Identifier
-
Mp00008:
Binary trees
—to complete tree⟶
Ordered trees
Mp00047: Ordered trees —to poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000319: Integer partitions ⟶ ℤ (values match St000320The dinv adjustment of an integer partition.)
Values
[.,.] => [[],[]] => ([(0,2),(1,2)],3) => [2,1] => 1
[.,[.,.]] => [[],[[],[]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => [3,1,1] => 2
[[.,.],.] => [[[],[]],[]] => ([(0,4),(1,3),(2,3),(3,4)],5) => [3,1,1] => 2
[.,[.,[.,.]]] => [[],[[],[[],[]]]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => [4,1,1,1] => 3
[.,[[.,.],.]] => [[],[[[],[]],[]]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => [4,1,1,1] => 3
[[.,.],[.,.]] => [[[],[]],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,6),(5,6)],7) => [3,2,1,1] => 2
[[.,[.,.]],.] => [[[],[[],[]]],[]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => [4,1,1,1] => 3
[[[.,.],.],.] => [[[[],[]],[]],[]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => [4,1,1,1] => 3
[.,[.,[.,[.,.]]]] => [[],[[],[[],[[],[]]]]] => ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9) => [5,1,1,1,1] => 4
[.,[.,[[.,.],.]]] => [[],[[],[[[],[]],[]]]] => ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9) => [5,1,1,1,1] => 4
[.,[[.,.],[.,.]]] => [[],[[[],[]],[[],[]]]] => ([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9) => [4,2,1,1,1] => 3
[.,[[.,[.,.]],.]] => [[],[[[],[[],[]]],[]]] => ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9) => [5,1,1,1,1] => 4
[.,[[[.,.],.],.]] => [[],[[[[],[]],[]],[]]] => ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9) => [5,1,1,1,1] => 4
[[.,.],[.,[.,.]]] => [[[],[]],[[],[[],[]]]] => ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9) => [4,2,1,1,1] => 3
[[.,.],[[.,.],.]] => [[[],[]],[[[],[]],[]]] => ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9) => [4,2,1,1,1] => 3
[[.,[.,.]],[.,.]] => [[[],[[],[]]],[[],[]]] => ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9) => [4,2,1,1,1] => 3
[[[.,.],.],[.,.]] => [[[[],[]],[]],[[],[]]] => ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9) => [4,2,1,1,1] => 3
[[.,[.,[.,.]]],.] => [[[],[[],[[],[]]]],[]] => ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9) => [5,1,1,1,1] => 4
[[.,[[.,.],.]],.] => [[[],[[[],[]],[]]],[]] => ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9) => [5,1,1,1,1] => 4
[[[.,.],[.,.]],.] => [[[[],[]],[[],[]]],[]] => ([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9) => [4,2,1,1,1] => 3
[[[.,[.,.]],.],.] => [[[[],[[],[]]],[]],[]] => ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9) => [5,1,1,1,1] => 4
[[[[.,.],.],.],.] => [[[[[],[]],[]],[]],[]] => ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9) => [5,1,1,1,1] => 4
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The spin of an integer partition.
The Ferrers shape of an integer partition λ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of λ with the vertical lines in the Ferrers shape.
The following example is taken from Appendix B in [1]: Let λ=(5,5,4,4,2,1). Removing the border strips successively yields the sequence of partitions
(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),().
The first strip (5,5,4,4,2,1)∖(4,3,3,1) crosses 4 times, the second strip (4,3,3,1)∖(2,2) crosses 3 times, the strip (2,2)∖(1) crosses 1 time, and the remaining strip (1)∖() does not cross.
This yields the spin of (5,5,4,4,2,1) to be 4+3+1=8.
The Ferrers shape of an integer partition λ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of λ with the vertical lines in the Ferrers shape.
The following example is taken from Appendix B in [1]: Let λ=(5,5,4,4,2,1). Removing the border strips successively yields the sequence of partitions
(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),().
The first strip (5,5,4,4,2,1)∖(4,3,3,1) crosses 4 times, the second strip (4,3,3,1)∖(2,2) crosses 3 times, the strip (2,2)∖(1) crosses 1 time, and the remaining strip (1)∖() does not cross.
This yields the spin of (5,5,4,4,2,1) to be 4+3+1=8.
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition (c1−c0,c2−c1,c3−c2,…), where ck is the maximum cardinality of a union of k chains of the poset. Equivalently, this is the conjugate of the partition (a1−a0,a2−a1,a3−a2,…), where ak is the maximum cardinality of a union of k antichains of the poset.
This is the partition (c1−c0,c2−c1,c3−c2,…), where ck is the maximum cardinality of a union of k chains of the poset. Equivalently, this is the conjugate of the partition (a1−a0,a2−a1,a3−a2,…), where ak is the maximum cardinality of a union of k antichains of the poset.
Map
to poset
Description
Return the poset obtained by interpreting the tree as the Hasse diagram of a graph.
Map
to complete tree
Description
Return the same tree seen as an ordered tree. By default, leaves are transformed into actual nodes.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!