searching the database
Your data matches 12 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000532
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
St000532: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 2
[2]
=> 3
[1,1]
=> 3
[3]
=> 4
[2,1]
=> 5
[1,1,1]
=> 4
[4]
=> 5
[3,1]
=> 7
[2,2]
=> 7
[2,1,1]
=> 7
[1,1,1,1]
=> 5
[5]
=> 6
[4,1]
=> 9
[3,2]
=> 10
[3,1,1]
=> 10
[2,2,1]
=> 10
[2,1,1,1]
=> 9
[1,1,1,1,1]
=> 6
[6]
=> 7
[5,1]
=> 11
[4,2]
=> 13
[4,1,1]
=> 13
[3,3]
=> 13
[3,2,1]
=> 15
[3,1,1,1]
=> 13
[2,2,2]
=> 13
[2,2,1,1]
=> 13
[2,1,1,1,1]
=> 11
[1,1,1,1,1,1]
=> 7
[7]
=> 8
[6,1]
=> 13
[5,2]
=> 16
[5,1,1]
=> 16
[4,3]
=> 17
[4,2,1]
=> 20
[4,1,1,1]
=> 17
[3,3,1]
=> 20
[3,2,2]
=> 20
[3,2,1,1]
=> 20
[3,1,1,1,1]
=> 16
[2,2,2,1]
=> 17
[2,2,1,1,1]
=> 16
[2,1,1,1,1,1]
=> 13
[1,1,1,1,1,1,1]
=> 8
Description
The total number of rook placements on a Ferrers board.
Matching statistic: St001658
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001658: Skew partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001658: Skew partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> [[1],[]]
=> 2
[2]
=> [[2],[]]
=> 3
[1,1]
=> [[1,1],[]]
=> 3
[3]
=> [[3],[]]
=> 4
[2,1]
=> [[2,1],[]]
=> 5
[1,1,1]
=> [[1,1,1],[]]
=> 4
[4]
=> [[4],[]]
=> 5
[3,1]
=> [[3,1],[]]
=> 7
[2,2]
=> [[2,2],[]]
=> 7
[2,1,1]
=> [[2,1,1],[]]
=> 7
[1,1,1,1]
=> [[1,1,1,1],[]]
=> 5
[5]
=> [[5],[]]
=> 6
[4,1]
=> [[4,1],[]]
=> 9
[3,2]
=> [[3,2],[]]
=> 10
[3,1,1]
=> [[3,1,1],[]]
=> 10
[2,2,1]
=> [[2,2,1],[]]
=> 10
[2,1,1,1]
=> [[2,1,1,1],[]]
=> 9
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 6
[6]
=> [[6],[]]
=> 7
[5,1]
=> [[5,1],[]]
=> 11
[4,2]
=> [[4,2],[]]
=> 13
[4,1,1]
=> [[4,1,1],[]]
=> 13
[3,3]
=> [[3,3],[]]
=> 13
[3,2,1]
=> [[3,2,1],[]]
=> 15
[3,1,1,1]
=> [[3,1,1,1],[]]
=> 13
[2,2,2]
=> [[2,2,2],[]]
=> 13
[2,2,1,1]
=> [[2,2,1,1],[]]
=> 13
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> 11
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> 7
[7]
=> [[7],[]]
=> 8
[6,1]
=> [[6,1],[]]
=> 13
[5,2]
=> [[5,2],[]]
=> 16
[5,1,1]
=> [[5,1,1],[]]
=> 16
[4,3]
=> [[4,3],[]]
=> 17
[4,2,1]
=> [[4,2,1],[]]
=> 20
[4,1,1,1]
=> [[4,1,1,1],[]]
=> 17
[3,3,1]
=> [[3,3,1],[]]
=> 20
[3,2,2]
=> [[3,2,2],[]]
=> 20
[3,2,1,1]
=> [[3,2,1,1],[]]
=> 20
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> 16
[2,2,2,1]
=> [[2,2,2,1],[]]
=> 17
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> 16
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> 13
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> 8
Description
The total number of rook placements on a Ferrers board.
Matching statistic: St000718
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00026: Dyck paths —to ordered tree⟶ Ordered trees
Mp00046: Ordered trees —to graph⟶ Graphs
St000718: Graphs ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 40%
Mp00026: Dyck paths —to ordered tree⟶ Ordered trees
Mp00046: Ordered trees —to graph⟶ Graphs
St000718: Graphs ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 40%
Values
[1]
=> [1,0]
=> [[]]
=> ([(0,1)],2)
=> 2
[2]
=> [1,0,1,0]
=> [[],[]]
=> ([(0,2),(1,2)],3)
=> 3
[1,1]
=> [1,1,0,0]
=> [[[]]]
=> ([(0,2),(1,2)],3)
=> 3
[3]
=> [1,0,1,0,1,0]
=> [[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 4
[2,1]
=> [1,0,1,1,0,0]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 5
[1,1,1]
=> [1,1,0,1,0,0]
=> [[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> 4
[4]
=> [1,0,1,0,1,0,1,0]
=> [[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 5
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 7
[2,2]
=> [1,1,1,0,0,0]
=> [[[[]]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 7
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 7
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 5
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 9
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 10
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 10
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [[[[]],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 10
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 9
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 7
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[],[[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 11
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 13
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [[],[],[],[[],[]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 13
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 13
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 15
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [[],[],[[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 13
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 13
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[[[]],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 13
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [[],[[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 11
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[[],[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 7
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 8
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[],[],[[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? = 13
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 16
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[],[],[],[],[[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 16
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[],[[[],[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 17
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [[],[],[[[]],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 20
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [[],[],[],[[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ? = 17
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 20
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 20
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 20
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [[],[],[[],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 16
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[[[]]],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 17
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[[[]],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 16
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [[],[[],[],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? = 13
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[[],[],[],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 8
Description
The largest Laplacian eigenvalue of a graph if it is integral.
This statistic is undefined if the largest Laplacian eigenvalue of the graph is not integral.
Various results are collected in Section 3.9 of [1]
Matching statistic: St001645
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 47%
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 47%
Values
[1]
=> [[1]]
=> [1] => ([],1)
=> 1 = 2 - 1
[2]
=> [[1,2]]
=> [2] => ([],2)
=> ? = 3 - 1
[1,1]
=> [[1],[2]]
=> [1,1] => ([(0,1)],2)
=> 2 = 3 - 1
[3]
=> [[1,2,3]]
=> [3] => ([],3)
=> ? = 4 - 1
[2,1]
=> [[1,3],[2]]
=> [1,2] => ([(1,2)],3)
=> ? = 5 - 1
[1,1,1]
=> [[1],[2],[3]]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
[4]
=> [[1,2,3,4]]
=> [4] => ([],4)
=> ? = 5 - 1
[3,1]
=> [[1,3,4],[2]]
=> [1,3] => ([(2,3)],4)
=> ? = 7 - 1
[2,2]
=> [[1,2],[3,4]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 7 - 1
[2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 7 - 1
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[5]
=> [[1,2,3,4,5]]
=> [5] => ([],5)
=> ? = 6 - 1
[4,1]
=> [[1,3,4,5],[2]]
=> [1,4] => ([(3,4)],5)
=> ? = 9 - 1
[3,2]
=> [[1,2,5],[3,4]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? = 10 - 1
[3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 10 - 1
[2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 10 - 1
[2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 9 - 1
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[6]
=> [[1,2,3,4,5,6]]
=> [6] => ([],6)
=> ? = 7 - 1
[5,1]
=> [[1,3,4,5,6],[2]]
=> [1,5] => ([(4,5)],6)
=> ? = 11 - 1
[4,2]
=> [[1,2,5,6],[3,4]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 13 - 1
[4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? = 13 - 1
[3,3]
=> [[1,2,3],[4,5,6]]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 13 - 1
[3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 15 - 1
[3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 13 - 1
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 13 - 1
[2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 13 - 1
[2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 11 - 1
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[7]
=> [[1,2,3,4,5,6,7]]
=> [7] => ([],7)
=> ? = 8 - 1
[6,1]
=> [[1,3,4,5,6,7],[2]]
=> [1,6] => ([(5,6)],7)
=> ? = 13 - 1
[5,2]
=> [[1,2,5,6,7],[3,4]]
=> [2,5] => ([(4,6),(5,6)],7)
=> ? = 16 - 1
[5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ? = 16 - 1
[4,3]
=> [[1,2,3,7],[4,5,6]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 17 - 1
[4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 20 - 1
[4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 17 - 1
[3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 20 - 1
[3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 20 - 1
[3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 20 - 1
[3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 16 - 1
[2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 17 - 1
[2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 16 - 1
[2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 13 - 1
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
Description
The pebbling number of a connected graph.
Matching statistic: St001232
(load all 12 compositions to match this statistic)
(load all 12 compositions to match this statistic)
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 40%
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 40%
Values
[1]
=> [1,0]
=> [1,0]
=> [1,0]
=> 0 = 2 - 2
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 3 - 2
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1 = 3 - 2
[3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 5 - 2
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 5 - 2
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 7 - 2
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ? = 7 - 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 7 - 2
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 5 - 2
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 6 - 2
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ? = 9 - 2
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ? = 10 - 2
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ? = 9 - 2
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ? = 6 - 2
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 5 = 7 - 2
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 11 - 2
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 13 - 2
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> ? = 13 - 2
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 13 - 2
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 15 - 2
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 13 - 2
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 13 - 2
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 13 - 2
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 11 - 2
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 7 - 2
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> 6 = 8 - 2
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 13 - 2
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 16 - 2
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> ? = 16 - 2
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 17 - 2
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 20 - 2
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> ? = 17 - 2
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 20 - 2
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 20 - 2
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 20 - 2
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 16 - 2
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 17 - 2
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 16 - 2
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 13 - 2
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 8 - 2
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001880
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 33%
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 33%
Values
[1]
=> [1,0]
=> ([],1)
=> ? = 2 - 1
[2]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ? = 3 - 1
[1,1]
=> [1,1,0,0]
=> ([],2)
=> ? = 3 - 1
[3]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
[2,1]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ? = 5 - 1
[1,1,1]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> ? = 4 - 1
[4]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 7 - 1
[2,2]
=> [1,1,1,0,0,0]
=> ([],3)
=> ? = 7 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 7 - 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ? = 5 - 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 9 - 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 10 - 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 10 - 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ? = 10 - 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 9 - 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ? = 6 - 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 11 - 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ? = 13 - 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 13 - 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ? = 13 - 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 15 - 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ? = 13 - 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> ? = 13 - 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ? = 13 - 1
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ? = 11 - 1
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ? = 7 - 1
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 8 - 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 13 - 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ? = 16 - 1
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 16 - 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 17 - 1
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,5),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ? = 20 - 1
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> ? = 17 - 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(1,4)],5)
=> ? = 20 - 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 20 - 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ? = 20 - 1
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,6),(1,5),(1,6),(3,5),(4,2),(5,4),(6,4)],7)
=> ? = 16 - 1
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ? = 17 - 1
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6)
=> ? = 16 - 1
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4)],7)
=> ? = 13 - 1
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(5,3),(6,3),(6,4)],7)
=> ? = 8 - 1
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001879
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 33%
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 33%
Values
[1]
=> [1,0]
=> ([],1)
=> ? = 2 - 2
[2]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ? = 3 - 2
[1,1]
=> [1,1,0,0]
=> ([],2)
=> ? = 3 - 2
[3]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[2,1]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ? = 5 - 2
[1,1,1]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> ? = 4 - 2
[4]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[3,1]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 7 - 2
[2,2]
=> [1,1,1,0,0,0]
=> ([],3)
=> ? = 7 - 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 7 - 2
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ? = 5 - 2
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 9 - 2
[3,2]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 10 - 2
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 10 - 2
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ? = 10 - 2
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 9 - 2
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ? = 6 - 2
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 11 - 2
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ? = 13 - 2
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 13 - 2
[3,3]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ? = 13 - 2
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 15 - 2
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ? = 13 - 2
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> ? = 13 - 2
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ? = 13 - 2
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ? = 11 - 2
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ? = 7 - 2
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 8 - 2
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 13 - 2
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ? = 16 - 2
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 16 - 2
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 17 - 2
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,5),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ? = 20 - 2
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> ? = 17 - 2
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(1,4)],5)
=> ? = 20 - 2
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 20 - 2
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ? = 20 - 2
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,6),(1,5),(1,6),(3,5),(4,2),(5,4),(6,4)],7)
=> ? = 16 - 2
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ? = 17 - 2
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6)
=> ? = 16 - 2
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4)],7)
=> ? = 13 - 2
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(5,3),(6,3),(6,4)],7)
=> ? = 8 - 2
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001313
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00093: Dyck paths —to binary word⟶ Binary words
St001313: Binary words ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 20%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00093: Dyck paths —to binary word⟶ Binary words
St001313: Binary words ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 20%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 110100 => 2
[2]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => 3
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 11011000 => 3
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1111000100 => ? = 4
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 11010100 => 5
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1101110000 => ? = 4
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 111110000100 => ? = 5
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1110100100 => ? = 7
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1110011000 => ? = 7
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1101101000 => ? = 7
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 110111100000 => ? = 5
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 11111100000100 => ? = 6
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 111101000100 => ? = 9
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1110010100 => ? = 10
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1101100100 => ? = 10
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1101011000 => ? = 10
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 110111010000 => ? = 9
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 11011111000000 => ? = 6
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> 1111111000000100 => ? = 7
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> 11111010000100 => ? = 11
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 111100100100 => ? = 13
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 111011000100 => ? = 13
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 111100011000 => ? = 13
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => ? = 15
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 110111001000 => ? = 13
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 111001110000 => ? = 13
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 110110110000 => ? = 13
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> 11011110100000 => ? = 11
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 1101111110000000 => ? = 7
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> 111111110000000100 => ? = 8
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> 1111110100000100 => ? = 13
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> 11111001000100 => ? = 16
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> 11110110000100 => ? = 16
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 111100010100 => ? = 17
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 111010100100 => ? = 20
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 110111000100 => ? = 17
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 111010011000 => ? = 20
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 111001101000 => ? = 20
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 110110101000 => ? = 20
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> 11011110010000 => ? = 16
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 110101110000 => ? = 17
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> 11011101100000 => ? = 16
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 1101111101000000 => ? = 13
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> 110111111100000000 => ? = 8
Description
The number of Dyck paths above the lattice path given by a binary word.
One may treat a binary word as a lattice path starting at the origin and treating $1$'s as steps $(1,0)$ and $0$'s as steps $(0,1)$. Given a binary word $w$, this statistic counts the number of lattice paths from the origin to the same endpoint as $w$ that stay weakly above $w$.
See [[St001312]] for this statistic on compositions treated as bounce paths.
Matching statistic: St001583
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00126: Permutations —cactus evacuation⟶ Permutations
St001583: Permutations ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 20%
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00126: Permutations —cactus evacuation⟶ Permutations
St001583: Permutations ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 20%
Values
[1]
=> [1,0,1,0]
=> [3,1,2] => [1,3,2] => 2
[2]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => [2,4,1,3] => 3
[1,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => [3,1,4,2] => 3
[3]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [2,5,1,3,4] => ? = 4
[2,1]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => 5
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [3,1,4,5,2] => ? = 4
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [2,6,1,3,4,5] => ? = 5
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,3,5,4,2] => ? = 7
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [2,1,4,3,5] => ? = 7
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,5,2,4,3] => ? = 7
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [3,1,4,5,6,2] => ? = 5
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => [2,7,1,3,4,5,6] => ? = 6
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [3,4,6,1,5,2] => ? = 9
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [2,3,5,1,4] => ? = 10
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,3,2,5,4] => ? = 10
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [4,1,2,5,3] => ? = 10
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [4,6,1,2,5,3] => ? = 9
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => [3,1,4,5,6,7,2] => ? = 6
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,8,1,7] => [2,8,1,3,4,5,6,7] => ? = 7
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [7,3,4,5,1,2,6] => [3,4,7,1,5,6,2] => ? = 11
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [2,4,6,5,1,3] => ? = 13
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [1,4,3,6,5,2] => ? = 13
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [2,1,5,3,4,6] => ? = 13
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,2,3,5,4] => ? = 15
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [1,6,3,2,5,4] => ? = 13
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [2,1,4,5,3,6] => ? = 13
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [5,1,6,2,4,3] => ? = 13
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => [4,7,1,2,5,6,3] => ? = 11
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,2] => [3,1,4,5,6,7,8,2] => ? = 7
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,7,9,1,8] => [2,9,1,3,4,5,6,7,8] => ? = 8
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [8,3,4,5,6,1,2,7] => [3,4,8,1,5,6,7,2] => ? = 13
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [2,7,4,5,1,3,6] => [2,4,7,1,5,3,6] => ? = 16
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => [3,5,1,7,4,6,2] => ? = 16
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [2,3,6,1,4,5] => ? = 17
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,2,4,6,5,3] => ? = 20
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [3,4,1,2,6,5] => ? = 17
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [5,1,3,6,4,2] => ? = 20
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [2,6,3,5,1,4] => ? = 20
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,2,6,3,5,4] => ? = 20
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => [3,7,1,5,2,6,4] => ? = 16
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [4,1,2,5,6,3] => ? = 17
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => [4,1,6,2,5,7,3] => ? = 16
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => [4,8,1,2,5,6,7,3] => ? = 13
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,9,2] => [3,1,4,5,6,7,8,9,2] => ? = 8
Description
The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order.
Matching statistic: St001582
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001582: Permutations ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 20%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001582: Permutations ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 20%
Values
[1]
=> [1]
=> [1,0,1,0]
=> [3,1,2] => 1 = 2 - 1
[2]
=> [2]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => 2 = 3 - 1
[1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 3 - 1
[3]
=> [2,1]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 4 - 1
[2,1]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ? = 5 - 1
[1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ? = 4 - 1
[4]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ? = 5 - 1
[3,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ? = 7 - 1
[2,2]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ? = 7 - 1
[2,1,1]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ? = 7 - 1
[1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 5 - 1
[5]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? = 6 - 1
[4,1]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => ? = 9 - 1
[3,2]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 10 - 1
[3,1,1]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 10 - 1
[2,2,1]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => ? = 10 - 1
[2,1,1,1]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => ? = 9 - 1
[1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 6 - 1
[6]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ? = 7 - 1
[5,1]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => ? = 11 - 1
[4,2]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => ? = 13 - 1
[4,1,1]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => ? = 13 - 1
[3,3]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? = 13 - 1
[3,2,1]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ? = 15 - 1
[3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 13 - 1
[2,2,2]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,8,1,7] => ? = 13 - 1
[2,2,1,1]
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [7,3,4,5,1,2,6] => ? = 13 - 1
[2,1,1,1,1]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ? = 11 - 1
[1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,2] => ? = 7 - 1
[7]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ? = 8 - 1
[6,1]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => ? = 13 - 1
[5,2]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => ? = 16 - 1
[5,1,1]
=> [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 16 - 1
[4,3]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ? = 17 - 1
[4,2,1]
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [2,7,4,5,1,3,6] => ? = 20 - 1
[4,1,1,1]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => ? = 17 - 1
[3,3,1]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => ? = 20 - 1
[3,2,2]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [8,3,4,5,6,1,2,7] => ? = 20 - 1
[3,2,1,1]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => ? = 20 - 1
[3,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 16 - 1
[2,2,2,1]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,7,9,1,8] => ? = 17 - 1
[2,2,1,1,1]
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 16 - 1
[2,1,1,1,1,1]
=> [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 13 - 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,9,2] => ? = 8 - 1
Description
The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!