124
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 113
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 107
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 96
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 85
([(0,6),(1,6),(2,6),(3,5),(4,5),(6,4)],7) generating graphics... => 17
([(0,6),(1,6),(2,6),(3,5),(4,5),(6,3),(6,4)],7) generating graphics... => 5
([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7) generating graphics... => 78
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6)],7) generating graphics... => 153
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 142
([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7) generating graphics... => 29
([(0,6),(1,5),(2,5),(3,6),(4,6),(5,3),(5,4)],7) generating graphics... => 11
([(0,5),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3),(5,4)],7) generating graphics... => 5
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 107
([(2,6),(3,6),(4,5)],7) generating graphics... => 322
([(2,6),(3,5),(4,5),(4,6)],7) generating graphics... => 259
([(1,6),(2,5),(3,5),(3,6),(6,4)],7) generating graphics... => 77
([(0,6),(1,5),(2,5),(2,6),(6,3),(6,4)],7) generating graphics... => 29
([(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 44
([(0,5),(1,4),(2,4),(2,5),(4,6),(5,6),(6,3)],7) generating graphics... => 7
([(0,6),(1,5),(2,5),(2,6),(5,3),(6,4)],7) generating graphics... => 23
([(0,6),(1,4),(2,4),(2,6),(4,5),(6,3),(6,5)],7) generating graphics... => 18
([(0,6),(1,5),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7) generating graphics... => 13
([(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 218
([(1,6),(2,5),(2,6),(3,5),(3,6),(5,4)],7) generating graphics... => 71
([(0,6),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4)],7) generating graphics... => 27
([(0,6),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,4)],7) generating graphics... => 16
([(0,6),(1,3),(1,6),(2,3),(2,6),(3,4),(3,5),(6,4),(6,5)],7) generating graphics... => 11
([(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) generating graphics... => 38
([(0,6),(1,5),(1,6),(2,5),(2,6),(5,4),(6,3)],7) generating graphics... => 19
([(0,6),(1,4),(1,6),(2,4),(2,6),(4,5),(6,3),(6,5)],7) generating graphics... => 14
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 177
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(6,4)],7) generating graphics... => 52
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(6,3),(6,4)],7) generating graphics... => 17
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) generating graphics... => 32
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(5,4),(6,3)],7) generating graphics... => 15
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(5,4),(6,3),(6,4)],7) generating graphics... => 12
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7) generating graphics... => 9
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4)],7) generating graphics... => 100
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(6,3)],7) generating graphics... => 11
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(4,3),(5,4),(6,4)],7) generating graphics... => 5
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(6,4)],7) generating graphics... => 41
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(5,4),(6,3)],7) generating graphics... => 8
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 27
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6)],7) generating graphics... => 89
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(5,4)],7) generating graphics... => 33
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 84
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6)],7) generating graphics... => 61
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(4,6)],7) generating graphics... => 63
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6)],7) generating graphics... => 50
([(1,6),(2,5),(2,6),(3,5),(3,6),(6,4)],7) generating graphics... => 58
([(0,6),(1,5),(1,6),(2,5),(2,6),(6,3),(6,4)],7) generating graphics... => 19
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4)],7) generating graphics... => 121
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(5,3)],7) generating graphics... => 17
([(0,6),(1,4),(1,6),(2,4),(2,6),(4,5),(5,3),(6,5)],7) generating graphics... => 6
([(0,6),(1,4),(1,6),(2,4),(2,6),(3,5),(4,3),(6,5)],7) generating graphics... => 11
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 54
([(0,6),(1,4),(1,6),(2,4),(2,6),(3,5),(4,5),(6,3)],7) generating graphics... => 9
([(0,6),(1,5),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 32
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(6,3)],7) generating graphics... => 12
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,6),(6,5)],7) generating graphics... => 46
([(0,5),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6)],7) generating graphics... => 104
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(6,4)],7) generating graphics... => 35
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 99
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6)],7) generating graphics... => 73
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6)],7) generating graphics... => 109
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 45
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 67
([(0,5),(1,5),(1,6),(2,5),(2,6),(3,4),(4,6)],7) generating graphics... => 69
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6)],7) generating graphics... => 56
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(4,6)],7) generating graphics... => 78
([(0,6),(1,5),(2,5),(2,6),(3,4)],7) generating graphics... => 142
([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6)],7) generating graphics... => 117
([(0,6),(1,5),(2,5),(2,6),(3,4),(6,3)],7) generating graphics... => 18
([(0,6),(1,4),(2,5),(3,4),(3,5),(5,6)],7) generating graphics... => 59
([(0,5),(1,4),(2,4),(2,5),(3,6),(4,6),(5,3)],7) generating graphics... => 12
([(0,6),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 37
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6)],7) generating graphics... => 124
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5)],7) generating graphics... => 92
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 82
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 77
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 87
([(0,6),(1,5),(1,6),(2,4),(3,4),(3,6),(4,5)],7) generating graphics... => 47
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 114
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6)],7) generating graphics... => 79
([(0,6),(1,5),(2,5),(2,6),(3,4),(4,6)],7) generating graphics... => 84
([(0,6),(1,5),(2,5),(2,6),(3,4),(4,5),(4,6)],7) generating graphics... => 62
([(2,6),(3,6),(4,5),(6,4)],7) generating graphics... => 41
([(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 153
([(1,6),(2,5),(3,5),(5,6),(6,4)],7) generating graphics... => 27
([(0,6),(1,5),(2,5),(5,6),(6,3),(6,4)],7) generating graphics... => 7
([(1,6),(2,6),(3,4),(6,5)],7) generating graphics... => 95
([(1,6),(2,6),(4,5),(6,3),(6,4)],7) generating graphics... => 20
([(1,6),(2,6),(3,5),(6,4),(6,5)],7) generating graphics... => 51
([(0,6),(1,5),(2,5),(5,3),(5,6),(6,4)],7) generating graphics... => 12
([(0,6),(1,6),(2,3),(6,4),(6,5)],7) generating graphics... => 33
([(0,6),(1,6),(5,2),(6,3),(6,4),(6,5)],7) generating graphics... => 11
([(0,6),(1,6),(2,5),(6,3),(6,4),(6,5)],7) generating graphics... => 23
([(2,6),(3,6),(4,5),(4,6)],7) generating graphics... => 292
([(1,6),(2,6),(3,4),(3,6),(6,5)],7) generating graphics... => 76
([(0,6),(1,6),(2,3),(2,6),(6,4),(6,5)],7) generating graphics... => 23
([(1,6),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 128
([(1,6),(2,6),(3,4),(3,6),(4,5),(6,5)],7) generating graphics... => 56
([(0,6),(1,6),(2,3),(2,6),(3,5),(6,4)],7) generating graphics... => 29
([(0,6),(1,6),(2,4),(2,6),(4,5),(6,3),(6,5)],7) generating graphics... => 18
([(0,6),(1,6),(2,3),(2,6),(3,4),(3,5)],7) generating graphics... => 59
([(0,6),(1,6),(2,3),(2,6),(3,4),(3,5),(6,5)],7) generating graphics... => 26
([(0,6),(1,6),(2,3),(2,6),(3,4),(3,5),(6,4),(6,5)],7) generating graphics... => 15
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4)],7) generating graphics... => 35
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4),(6,5)],7) generating graphics... => 9
([(0,6),(1,6),(2,3),(2,6),(3,4),(4,5),(6,5)],7) generating graphics... => 20
([(1,6),(2,6),(3,4),(3,5)],7) generating graphics... => 229
([(1,6),(2,6),(3,4),(3,5),(6,3)],7) generating graphics... => 13
([(1,5),(2,5),(3,4),(3,6),(5,6)],7) generating graphics... => 89
([(1,4),(2,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 45
([(0,5),(0,6),(1,4),(2,4),(4,5),(4,6),(6,3)],7) generating graphics... => 11
([(0,5),(1,5),(2,4),(2,6),(5,6),(6,3)],7) generating graphics... => 18
([(0,6),(1,6),(2,3),(2,4),(6,5)],7) generating graphics... => 60
([(0,6),(1,6),(5,2),(5,3),(6,4),(6,5)],7) generating graphics... => 7
([(0,6),(1,6),(2,4),(2,5),(6,3),(6,5)],7) generating graphics... => 29
([(0,6),(1,6),(2,4),(2,5),(6,3),(6,4),(6,5)],7) generating graphics... => 19
([(1,6),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 216
([(0,6),(1,6),(2,3),(2,4),(2,6),(6,5)],7) generating graphics... => 54
([(0,6),(1,6),(2,3),(2,4),(2,6),(4,5)],7) generating graphics... => 96
([(0,6),(1,6),(2,3),(2,4),(2,6),(4,5),(6,5)],7) generating graphics... => 39
([(0,6),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5)],7) generating graphics... => 57
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => 31
([(0,6),(1,6),(2,3),(2,4),(2,5)],7) generating graphics... => 176
([(0,6),(1,6),(5,2),(5,3),(5,4),(6,5)],7) generating graphics... => 5
([(0,5),(1,5),(2,3),(2,4),(2,6),(5,6)],7) generating graphics... => 59
([(0,4),(1,4),(2,3),(2,5),(2,6),(4,5),(4,6)],7) generating graphics... => 27
([(0,6),(1,6),(2,3),(2,4),(2,5),(6,3),(6,4),(6,5)],7) generating graphics... => 17
([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6)],7) generating graphics... => 171
([(0,6),(1,2),(1,3),(1,5),(4,6),(5,4)],7) generating graphics... => 52
([(0,3),(0,4),(0,5),(1,6),(2,6),(5,1),(5,2)],7) generating graphics... => 29
([(0,3),(0,4),(0,5),(1,6),(2,6),(4,2),(5,1)],7) generating graphics... => 21
([(0,6),(1,6),(2,3),(2,4),(2,5),(5,6)],7) generating graphics... => 126
([(0,6),(1,2),(1,4),(1,5),(3,6),(4,6),(5,3)],7) generating graphics... => 38
([(0,3),(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2)],7) generating graphics... => 23
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) generating graphics... => 17
([(0,6),(1,6),(2,3),(2,4),(2,5),(4,6),(5,6)],7) generating graphics... => 97
([(0,6),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,2)],7) generating graphics... => 31
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) generating graphics... => 19
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => 78
([(1,6),(2,6),(3,4),(3,5),(5,6)],7) generating graphics... => 162
([(0,6),(1,6),(2,3),(2,4),(4,6),(6,5)],7) generating graphics... => 29
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 126
([(0,6),(1,6),(2,3),(2,4),(3,6),(4,6),(6,5)],7) generating graphics... => 19
([(0,6),(1,6),(2,3),(2,4),(4,5)],7) generating graphics... => 98
([(0,6),(1,6),(4,3),(5,2),(5,4),(6,5)],7) generating graphics... => 3
([(0,5),(1,5),(2,3),(2,6),(3,4),(5,6)],7) generating graphics... => 32
([(0,4),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6)],7) generating graphics... => 21
([(0,4),(1,4),(2,3),(2,5),(3,6),(4,5),(5,6)],7) generating graphics... => 14
([(0,6),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4),(6,5)],7) generating graphics... => 7
([(0,5),(1,5),(2,3),(2,4),(4,6),(5,6)],7) generating graphics... => 41
([(0,6),(1,3),(1,5),(4,6),(5,2),(5,4)],7) generating graphics... => 36
([(0,4),(0,5),(2,6),(3,6),(5,1),(5,2),(5,3)],7) generating graphics... => 23
([(0,6),(1,6),(2,3),(2,4),(4,5),(4,6)],7) generating graphics... => 81
([(0,6),(1,4),(1,5),(3,6),(4,2),(5,3)],7) generating graphics... => 30
([(0,6),(1,3),(1,4),(2,6),(3,5),(4,2),(6,5)],7) generating graphics... => 11
([(0,6),(1,4),(1,5),(3,6),(4,3),(5,2),(5,6)],7) generating graphics... => 27
([(0,4),(0,5),(2,6),(3,6),(4,1),(4,6),(5,2),(5,3)],7) generating graphics... => 14
([(0,3),(0,4),(1,6),(2,6),(3,5),(3,6),(4,1),(4,2),(4,5)],7) generating graphics... => 13
([(0,6),(1,3),(1,4),(2,6),(3,5),(3,6),(4,2),(4,5)],7) generating graphics... => 22
([(0,4),(0,5),(2,6),(3,6),(4,3),(5,1),(5,2)],7) generating graphics... => 14
([(0,3),(0,4),(1,5),(2,5),(3,2),(3,6),(4,1),(4,6)],7) generating graphics... => 11
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) generating graphics... => 7
([(0,4),(0,5),(2,6),(3,6),(4,1),(5,2),(5,3)],7) generating graphics... => 15
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) generating graphics... => 5
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(4,6)],7) generating graphics... => 14
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) generating graphics... => 9
([(0,6),(1,3),(1,4),(2,6),(3,5),(4,2),(4,5)],7) generating graphics... => 25
([(0,6),(1,3),(1,4),(2,6),(3,5),(4,2),(4,5),(5,6)],7) generating graphics... => 16
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) generating graphics... => 4
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,6)],7) generating graphics... => 65
([(0,6),(1,6),(2,3),(2,4),(3,6),(4,5),(6,5)],7) generating graphics... => 24
([(0,6),(1,4),(1,5),(3,6),(4,6),(5,2),(5,3)],7) generating graphics... => 29
([(0,4),(0,5),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) generating graphics... => 18
([(0,6),(1,6),(2,3),(2,4),(3,6),(4,5),(4,6)],7) generating graphics... => 59
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,6),(5,6)],7) generating graphics... => 40
([(0,6),(1,4),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3)],7) generating graphics... => 23
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) generating graphics... => 14
([(0,5),(1,5),(2,3),(2,4),(3,6),(4,6)],7) generating graphics... => 58
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7) generating graphics... => 2
([(0,5),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) generating graphics... => 33
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(4,6)],7) generating graphics... => 45
([(0,6),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 39
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(6,4)],7) generating graphics... => 6
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) generating graphics... => 2
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) generating graphics... => 29
([(0,6),(1,6),(2,3),(2,4),(4,5),(5,6)],7) generating graphics... => 52
([(0,6),(1,2),(1,5),(3,6),(4,6),(5,3),(5,4)],7) generating graphics... => 28
([(0,4),(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3)],7) generating graphics... => 17
([(0,6),(1,4),(1,5),(2,6),(3,6),(4,3),(5,2)],7) generating graphics... => 21
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) generating graphics... => 10
([(2,6),(3,6),(4,5),(5,6)],7) generating graphics... => 216
([(1,6),(2,6),(3,4),(4,6),(6,5)],7) generating graphics... => 36
([(0,6),(1,6),(2,3),(3,6),(6,4),(6,5)],7) generating graphics... => 11
([(1,6),(2,6),(3,4),(4,5)],7) generating graphics... => 134
([(1,6),(2,6),(3,5),(5,4),(6,3)],7) generating graphics... => 7
([(1,5),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 62
([(0,5),(1,5),(2,3),(3,6),(5,6),(6,4)],7) generating graphics... => 10
([(0,6),(1,6),(2,3),(3,5),(6,4)],7) generating graphics... => 33
([(0,6),(1,6),(4,2),(5,4),(6,3),(6,5)],7) generating graphics... => 4
([(0,5),(1,5),(2,3),(3,6),(5,4),(5,6)],7) generating graphics... => 22
([(1,6),(2,6),(3,4),(4,5),(4,6)],7) generating graphics... => 108
([(0,6),(1,6),(2,3),(3,5),(3,6),(6,4)],7) generating graphics... => 22
([(0,3),(1,6),(2,6),(3,5),(3,6),(5,4)],7) generating graphics... => 32
([(0,6),(1,6),(2,3),(3,4),(3,6),(4,5),(6,5)],7) generating graphics... => 17
([(0,3),(1,6),(2,6),(3,4),(3,5)],7) generating graphics... => 60
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7) generating graphics... => 2
([(0,5),(1,5),(2,3),(3,4),(3,6),(5,6)],7) generating graphics... => 28
([(0,4),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 17
([(0,6),(1,5),(4,6),(5,2),(5,3),(5,4)],7) generating graphics... => 29
([(0,5),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) generating graphics... => 19
([(0,3),(1,6),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 54
([(0,3),(1,6),(2,6),(3,4),(3,5),(5,6)],7) generating graphics... => 36
([(0,6),(1,5),(3,6),(4,6),(5,2),(5,3),(5,4)],7) generating graphics... => 22
([(0,5),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) generating graphics... => 14
([(0,3),(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 29
([(0,6),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3),(5,4)],7) generating graphics... => 17
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) generating graphics... => 11
([(1,3),(2,6),(3,5),(4,6),(5,4)],7) generating graphics... => 24
([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7) generating graphics... => 4
([(1,4),(2,6),(3,6),(4,5),(5,2),(5,3)],7) generating graphics... => 7
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) generating graphics... => 1
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) generating graphics... => 72
([(0,6),(1,6),(2,3),(3,5),(5,6),(6,4)],7) generating graphics... => 12
([(0,3),(1,6),(2,6),(3,5),(5,4)],7) generating graphics... => 36
([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7) generating graphics... => 1
([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7) generating graphics... => 21
([(0,6),(1,4),(3,6),(4,5),(5,2),(5,3)],7) generating graphics... => 9
([(0,4),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) generating graphics... => 4
([(0,3),(1,6),(2,6),(3,5),(5,4),(5,6)],7) generating graphics... => 27
([(1,6),(2,6),(3,5),(4,5)],7) generating graphics... => 227
([(1,6),(2,6),(3,5),(4,5),(4,6)],7) generating graphics... => 193
([(0,6),(1,6),(2,5),(3,5),(3,6),(5,4)],7) generating graphics... => 52
([(0,6),(1,6),(2,4),(3,4),(3,6),(4,5),(6,5)],7) generating graphics... => 28
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 173
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4)],7) generating graphics... => 50
([(0,6),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) generating graphics... => 25
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(6,4)],7) generating graphics... => 34
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 159
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(6,4)],7) generating graphics... => 37
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) generating graphics... => 23
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 139
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4)],7) generating graphics... => 35
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) generating graphics... => 20
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(6,4)],7) generating graphics... => 30
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 119
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(6,4)],7) generating graphics... => 28
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) generating graphics... => 17
([(0,6),(1,6),(2,5),(3,5),(3,6),(6,4)],7) generating graphics... => 41
([(1,6),(2,5),(3,5),(4,6),(5,4)],7) generating graphics... => 34
([(1,5),(2,5),(3,6),(4,6),(5,3),(5,4)],7) generating graphics... => 13
([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7) generating graphics... => 5
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7) generating graphics... => 2
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 126
([(0,6),(1,6),(2,5),(3,5),(5,6),(6,4)],7) generating graphics... => 19
([(0,6),(1,6),(2,5),(3,5),(6,4)],7) generating graphics... => 56
([(0,6),(1,5),(2,5),(4,6),(5,3),(5,4)],7) generating graphics... => 16
([(0,6),(1,6),(3,5),(4,5),(6,2),(6,3),(6,4)],7) generating graphics... => 7
([(0,6),(1,6),(2,5),(3,5),(5,4),(5,6)],7) generating graphics... => 39
([(0,5),(1,5),(2,4),(3,4),(4,6),(5,6)],7) generating graphics... => 33
([(0,6),(1,6),(2,5),(3,4)],7) generating graphics... => 189
([(0,6),(1,6),(2,3),(4,5),(6,4)],7) generating graphics... => 21
([(0,6),(1,6),(4,3),(5,2),(6,4),(6,5)],7) generating graphics... => 5
([(0,6),(1,6),(2,5),(3,4),(6,3),(6,5)],7) generating graphics... => 14
([(0,6),(1,5),(2,5),(3,4),(5,6)],7) generating graphics... => 74
([(0,4),(1,4),(2,6),(3,5),(4,5),(4,6)],7) generating graphics... => 37
([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7) generating graphics... => 4
([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) generating graphics... => 23
([(0,6),(1,6),(2,5),(3,4),(3,6)],7) generating graphics... => 168
([(0,6),(1,6),(2,3),(2,6),(4,5),(6,4)],7) generating graphics... => 15
([(0,6),(1,6),(2,5),(3,4),(3,6),(6,5)],7) generating graphics... => 61
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5)],7) generating graphics... => 89
([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(6,4)],7) generating graphics... => 12
([(0,6),(1,5),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 47
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6)],7) generating graphics... => 153
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 77
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5)],7) generating graphics... => 131
([(0,6),(1,6),(2,4),(2,6),(3,4),(3,5),(6,5)],7) generating graphics... => 39
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 126
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6)],7) generating graphics... => 95
([(0,6),(1,6),(2,5),(3,4),(3,6),(5,6)],7) generating graphics... => 115
([(0,6),(1,6),(2,5),(2,6),(3,4),(4,5)],7) generating graphics... => 79
([(0,6),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6)],7) generating graphics... => 66
([(0,5),(1,5),(2,6),(3,4),(3,6)],7) generating graphics... => 151
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6)],7) generating graphics... => 109
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 99
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 89
([(0,5),(1,4),(1,5),(2,4),(2,6),(3,6),(5,3)],7) generating graphics... => 17
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(5,6)],7) generating graphics... => 56
([(0,6),(1,5),(2,5),(3,4),(3,6),(5,3)],7) generating graphics... => 10
([(0,4),(1,5),(2,5),(3,4),(3,6),(5,6)],7) generating graphics... => 51
([(0,6),(1,5),(1,6),(2,4),(3,4),(4,5),(4,6)],7) generating graphics... => 34
([(0,5),(1,5),(2,3),(2,6),(4,6),(5,4)],7) generating graphics... => 20
([(0,6),(1,6),(3,5),(4,2),(4,5),(6,3),(6,4)],7) generating graphics... => 4
([(0,5),(1,5),(2,4),(2,6),(3,6),(5,3),(5,4)],7) generating graphics... => 13
([(0,6),(1,5),(2,5),(3,4),(3,6),(5,6)],7) generating graphics... => 71
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6)],7) generating graphics... => 141
([(0,6),(1,6),(2,5),(3,4),(3,5),(4,6)],7) generating graphics... => 101
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,6),(5,4)],7) generating graphics... => 22
([(0,5),(1,2),(1,5),(2,6),(3,6),(4,6),(5,3),(5,4)],7) generating graphics... => 8
([(0,6),(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 69
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6)],7) generating graphics... => 113
([(0,5),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6)],7) generating graphics... => 91
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6)],7) generating graphics... => 81
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 72
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 67
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(3,5),(4,6)],7) generating graphics... => 44
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6)],7) generating graphics... => 79
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 42
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5)],7) generating graphics... => 75
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 70
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 65
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) generating graphics... => 66
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 61
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 56
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 51
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6)],7) generating graphics... => 51
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,6),(3,5),(4,3)],7) generating graphics... => 16
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,3)],7) generating graphics... => 9
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(6,2),(6,3)],7) generating graphics... => 3
([(0,5),(1,5),(2,4),(2,6),(3,4),(3,6),(5,6)],7) generating graphics... => 48
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(4,5),(4,6)],7) generating graphics... => 31
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) generating graphics... => 104
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 99
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,6),(5,3)],7) generating graphics... => 22
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(6,2),(6,3)],7) generating graphics... => 9
([(0,3),(1,5),(1,6),(2,5),(2,6),(4,3),(5,4),(6,4)],7) generating graphics... => 11
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(5,3),(6,2)],7) generating graphics... => 5
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,3),(5,4),(6,2),(6,4)],7) generating graphics... => 4
([(0,5),(0,6),(1,5),(1,6),(3,2),(4,2),(5,3),(5,4),(6,3),(6,4)],7) generating graphics... => 3
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) generating graphics... => 68
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,3)],7) generating graphics... => 17
([(0,4),(0,5),(1,4),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3)],7) generating graphics... => 7
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 49
([(0,6),(1,5),(2,3),(2,5),(4,6),(5,4)],7) generating graphics... => 27
([(0,6),(1,2),(1,6),(3,5),(4,5),(6,3),(6,4)],7) generating graphics... => 10
([(0,6),(1,6),(2,5),(3,4),(3,5),(5,6)],7) generating graphics... => 88
([(0,6),(1,6),(2,4),(3,5),(5,6)],7) generating graphics... => 121
([(0,6),(1,6),(2,3),(3,6),(4,5),(6,4)],7) generating graphics... => 6
([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7) generating graphics... => 31
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 89
([(0,6),(1,5),(2,5),(3,4),(4,6)],7) generating graphics... => 94
([(0,6),(1,6),(2,5),(3,4),(4,5),(6,3)],7) generating graphics... => 6
([(0,5),(1,5),(2,3),(3,6),(4,6),(5,4)],7) generating graphics... => 15
([(0,6),(1,6),(2,5),(3,5),(4,3),(6,2),(6,4)],7) generating graphics... => 3
([(0,5),(1,5),(2,4),(3,6),(4,6),(5,3),(5,4)],7) generating graphics... => 8
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 52
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6)],7) generating graphics... => 72
([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7) generating graphics... => 10
([(0,6),(1,2),(2,6),(3,5),(4,5),(6,3),(6,4)],7) generating graphics... => 3
([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) generating graphics... => 40
([(3,6),(4,5)],7) generating graphics... => 554
([(3,6),(4,5),(4,6)],7) generating graphics... => 434
([(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 183
([(1,6),(2,3),(2,6),(3,4),(3,5)],7) generating graphics... => 89
([(0,6),(1,5),(1,6),(5,2),(5,3),(5,4)],7) generating graphics... => 51
([(0,6),(1,4),(1,6),(4,2),(4,3),(4,5),(6,5)],7) generating graphics... => 26
([(0,6),(1,3),(1,6),(3,2),(3,4),(3,5),(6,4),(6,5)],7) generating graphics... => 16
([(0,6),(1,2),(1,6),(2,3),(2,4),(2,5),(6,3),(6,4),(6,5)],7) generating graphics... => 12
([(1,5),(2,3),(2,5),(3,4),(3,6),(5,6)],7) generating graphics... => 42
([(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 28
([(0,5),(1,4),(1,5),(4,3),(4,6),(5,6),(6,2)],7) generating graphics... => 9
([(0,6),(1,5),(1,6),(5,2),(5,3),(6,4)],7) generating graphics... => 28
([(0,6),(1,4),(1,6),(4,3),(4,5),(6,2),(6,5)],7) generating graphics... => 18
([(0,6),(1,3),(1,6),(3,4),(3,5),(6,2),(6,4),(6,5)],7) generating graphics... => 14
([(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 101
([(1,5),(2,3),(2,5),(3,6),(5,6),(6,4)],7) generating graphics... => 19
([(0,5),(1,4),(1,5),(4,6),(5,6),(6,2),(6,3)],7) generating graphics... => 4
([(1,6),(2,3),(2,6),(3,5),(6,4)],7) generating graphics... => 49
([(1,5),(2,3),(2,5),(3,6),(5,4),(5,6)],7) generating graphics... => 35
([(0,6),(1,5),(1,6),(5,2),(6,3),(6,4)],7) generating graphics... => 22
([(0,6),(1,4),(1,6),(4,5),(6,2),(6,3),(6,5)],7) generating graphics... => 18
([(1,6),(2,3),(2,6),(3,5),(5,4)],7) generating graphics... => 48
([(1,5),(2,3),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 33
([(0,5),(1,4),(1,5),(3,6),(4,3),(5,6),(6,2)],7) generating graphics... => 5
([(0,6),(1,5),(1,6),(4,2),(5,4),(6,3)],7) generating graphics... => 15
([(0,6),(1,3),(1,6),(3,5),(5,4),(6,2),(6,5)],7) generating graphics... => 8
([(0,6),(1,4),(1,6),(3,5),(4,3),(6,2),(6,5)],7) generating graphics... => 12
([(0,6),(1,4),(1,6),(4,5),(5,2),(5,3)],7) generating graphics... => 20
([(0,6),(1,3),(1,6),(3,4),(4,2),(4,5),(6,5)],7) generating graphics... => 11
([(0,6),(1,2),(1,6),(2,3),(3,4),(3,5),(6,4),(6,5)],7) generating graphics... => 8
([(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 314
([(2,5),(2,6),(3,5),(3,6),(6,4)],7) generating graphics... => 112
([(1,5),(1,6),(2,5),(2,6),(6,3),(6,4)],7) generating graphics... => 45
([(0,5),(0,6),(1,5),(1,6),(6,2),(6,3),(6,4)],7) generating graphics... => 22
([(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 71
([(1,4),(1,5),(2,4),(2,5),(4,6),(5,6),(6,3)],7) generating graphics... => 13
([(1,5),(1,6),(2,5),(2,6),(5,4),(6,3)],7) generating graphics... => 35
([(1,4),(1,6),(2,4),(2,6),(4,5),(6,3),(6,5)],7) generating graphics... => 28
([(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7) generating graphics... => 21
([(0,5),(0,6),(1,5),(1,6),(5,4),(6,2),(6,3)],7) generating graphics... => 17
([(0,5),(0,6),(1,5),(1,6),(5,4),(6,2),(6,3),(6,4)],7) generating graphics... => 15
([(0,5),(0,6),(1,5),(1,6),(5,3),(5,4),(6,2),(6,4)],7) generating graphics... => 13
([(0,5),(0,6),(1,5),(1,6),(5,3),(5,4),(6,2),(6,3),(6,4)],7) generating graphics... => 11
([(0,5),(0,6),(1,5),(1,6),(5,2),(5,3),(5,4),(6,2),(6,3),(6,4)],7) generating graphics... => 9
([(1,5),(1,6),(2,5),(2,6),(3,4)],7) generating graphics... => 170
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) generating graphics... => 143
([(0,4),(1,5),(1,6),(2,4),(2,5),(2,6),(6,3)],7) generating graphics... => 45
([(0,4),(1,5),(1,6),(2,4),(2,5),(2,6),(5,3),(6,3)],7) generating graphics... => 29
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(5,3),(6,3)],7) generating graphics... => 27
([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => 21
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 130
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(5,3)],7) generating graphics... => 43
([(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5)],7) generating graphics... => 27
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => 19
([(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(4,5),(6,5)],7) generating graphics... => 24
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(6,3)],7) generating graphics... => 34
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(6,3)],7) generating graphics... => 40
([(1,5),(1,6),(2,5),(2,6),(3,4),(6,3)],7) generating graphics... => 27
([(0,5),(0,6),(1,5),(1,6),(4,3),(5,4),(6,2)],7) generating graphics... => 9
([(0,5),(0,6),(1,5),(1,6),(2,3),(5,4),(6,2),(6,4)],7) generating graphics... => 8
([(0,5),(0,6),(1,5),(1,6),(4,2),(5,3),(5,4),(6,3),(6,4)],7) generating graphics... => 5
([(0,5),(0,6),(1,5),(1,6),(2,4),(5,2),(5,3),(6,3),(6,4)],7) generating graphics... => 7
([(0,5),(0,6),(1,5),(1,6),(4,3),(5,4),(6,2),(6,4)],7) generating graphics... => 6
([(0,5),(0,6),(1,5),(1,6),(3,4),(5,3),(6,2),(6,4)],7) generating graphics... => 8
([(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) generating graphics... => 85
([(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,3)],7) generating graphics... => 20
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 58
([(0,6),(1,4),(1,5),(2,4),(2,5),(4,6),(5,6),(6,3)],7) generating graphics... => 9
([(0,5),(1,4),(1,6),(2,4),(2,6),(4,5),(6,3)],7) generating graphics... => 27
([(0,6),(1,4),(1,5),(2,4),(2,5),(4,6),(5,3),(5,6)],7) generating graphics... => 23
([(0,6),(1,4),(1,5),(2,4),(2,5),(5,6),(6,3)],7) generating graphics... => 17
([(0,4),(1,5),(1,6),(2,5),(2,6),(4,3),(5,4),(6,3)],7) generating graphics... => 13
([(0,5),(0,6),(1,5),(1,6),(2,4),(6,3)],7) generating graphics... => 51
([(0,5),(0,6),(1,5),(1,6),(4,3),(6,2),(6,4)],7) generating graphics... => 14
([(0,5),(0,6),(1,5),(1,6),(3,4),(5,2),(5,3),(6,4)],7) generating graphics... => 10
([(0,5),(1,4),(1,6),(2,4),(2,6),(6,3),(6,5)],7) generating graphics... => 31
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,6),(5,6)],7) generating graphics... => 33
([(0,4),(1,5),(1,6),(2,5),(2,6),(5,3),(6,3),(6,4)],7) generating graphics... => 21
([(0,6),(1,3),(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 17
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6)],7) generating graphics... => 143
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(6,4)],7) generating graphics... => 38
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 65
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,6),(4,5),(6,3)],7) generating graphics... => 18
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,6),(4,5),(5,3)],7) generating graphics... => 14
([(0,3),(0,6),(1,3),(1,6),(2,5),(2,6),(3,5),(5,4),(6,4)],7) generating graphics... => 10
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(5,4)],7) generating graphics... => 42
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,6),(4,5),(6,5)],7) generating graphics... => 26
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(5,3),(5,4)],7) generating graphics... => 23
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,6),(3,4),(3,5),(6,5)],7) generating graphics... => 15
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 130
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(6,3)],7) generating graphics... => 36
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(5,4),(6,4)],7) generating graphics... => 23
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4)],7) generating graphics... => 50
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(6,4)],7) generating graphics... => 25
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => 19
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6)],7) generating graphics... => 92
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,6),(5,4)],7) generating graphics... => 23
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,6),(5,4),(6,4)],7) generating graphics... => 14
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,6),(6,4)],7) generating graphics... => 19
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4)],7) generating graphics... => 52
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(6,5)],7) generating graphics... => 27
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5)],7) generating graphics... => 28
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => 21
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6)],7) generating graphics... => 39
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(5,4)],7) generating graphics... => 20
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(4,6)],7) generating graphics... => 27
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4)],7) generating graphics... => 113
([(0,5),(0,6),(1,5),(1,6),(4,2),(4,3),(6,4)],7) generating graphics... => 9
([(0,5),(0,6),(1,5),(1,6),(4,2),(4,3),(5,4),(6,4)],7) generating graphics... => 3
([(0,5),(0,6),(1,5),(1,6),(3,2),(3,4),(5,3),(6,4)],7) generating graphics... => 6
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(5,2),(6,3),(6,4)],7) generating graphics... => 5
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,6),(5,6)],7) generating graphics... => 47
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(6,3),(6,4)],7) generating graphics... => 27
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,6),(4,6),(5,6)],7) generating graphics... => 31
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(5,4),(6,3)],7) generating graphics... => 23
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(3,6),(4,5),(4,6)],7) generating graphics... => 19
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 15
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6)],7) generating graphics... => 104
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(4,5)],7) generating graphics... => 41
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5)],7) generating graphics... => 22
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7) generating graphics... => 99
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(4,6)],7) generating graphics... => 68
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,6),(4,6)],7) generating graphics... => 49
([(0,5),(0,6),(1,2),(1,4),(3,5),(3,6),(4,3)],7) generating graphics... => 22
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(4,1),(4,2)],7) generating graphics... => 11
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,2),(4,1)],7) generating graphics... => 5
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(4,6)],7) generating graphics... => 70
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(3,6),(4,5)],7) generating graphics... => 26
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(4,5),(4,6)],7) generating graphics... => 53
([(0,5),(0,6),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,2)],7) generating graphics... => 14
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2)],7) generating graphics... => 7
([(0,5),(0,6),(1,2),(1,4),(2,6),(3,5),(3,6),(4,3)],7) generating graphics... => 17
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,6),(4,1),(4,2)],7) generating graphics... => 8
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,6),(4,6)],7) generating graphics... => 50
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) generating graphics... => 43
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,6),(4,5),(4,6)],7) generating graphics... => 37
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 31
([(1,5),(1,6),(2,5),(2,6),(3,4),(4,6)],7) generating graphics... => 98
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,6),(6,4)],7) generating graphics... => 20
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,6),(5,4)],7) generating graphics... => 27
([(0,4),(0,6),(1,4),(1,6),(2,3),(3,6),(4,5),(6,5)],7) generating graphics... => 15
([(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6)],7) generating graphics... => 72
([(0,5),(0,6),(1,5),(1,6),(2,4),(4,5),(4,6),(6,3)],7) generating graphics... => 16
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,5),(3,6),(5,4),(6,4)],7) generating graphics... => 11
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4)],7) generating graphics... => 56
([(0,5),(0,6),(1,5),(1,6),(3,4),(4,2),(6,3)],7) generating graphics... => 5
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7) generating graphics... => 2
([(0,5),(0,6),(1,5),(1,6),(3,4),(4,2),(5,3),(6,4)],7) generating graphics... => 3
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(5,2),(6,4)],7) generating graphics... => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,6),(5,6)],7) generating graphics... => 32
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,6),(4,6),(5,6)],7) generating graphics... => 25
([(0,5),(0,6),(1,4),(3,5),(3,6),(4,2),(4,3)],7) generating graphics... => 17
([(0,4),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2),(4,3)],7) generating graphics... => 9
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(3,6)],7) generating graphics... => 40
([(0,4),(0,6),(1,4),(1,6),(2,3),(3,5),(3,6),(4,5)],7) generating graphics... => 22
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(3,5),(3,6)],7) generating graphics... => 34
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(3,6),(4,5)],7) generating graphics... => 24
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(4,6)],7) generating graphics... => 28
([(0,5),(0,6),(1,4),(2,6),(3,5),(3,6),(4,2),(4,3)],7) generating graphics... => 12
([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2),(4,3)],7) generating graphics... => 6
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(4,5),(4,6)],7) generating graphics... => 19
([(0,5),(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,2),(4,3)],7) generating graphics... => 9
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2),(4,3)],7) generating graphics... => 5
([(2,6),(3,4),(3,6),(6,5)],7) generating graphics... => 142
([(1,6),(2,3),(2,6),(6,4),(6,5)],7) generating graphics... => 51
([(0,6),(1,2),(1,6),(6,3),(6,4),(6,5)],7) generating graphics... => 24
([(2,6),(3,4),(3,5)],7) generating graphics... => 322
([(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 292
([(1,6),(2,3),(2,4),(2,6),(4,5)],7) generating graphics... => 142
([(0,6),(1,4),(1,5),(1,6),(5,2),(5,3)],7) generating graphics... => 71
([(0,6),(1,3),(1,4),(1,6),(4,2),(4,5),(6,5)],7) generating graphics... => 35
([(0,6),(1,2),(1,3),(1,6),(3,4),(3,5),(6,4),(6,5)],7) generating graphics... => 23
([(1,5),(2,3),(2,4),(2,5),(4,6),(5,6)],7) generating graphics... => 75
([(0,5),(1,3),(1,4),(1,5),(4,6),(5,6),(6,2)],7) generating graphics... => 15
([(0,6),(1,3),(1,5),(1,6),(5,2),(6,4)],7) generating graphics... => 41
([(0,6),(1,3),(1,4),(1,6),(4,5),(6,2),(6,5)],7) generating graphics... => 29
([(1,5),(2,3),(2,4),(2,5),(3,6),(4,6)],7) generating graphics... => 89
([(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => 56
([(0,5),(1,2),(1,3),(1,5),(2,6),(3,6),(5,6),(6,4)],7) generating graphics... => 9
([(0,6),(1,3),(1,4),(1,6),(3,5),(4,5),(6,2)],7) generating graphics... => 28
([(0,5),(1,2),(1,3),(1,5),(2,6),(3,6),(5,4),(5,6)],7) generating graphics... => 23
([(0,5),(1,3),(1,4),(1,5),(3,6),(4,6),(6,2)],7) generating graphics... => 20
([(0,6),(1,2),(1,3),(1,6),(2,5),(3,5),(5,4),(6,4)],7) generating graphics... => 14
([(0,6),(1,4),(1,5),(1,6),(4,3),(5,2)],7) generating graphics... => 51
([(0,6),(1,3),(1,4),(1,6),(3,5),(4,2),(4,5)],7) generating graphics... => 41
([(0,6),(1,2),(1,3),(1,6),(2,5),(3,4),(3,5),(6,4)],7) generating graphics... => 23
([(0,4),(1,2),(1,3),(1,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 18
([(0,5),(1,3),(1,4),(1,5),(3,6),(4,2),(4,6),(5,6)],7) generating graphics... => 28
([(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(3,4),(3,5)],7) generating graphics... => 31
([(0,4),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6)],7) generating graphics... => 20
([(0,4),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 15
([(0,6),(1,3),(1,4),(1,6),(3,5),(4,2),(6,5)],7) generating graphics... => 31
([(0,6),(1,2),(1,3),(1,6),(2,5),(3,4),(6,4),(6,5)],7) generating graphics... => 21
([(1,6),(2,3),(2,4),(2,6),(6,5)],7) generating graphics... => 108
([(0,6),(1,2),(1,3),(1,6),(6,4),(6,5)],7) generating graphics... => 39
([(1,6),(2,3),(2,4),(2,5)],7) generating graphics... => 247
([(1,6),(2,3),(2,4),(2,5),(2,6)],7) generating graphics... => 227
([(0,6),(1,3),(1,4),(1,5),(1,6),(5,2)],7) generating graphics... => 115
([(0,6),(1,2),(1,3),(1,4),(1,6),(4,5),(6,5)],7) generating graphics... => 59
([(0,6),(1,2),(1,3),(1,4),(1,6),(3,5),(4,5)],7) generating graphics... => 71
([(0,5),(1,2),(1,3),(1,4),(1,5),(3,6),(4,6),(5,6)],7) generating graphics... => 44
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6)],7) generating graphics... => 51
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 35
([(0,6),(1,2),(1,3),(1,4),(1,6),(6,5)],7) generating graphics... => 86
([(0,6),(1,2),(1,3),(1,4),(1,5)],7) generating graphics... => 200
([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7) generating graphics... => 189
([(0,2),(0,3),(0,4),(0,6),(5,1),(6,5)],7) generating graphics... => 60
([(0,6),(1,2),(1,3),(1,4),(1,5),(5,6)],7) generating graphics... => 133
([(0,2),(0,3),(0,4),(0,5),(1,6),(4,6),(5,1)],7) generating graphics... => 40
([(0,6),(1,2),(1,3),(1,4),(1,5),(4,6),(5,6)],7) generating graphics... => 97
([(0,2),(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1)],7) generating graphics... => 31
([(0,6),(1,2),(1,3),(1,4),(1,5),(3,6),(4,6),(5,6)],7) generating graphics... => 75
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) generating graphics... => 26
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 61
([(0,5),(1,2),(1,3),(1,4),(1,6),(5,6)],7) generating graphics... => 97
([(0,4),(1,2),(1,3),(1,5),(1,6),(4,5),(4,6)],7) generating graphics... => 50
([(0,3),(1,2),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6)],7) generating graphics... => 35
([(0,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7) generating graphics... => 28
([(1,3),(1,4),(1,6),(5,2),(6,5)],7) generating graphics... => 72
([(0,3),(0,4),(0,5),(5,6),(6,1),(6,2)],7) generating graphics... => 29
([(1,6),(2,3),(2,4),(2,5),(5,6)],7) generating graphics... => 162
([(0,6),(1,2),(1,3),(1,4),(4,6),(6,5)],7) generating graphics... => 36
([(1,2),(1,4),(1,5),(3,6),(4,6),(5,3)],7) generating graphics... => 48
([(0,3),(0,4),(0,5),(1,6),(4,6),(5,1),(6,2)],7) generating graphics... => 10
([(1,6),(2,3),(2,4),(2,5),(4,6),(5,6)],7) generating graphics... => 119
([(0,6),(1,2),(1,3),(1,4),(3,6),(4,6),(6,5)],7) generating graphics... => 22
([(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,2)],7) generating graphics... => 36
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) generating graphics... => 6
([(1,6),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => 92
([(0,6),(1,2),(1,3),(1,4),(2,6),(3,6),(4,6),(6,5)],7) generating graphics... => 14
([(0,6),(1,3),(1,4),(1,5),(3,6),(4,6),(5,2)],7) generating graphics... => 47
([(0,6),(1,2),(1,3),(1,4),(2,6),(3,6),(4,5),(6,5)],7) generating graphics... => 18
([(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1),(5,2)],7) generating graphics... => 24
([(0,6),(1,3),(1,4),(1,5),(3,6),(4,6),(5,2),(5,6)],7) generating graphics... => 44
([(0,6),(1,3),(1,4),(1,5),(4,6),(5,2)],7) generating graphics... => 69
([(0,6),(1,2),(1,3),(1,4),(3,6),(4,5),(6,5)],7) generating graphics... => 29
([(0,3),(0,4),(0,5),(2,6),(4,6),(5,1),(5,2)],7) generating graphics... => 30
([(0,6),(1,3),(1,4),(1,5),(4,6),(5,2),(5,6)],7) generating graphics... => 60
click to show generating function       
Description
The largest coefficient of the Poincare polynomial of the poset cone.
For a poset $P$ on $\{1,\dots,n\}$, let $\mathcal K_P = \{\vec x\in\mathbb R^n| x_i < x_j \text{ for } i < _P j\}$. Furthermore let $\mathcal L(\mathcal A)$ be the intersection lattice of the braid arrangement $A_{n-1}$ and let $\mathcal L^{int} = \{ X \in \mathcal L(\mathcal A) | X \cap \mathcal K_P \neq \emptyset \}$.
Then the Poincare polynomial of the poset cone is $Poin(t) = \sum_{X\in\mathcal L^{int}} |\mu(0, X)| t^{codim X}$.
This statistic records its largest coefficient.
References
[1] Dorpalen-Barry, G., Kim, J. S., Reiner, V. Whitney Numbers for Poset Cones arXiv:1906.00036
Code
# code by Jang Soo Kim
def delete_elements(P,A):
    "Return the poset obtained from P by deleting the elements in A"
    elms = [x for x in  P.list() if x not in A]
    rels = [R for R in P.relations() if R[0] not in A and R[1] not in A]
    return Poset([elms,rels], cover_relations=False)

def add_bottom(P):
    "Return the poset obtained from P by adding the minimum element 0."
    elms = ["zero_hat"] + P.list()
    rels = [["zero_hat",x] for x in P.list()] + P.relations()
    return Poset([elms,rels], cover_relations=False)

def Poin(P,t,omega=0):
    """
    Input:

    P: a poset or a list of numbers [a,b,c,...].
    If P = [a,b,c,...], then P is set to be the cell poset of the partition [a,b,c,...].

    t: a variable

    omega: a labeling of P which is given by default to the first lin ext of P.

    Output: The Poincare polynomial of the poset P.
    The bijection from linear extensions to P-transverse permutations is used.
    """
    if type(P) == list:
        P = Partition(P).cell_poset().dual()
    if omega == 0:
        omega = P.linear_extensions()[0]
    poly = 0
    for L in P.linear_extensions():
        poly += t^(len(P)-len(get_P_transverse_permutation(P,omega,L)))
    return poly

def get_P_transverse_permutation(P,omega,L):
    """
    Input:
    P: a poset
    omega: a labeling of P
    L: a linear extension of P

    Output: The P-transverse permutation corresponding to L with respect to omega.
    """
    Q = add_bottom(P)
    pi = []
    while len(L)>0:
        N = next_level(Q,P,omega,L)
        pi = pi + N[-1]
        [Q, P, omega, L] = N[:-1]
    return pi

def next_level(Q,P,omega,L):
    """
    INPUT: Q,P,omega,L
    Q: poset containing P
    omega: labeling
    L: a linear extension of P

    OUTPUT: [Q1, P1, omega, L1, pi]
    Q1 = P
    P1 = P - minimal blocks
    omega = omega
    L1 = L restricted to P1
    pi = P-transverse permutation of the minimal blocks in P.
    """
    L1 = L
    pi = []
    C = []   # the list of current level elements in P
    D = []   # the list of current level elements in P that are not minimal in Q
    B = []
    for x in L:
        if x not in P.minimal_elements():  # If x is not a minimal element in P this level is done.
            break
        C.append(x)
        if x not in Q.minimal_elements():
            D.append(x)
            if omega.index(x) == min([omega.index(d) for d in D]):
                if len(B)>0:
                    pi.append(B)
                B = [x]
        else:
            B.append(x)
    pi.append(B)
    Q1 = P
    P1 = delete_elements(P,C)
    L1 = L[len(C):]
    return [Q1, P1, omega, L1, pi]

statistic = lambda P: max(Poin(P, QQ["q"].gen()).list())
Created
May 03, 2020 at 17:53 by Martin Rubey
Updated
May 03, 2020 at 17:53 by Martin Rubey