Identifier
-
Mp00008:
Binary trees
—to complete tree⟶
Ordered trees
Mp00047: Ordered trees —to poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000566: Integer partitions ⟶ ℤ
Values
[.,.] => [[],[]] => ([(0,2),(1,2)],3) => [2,1] => 1
[.,[.,.]] => [[],[[],[]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => [3,1,1] => 3
[[.,.],.] => [[[],[]],[]] => ([(0,4),(1,3),(2,3),(3,4)],5) => [3,1,1] => 3
[.,[.,[.,.]]] => [[],[[],[[],[]]]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => [4,1,1,1] => 6
[.,[[.,.],.]] => [[],[[[],[]],[]]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => [4,1,1,1] => 6
[[.,.],[.,.]] => [[[],[]],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,6),(5,6)],7) => [3,2,1,1] => 4
[[.,[.,.]],.] => [[[],[[],[]]],[]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => [4,1,1,1] => 6
[[[.,.],.],.] => [[[[],[]],[]],[]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => [4,1,1,1] => 6
[.,[.,[.,[.,.]]]] => [[],[[],[[],[[],[]]]]] => ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9) => [5,1,1,1,1] => 10
[.,[.,[[.,.],.]]] => [[],[[],[[[],[]],[]]]] => ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9) => [5,1,1,1,1] => 10
[.,[[.,.],[.,.]]] => [[],[[[],[]],[[],[]]]] => ([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9) => [4,2,1,1,1] => 7
[.,[[.,[.,.]],.]] => [[],[[[],[[],[]]],[]]] => ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9) => [5,1,1,1,1] => 10
[.,[[[.,.],.],.]] => [[],[[[[],[]],[]],[]]] => ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9) => [5,1,1,1,1] => 10
[[.,.],[.,[.,.]]] => [[[],[]],[[],[[],[]]]] => ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9) => [4,2,1,1,1] => 7
[[.,.],[[.,.],.]] => [[[],[]],[[[],[]],[]]] => ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9) => [4,2,1,1,1] => 7
[[.,[.,.]],[.,.]] => [[[],[[],[]]],[[],[]]] => ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9) => [4,2,1,1,1] => 7
[[[.,.],.],[.,.]] => [[[[],[]],[]],[[],[]]] => ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9) => [4,2,1,1,1] => 7
[[.,[.,[.,.]]],.] => [[[],[[],[[],[]]]],[]] => ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9) => [5,1,1,1,1] => 10
[[.,[[.,.],.]],.] => [[[],[[[],[]],[]]],[]] => ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9) => [5,1,1,1,1] => 10
[[[.,.],[.,.]],.] => [[[[],[]],[[],[]]],[]] => ([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9) => [4,2,1,1,1] => 7
[[[.,[.,.]],.],.] => [[[[],[[],[]]],[]],[]] => ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9) => [5,1,1,1,1] => 10
[[[[.,.],.],.],.] => [[[[[],[]],[]],[]],[]] => ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9) => [5,1,1,1,1] => 10
[.,[.,[.,[.,[.,.]]]]] => [[],[[],[[],[[],[[],[]]]]]] => ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11) => [6,1,1,1,1,1] => 15
[.,[.,[.,[[.,.],.]]]] => [[],[[],[[],[[[],[]],[]]]]] => ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11) => [6,1,1,1,1,1] => 15
[.,[.,[[.,.],[.,.]]]] => [[],[[],[[[],[]],[[],[]]]]] => ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11) => [5,2,1,1,1,1] => 11
[.,[.,[[.,[.,.]],.]]] => [[],[[],[[[],[[],[]]],[]]]] => ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11) => [6,1,1,1,1,1] => 15
[.,[.,[[[.,.],.],.]]] => [[],[[],[[[[],[]],[]],[]]]] => ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11) => [6,1,1,1,1,1] => 15
[.,[[.,.],[.,[.,.]]]] => [[],[[[],[]],[[],[[],[]]]]] => ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11) => [5,2,1,1,1,1] => 11
[.,[[.,.],[[.,.],.]]] => [[],[[[],[]],[[[],[]],[]]]] => ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11) => [5,2,1,1,1,1] => 11
[.,[[.,[.,.]],[.,.]]] => [[],[[[],[[],[]]],[[],[]]]] => ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11) => [5,2,1,1,1,1] => 11
[.,[[[.,.],.],[.,.]]] => [[],[[[[],[]],[]],[[],[]]]] => ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11) => [5,2,1,1,1,1] => 11
[.,[[.,[.,[.,.]]],.]] => [[],[[[],[[],[[],[]]]],[]]] => ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11) => [6,1,1,1,1,1] => 15
[.,[[.,[[.,.],.]],.]] => [[],[[[],[[[],[]],[]]],[]]] => ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11) => [6,1,1,1,1,1] => 15
[.,[[[.,.],[.,.]],.]] => [[],[[[[],[]],[[],[]]],[]]] => ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11) => [5,2,1,1,1,1] => 11
[.,[[[.,[.,.]],.],.]] => [[],[[[[],[[],[]]],[]],[]]] => ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11) => [6,1,1,1,1,1] => 15
[.,[[[[.,.],.],.],.]] => [[],[[[[[],[]],[]],[]],[]]] => ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11) => [6,1,1,1,1,1] => 15
[[.,.],[.,[.,[.,.]]]] => [[[],[]],[[],[[],[[],[]]]]] => ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11) => [5,2,1,1,1,1] => 11
[[.,.],[.,[[.,.],.]]] => [[[],[]],[[],[[[],[]],[]]]] => ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11) => [5,2,1,1,1,1] => 11
[[.,.],[[.,.],[.,.]]] => [[[],[]],[[[],[]],[[],[]]]] => ([(0,8),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,9),(8,9),(9,10)],11) => [4,2,2,1,1,1] => 8
[[.,.],[[.,[.,.]],.]] => [[[],[]],[[[],[[],[]]],[]]] => ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11) => [5,2,1,1,1,1] => 11
[[.,.],[[[.,.],.],.]] => [[[],[]],[[[[],[]],[]],[]]] => ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11) => [5,2,1,1,1,1] => 11
[[.,[.,.]],[.,[.,.]]] => [[[],[[],[]]],[[],[[],[]]]] => ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11) => [4,3,1,1,1,1] => 9
[[.,[.,.]],[[.,.],.]] => [[[],[[],[]]],[[[],[]],[]]] => ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11) => [4,3,1,1,1,1] => 9
[[[.,.],.],[.,[.,.]]] => [[[[],[]],[]],[[],[[],[]]]] => ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11) => [4,3,1,1,1,1] => 9
[[[.,.],.],[[.,.],.]] => [[[[],[]],[]],[[[],[]],[]]] => ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11) => [4,3,1,1,1,1] => 9
[[.,[.,[.,.]]],[.,.]] => [[[],[[],[[],[]]]],[[],[]]] => ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11) => [5,2,1,1,1,1] => 11
[[.,[[.,.],.]],[.,.]] => [[[],[[[],[]],[]]],[[],[]]] => ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11) => [5,2,1,1,1,1] => 11
[[[.,.],[.,.]],[.,.]] => [[[[],[]],[[],[]]],[[],[]]] => ([(0,8),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,9),(8,9),(9,10)],11) => [4,2,2,1,1,1] => 8
[[[.,[.,.]],.],[.,.]] => [[[[],[[],[]]],[]],[[],[]]] => ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11) => [5,2,1,1,1,1] => 11
[[[[.,.],.],.],[.,.]] => [[[[[],[]],[]],[]],[[],[]]] => ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11) => [5,2,1,1,1,1] => 11
[[.,[.,[.,[.,.]]]],.] => [[[],[[],[[],[[],[]]]]],[]] => ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11) => [6,1,1,1,1,1] => 15
[[.,[.,[[.,.],.]]],.] => [[[],[[],[[[],[]],[]]]],[]] => ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11) => [6,1,1,1,1,1] => 15
[[.,[[.,.],[.,.]]],.] => [[[],[[[],[]],[[],[]]]],[]] => ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11) => [5,2,1,1,1,1] => 11
[[.,[[.,[.,.]],.]],.] => [[[],[[[],[[],[]]],[]]],[]] => ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11) => [6,1,1,1,1,1] => 15
[[.,[[[.,.],.],.]],.] => [[[],[[[[],[]],[]],[]]],[]] => ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11) => [6,1,1,1,1,1] => 15
[[[.,.],[.,[.,.]]],.] => [[[[],[]],[[],[[],[]]]],[]] => ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11) => [5,2,1,1,1,1] => 11
[[[.,.],[[.,.],.]],.] => [[[[],[]],[[[],[]],[]]],[]] => ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11) => [5,2,1,1,1,1] => 11
[[[.,[.,.]],[.,.]],.] => [[[[],[[],[]]],[[],[]]],[]] => ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11) => [5,2,1,1,1,1] => 11
[[[[.,.],.],[.,.]],.] => [[[[[],[]],[]],[[],[]]],[]] => ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11) => [5,2,1,1,1,1] => 11
[[[.,[.,[.,.]]],.],.] => [[[[],[[],[[],[]]]],[]],[]] => ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11) => [6,1,1,1,1,1] => 15
[[[.,[[.,.],.]],.],.] => [[[[],[[[],[]],[]]],[]],[]] => ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11) => [6,1,1,1,1,1] => 15
[[[[.,.],[.,.]],.],.] => [[[[[],[]],[[],[]]],[]],[]] => ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11) => [5,2,1,1,1,1] => 11
[[[[.,[.,.]],.],.],.] => [[[[[],[[],[]]],[]],[]],[]] => ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11) => [6,1,1,1,1,1] => 15
[[[[[.,.],.],.],.],.] => [[[[[[],[]],[]],[]],[]],[]] => ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11) => [6,1,1,1,1,1] => 15
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of ways to select a row of a Ferrers shape and two cells in this row. Equivalently, if $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ is an integer partition, then the statistic is
$$\frac{1}{2} \sum_{i=0}^m \lambda_i(\lambda_i -1).$$
$$\frac{1}{2} \sum_{i=0}^m \lambda_i(\lambda_i -1).$$
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition $(c_1 - c_0, c_2 - c_1, c_3 - c_2, \ldots)$, where $c_k$ is the maximum cardinality of a union of $k$ chains of the poset. Equivalently, this is the conjugate of the partition $(a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots)$, where $a_k$ is the maximum cardinality of a union of $k$ antichains of the poset.
This is the partition $(c_1 - c_0, c_2 - c_1, c_3 - c_2, \ldots)$, where $c_k$ is the maximum cardinality of a union of $k$ chains of the poset. Equivalently, this is the conjugate of the partition $(a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots)$, where $a_k$ is the maximum cardinality of a union of $k$ antichains of the poset.
Map
to poset
Description
Return the poset obtained by interpreting the tree as the Hasse diagram of a graph.
Map
to complete tree
Description
Return the same tree seen as an ordered tree. By default, leaves are transformed into actual nodes.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!