Identifier
-
Mp00062:
Permutations
—Lehmer-code to major-code bijection⟶
Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00008: Binary trees —to complete tree⟶ Ordered trees
St000521: Ordered trees ⟶ ℤ
Values
[1] => [1] => [.,.] => [[],[]] => 2
[1,2] => [1,2] => [.,[.,.]] => [[],[[],[]]] => 3
[2,1] => [2,1] => [[.,.],.] => [[[],[]],[]] => 3
[1,2,3] => [1,2,3] => [.,[.,[.,.]]] => [[],[[],[[],[]]]] => 4
[1,3,2] => [3,1,2] => [[.,.],[.,.]] => [[[],[]],[[],[]]] => 3
[2,1,3] => [2,1,3] => [[.,.],[.,.]] => [[[],[]],[[],[]]] => 3
[2,3,1] => [1,3,2] => [.,[[.,.],.]] => [[],[[[],[]],[]]] => 4
[3,1,2] => [2,3,1] => [[.,[.,.]],.] => [[[],[[],[]]],[]] => 4
[3,2,1] => [3,2,1] => [[[.,.],.],.] => [[[[],[]],[]],[]] => 4
[1,2,3,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]] => [[],[[],[[],[[],[]]]]] => 5
[2,1,4,3] => [1,4,2,3] => [.,[[.,.],[.,.]]] => [[],[[[],[]],[[],[]]]] => 4
[2,3,1,4] => [1,3,2,4] => [.,[[.,.],[.,.]]] => [[],[[[],[]],[[],[]]]] => 4
[2,3,4,1] => [1,2,4,3] => [.,[.,[[.,.],.]]] => [[],[[],[[[],[]],[]]]] => 5
[2,4,1,3] => [1,3,4,2] => [.,[[.,[.,.]],.]] => [[],[[[],[[],[]]],[]]] => 5
[3,4,2,1] => [1,4,3,2] => [.,[[[.,.],.],.]] => [[],[[[[],[]],[]],[]]] => 5
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of distinct subtrees of an ordered tree.
A subtree is specified by a node of the tree. Thus, the tree consisting of a single path has as many subtrees as nodes, whereas the tree of height two, having all leaves attached to the root, has only two distinct subtrees. Because we consider ordered trees, the tree $[[[[]], []], [[], [[]]]]$ on nine nodes has five distinct subtrees.
A subtree is specified by a node of the tree. Thus, the tree consisting of a single path has as many subtrees as nodes, whereas the tree of height two, having all leaves attached to the root, has only two distinct subtrees. Because we consider ordered trees, the tree $[[[[]], []], [[], [[]]]]$ on nine nodes has five distinct subtrees.
Map
Lehmer-code to major-code bijection
Description
Sends a permutation to the unique permutation such that the Lehmer code is sent to the major code.
The Lehmer code encodes the inversions of a permutation and the major code encodes its major index. In particular, the number of inversions of a permutation equals the major index of its image under this map.
* The Lehmer code of a permutation $\sigma$ is given by $L(\sigma) = l_1 \ldots l_n$ with $l_i = \# \{ j > i : \sigma_j < \sigma_i \}$. In particular, $l_i$ is the number of boxes in the $i$-th column of the Rothe diagram. For example, the Lehmer code of $\sigma = [4,3,1,5,2]$ is $32010$. The Lehmer code $L : \mathfrak{S}_n\ \tilde\longrightarrow\ S_n$ is a bijection between permutations of size $n$ and sequences $l_1\ldots l_n \in \mathbf{N}^n$ with $l_i \leq i$.
* The major code $M(\sigma)$ of a permutation $\sigma \in \mathfrak{S}_n$ is a way to encode a permutation as a sequence $m_1 m_2 \ldots m_n$ with $m_i \geq i$. To define $m_i$, let $\operatorname{del}_i(\sigma)$ be the normalized permutation obtained by removing all $\sigma_j < i$ from the one-line notation of $\sigma$. The $i$-th index is then given by
$$m_i = \operatorname{maj}(\operatorname{del}_i(\sigma)) - \operatorname{maj}(\operatorname{del}_{i-1}(\sigma)).$$
For example, the permutation $[9,3,5,7,2,1,4,6,8]$ has major code $[5, 0, 1, 0, 1, 2, 0, 1, 0]$ since
$$\operatorname{maj}([8,2,4,6,1,3,5,7]) = 5, \quad \operatorname{maj}([7,1,3,5,2,4,6]) = 5, \quad \operatorname{maj}([6,2,4,1,3,5]) = 4,$$
$$\operatorname{maj}([5,1,3,2,4]) = 4, \quad \operatorname{maj}([4,2,1,3]) = 3, \quad \operatorname{maj}([3,1,2]) = 1, \quad \operatorname{maj}([2,1]) = 1.$$
Observe that the sum of the major code of $\sigma$ equals the major index of $\sigma$.
The Lehmer code encodes the inversions of a permutation and the major code encodes its major index. In particular, the number of inversions of a permutation equals the major index of its image under this map.
* The Lehmer code of a permutation $\sigma$ is given by $L(\sigma) = l_1 \ldots l_n$ with $l_i = \# \{ j > i : \sigma_j < \sigma_i \}$. In particular, $l_i$ is the number of boxes in the $i$-th column of the Rothe diagram. For example, the Lehmer code of $\sigma = [4,3,1,5,2]$ is $32010$. The Lehmer code $L : \mathfrak{S}_n\ \tilde\longrightarrow\ S_n$ is a bijection between permutations of size $n$ and sequences $l_1\ldots l_n \in \mathbf{N}^n$ with $l_i \leq i$.
* The major code $M(\sigma)$ of a permutation $\sigma \in \mathfrak{S}_n$ is a way to encode a permutation as a sequence $m_1 m_2 \ldots m_n$ with $m_i \geq i$. To define $m_i$, let $\operatorname{del}_i(\sigma)$ be the normalized permutation obtained by removing all $\sigma_j < i$ from the one-line notation of $\sigma$. The $i$-th index is then given by
$$m_i = \operatorname{maj}(\operatorname{del}_i(\sigma)) - \operatorname{maj}(\operatorname{del}_{i-1}(\sigma)).$$
For example, the permutation $[9,3,5,7,2,1,4,6,8]$ has major code $[5, 0, 1, 0, 1, 2, 0, 1, 0]$ since
$$\operatorname{maj}([8,2,4,6,1,3,5,7]) = 5, \quad \operatorname{maj}([7,1,3,5,2,4,6]) = 5, \quad \operatorname{maj}([6,2,4,1,3,5]) = 4,$$
$$\operatorname{maj}([5,1,3,2,4]) = 4, \quad \operatorname{maj}([4,2,1,3]) = 3, \quad \operatorname{maj}([3,1,2]) = 1, \quad \operatorname{maj}([2,1]) = 1.$$
Observe that the sum of the major code of $\sigma$ equals the major index of $\sigma$.
Map
to increasing tree
Description
Sends a permutation to its associated increasing tree.
This tree is recursively obtained by sending the unique permutation of length $0$ to the empty tree, and sending a permutation $\sigma$ of length $n \geq 1$ to a root node with two subtrees $L$ and $R$ by splitting $\sigma$ at the index $\sigma^{-1}(1)$, normalizing both sides again to permutations and sending the permutations on the left and on the right of $\sigma^{-1}(1)$ to the trees $L$ and $R$, respectively.
This tree is recursively obtained by sending the unique permutation of length $0$ to the empty tree, and sending a permutation $\sigma$ of length $n \geq 1$ to a root node with two subtrees $L$ and $R$ by splitting $\sigma$ at the index $\sigma^{-1}(1)$, normalizing both sides again to permutations and sending the permutations on the left and on the right of $\sigma^{-1}(1)$ to the trees $L$ and $R$, respectively.
Map
to complete tree
Description
Return the same tree seen as an ordered tree. By default, leaves are transformed into actual nodes.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!