searching the database
Your data matches 31 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001527
St001527: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 2
[1,1]
=> 1
[3]
=> 3
[2,1]
=> 1
[1,1,1]
=> 3
[4]
=> 4
[3,1]
=> 1
[2,2]
=> 4
[2,1,1]
=> 1
[1,1,1,1]
=> 2
[5]
=> 5
[4,1]
=> 1
[3,2]
=> 5
[3,1,1]
=> 5
[2,2,1]
=> 5
[2,1,1,1]
=> 1
[1,1,1,1,1]
=> 5
[6]
=> 6
[5,1]
=> 1
[4,2]
=> 6
[4,1,1]
=> 3
[3,3]
=> 3
[3,2,1]
=> 2
[3,1,1,1]
=> 3
[2,2,2]
=> 6
[2,2,1,1]
=> 3
[2,1,1,1,1]
=> 2
[1,1,1,1,1,1]
=> 3
[7]
=> 7
[6,1]
=> 1
[5,2]
=> 7
[5,1,1]
=> 7
[4,3]
=> 7
[4,2,1]
=> 7
[4,1,1,1]
=> 1
[3,3,1]
=> 7
[3,2,2]
=> 7
[3,2,1,1]
=> 7
[3,1,1,1,1]
=> 7
[2,2,2,1]
=> 7
[2,2,1,1,1]
=> 7
[2,1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1]
=> 7
Description
The cyclic permutation representation number of an integer partition.
This is the size of the largest cyclic group $C$ such that the fake degree is the character of a permutation representation of $C$.
Matching statistic: St001614
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001614: Skew partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001614: Skew partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> [[1],[]]
=> 1
[2]
=> [[2],[]]
=> 2
[1,1]
=> [[1,1],[]]
=> 1
[3]
=> [[3],[]]
=> 3
[2,1]
=> [[2,1],[]]
=> 1
[1,1,1]
=> [[1,1,1],[]]
=> 3
[4]
=> [[4],[]]
=> 4
[3,1]
=> [[3,1],[]]
=> 1
[2,2]
=> [[2,2],[]]
=> 4
[2,1,1]
=> [[2,1,1],[]]
=> 1
[1,1,1,1]
=> [[1,1,1,1],[]]
=> 2
[5]
=> [[5],[]]
=> 5
[4,1]
=> [[4,1],[]]
=> 1
[3,2]
=> [[3,2],[]]
=> 5
[3,1,1]
=> [[3,1,1],[]]
=> 5
[2,2,1]
=> [[2,2,1],[]]
=> 5
[2,1,1,1]
=> [[2,1,1,1],[]]
=> 1
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 5
[6]
=> [[6],[]]
=> 6
[5,1]
=> [[5,1],[]]
=> 1
[4,2]
=> [[4,2],[]]
=> 6
[4,1,1]
=> [[4,1,1],[]]
=> 3
[3,3]
=> [[3,3],[]]
=> 3
[3,2,1]
=> [[3,2,1],[]]
=> 2
[3,1,1,1]
=> [[3,1,1,1],[]]
=> 3
[2,2,2]
=> [[2,2,2],[]]
=> 6
[2,2,1,1]
=> [[2,2,1,1],[]]
=> 3
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> 2
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> 3
[7]
=> [[7],[]]
=> 7
[6,1]
=> [[6,1],[]]
=> 1
[5,2]
=> [[5,2],[]]
=> 7
[5,1,1]
=> [[5,1,1],[]]
=> 7
[4,3]
=> [[4,3],[]]
=> 7
[4,2,1]
=> [[4,2,1],[]]
=> 7
[4,1,1,1]
=> [[4,1,1,1],[]]
=> 1
[3,3,1]
=> [[3,3,1],[]]
=> 7
[3,2,2]
=> [[3,2,2],[]]
=> 7
[3,2,1,1]
=> [[3,2,1,1],[]]
=> 7
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> 7
[2,2,2,1]
=> [[2,2,2,1],[]]
=> 7
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> 7
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> 1
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> 7
Description
The cyclic permutation representation number of a skew partition.
This is the size of the largest cyclic group $C$ such that the fake degree is the character of a permutation representation of $C$.
See [[St001527]] for the restriction of this statistic to integer partitions.
Matching statistic: St001645
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 100%
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0]
=> [1] => ([],1)
=> 1
[2]
=> [1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> 2
[1,1]
=> [1,1,0,0]
=> [2] => ([],2)
=> ? = 1
[3]
=> [1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1]
=> [1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ? = 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [3] => ([],3)
=> ? = 3
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,2]
=> [1,1,1,0,0,0]
=> [3] => ([],3)
=> ? = 4
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3] => ([(2,3)],4)
=> ? = 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [4] => ([],4)
=> ? = 2
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ? = 5
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 5
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [4] => ([],4)
=> ? = 5
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ? = 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5] => ([],5)
=> ? = 5
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 6
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [4] => ([],4)
=> ? = 3
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ? = 2
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? = 3
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ? = 6
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [5] => ([],5)
=> ? = 3
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ? = 2
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => ([],6)
=> ? = 3
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 7
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? = 7
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? = 7
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [5] => ([],5)
=> ? = 7
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? = 7
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ? = 7
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ? = 7
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [5] => ([],5)
=> ? = 7
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => ([],6)
=> ? = 7
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,6] => ([(5,6)],7)
=> ? = 1
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [7] => ([],7)
=> ? = 7
Description
The pebbling number of a connected graph.
Matching statistic: St001232
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 86%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 86%
Values
[1]
=> [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 1
[3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ? = 3
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? = 1
[2,2]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 4
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ? = 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ? = 2
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ? = 5
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> ? = 5
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ? = 5
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 5
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 6
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 6
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 3
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> ? = 2
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 3
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 3
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 7
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 7
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 7
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> ? = 7
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> ? = 7
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 7
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 7
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> ? = 7
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 7
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 7
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 7
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 7
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001491
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00093: Dyck paths —to binary word⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 14%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00093: Dyck paths —to binary word⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 14%
Values
[1]
=> []
=> []
=> => ? = 1 - 1
[2]
=> []
=> []
=> => ? = 2 - 1
[1,1]
=> [1]
=> [1,0,1,0]
=> 1010 => 0 = 1 - 1
[3]
=> []
=> []
=> => ? = 3 - 1
[2,1]
=> [1]
=> [1,0,1,0]
=> 1010 => 0 = 1 - 1
[1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => ? = 3 - 1
[4]
=> []
=> []
=> => ? = 4 - 1
[3,1]
=> [1]
=> [1,0,1,0]
=> 1010 => 0 = 1 - 1
[2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => ? = 4 - 1
[2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => ? = 1 - 1
[1,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 2 - 1
[5]
=> []
=> []
=> => ? = 5 - 1
[4,1]
=> [1]
=> [1,0,1,0]
=> 1010 => 0 = 1 - 1
[3,2]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => ? = 5 - 1
[3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => ? = 5 - 1
[2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 101010 => ? = 5 - 1
[2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1 - 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => ? = 5 - 1
[6]
=> []
=> []
=> => ? = 6 - 1
[5,1]
=> [1]
=> [1,0,1,0]
=> 1010 => 0 = 1 - 1
[4,2]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => ? = 6 - 1
[4,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => ? = 3 - 1
[3,3]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 11100010 => ? = 3 - 1
[3,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 101010 => ? = 2 - 1
[3,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 3 - 1
[2,2,2]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => ? = 6 - 1
[2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 3 - 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => ? = 2 - 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 101111100000 => ? = 3 - 1
[7]
=> []
=> []
=> => ? = 7 - 1
[6,1]
=> [1]
=> [1,0,1,0]
=> 1010 => 0 = 1 - 1
[5,2]
=> [2]
=> [1,1,0,0,1,0]
=> 110010 => ? = 7 - 1
[5,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 101100 => ? = 7 - 1
[4,3]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 11100010 => ? = 7 - 1
[4,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 101010 => ? = 7 - 1
[4,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1 - 1
[3,3,1]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => ? = 7 - 1
[3,2,2]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => ? = 7 - 1
[3,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 7 - 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => ? = 7 - 1
[2,2,2,1]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => ? = 7 - 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 7 - 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 101111100000 => ? = 1 - 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 10111111000000 => ? = 7 - 1
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Let $A_n=K[x]/(x^n)$.
We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Matching statistic: St001880
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 71%
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 71%
Values
[1]
=> [1,0]
=> ([],1)
=> ? = 1
[2]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ? = 2
[1,1]
=> [1,1,0,0]
=> ([],2)
=> ? = 1
[3]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 3
[2,1]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ? = 1
[1,1,1]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> ? = 3
[4]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,1]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 1
[2,2]
=> [1,1,1,0,0,0]
=> ([],3)
=> ? = 4
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ? = 2
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 5
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ? = 5
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ? = 5
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ? = 6
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 3
[3,3]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ? = 3
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 2
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ? = 3
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> ? = 6
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ? = 3
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ? = 2
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ? = 3
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ? = 7
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 7
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 7
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,5),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ? = 7
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> ? = 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(1,4)],5)
=> ? = 7
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 7
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ? = 7
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,6),(1,5),(1,6),(3,5),(4,2),(5,4),(6,4)],7)
=> ? = 7
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ? = 7
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6)
=> ? = 7
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4)],7)
=> ? = 1
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(5,3),(6,3),(6,4)],7)
=> ? = 7
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001879
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 71%
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 71%
Values
[1]
=> [1,0]
=> ([],1)
=> ? = 1 - 1
[2]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ? = 2 - 1
[1,1]
=> [1,1,0,0]
=> ([],2)
=> ? = 1 - 1
[3]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,1]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[1,1,1]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> ? = 3 - 1
[4]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 1 - 1
[2,2]
=> [1,1,1,0,0,0]
=> ([],3)
=> ? = 4 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ? = 2 - 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 1 - 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 5 - 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ? = 5 - 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ? = 5 - 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 1 - 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ? = 6 - 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 3 - 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ? = 3 - 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ? = 3 - 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> ? = 6 - 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ? = 3 - 1
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ? = 2 - 1
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ? = 3 - 1
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 1 - 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ? = 7 - 1
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 7 - 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 7 - 1
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,5),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ? = 7 - 1
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> ? = 1 - 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(1,4)],5)
=> ? = 7 - 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 7 - 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ? = 7 - 1
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,6),(1,5),(1,6),(3,5),(4,2),(5,4),(6,4)],7)
=> ? = 7 - 1
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ? = 7 - 1
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6)
=> ? = 7 - 1
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4)],7)
=> ? = 1 - 1
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(5,3),(6,3),(6,4)],7)
=> ? = 7 - 1
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001816
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00033: Dyck paths —to two-row standard tableau⟶ Standard tableaux
St001816: Standard tableaux ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 29%
Mp00033: Dyck paths —to two-row standard tableau⟶ Standard tableaux
St001816: Standard tableaux ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 29%
Values
[1]
=> [1,0,1,0]
=> [[1,3],[2,4]]
=> 0 = 1 - 1
[2]
=> [1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> 1 = 2 - 1
[1,1]
=> [1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> 0 = 1 - 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> ? = 3 - 1
[2,1]
=> [1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 0 = 1 - 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> ? = 3 - 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[1,2,3,4,9],[5,6,7,8,10]]
=> ? = 4 - 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> ? = 1 - 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> ? = 4 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> ? = 1 - 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 2 - 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[1,2,3,4,5,11],[6,7,8,9,10,12]]
=> ? = 5 - 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 1 - 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> ? = 5 - 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> ? = 5 - 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> ? = 5 - 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1 - 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,3,4,5,6,7],[2,8,9,10,11,12]]
=> ? = 5 - 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[1,2,3,4,5,6,13],[7,8,9,10,11,12,14]]
=> ? = 6 - 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [[1,2,3,4,6,11],[5,7,8,9,10,12]]
=> ? = 1 - 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[1,2,3,6,9],[4,5,7,8,10]]
=> ? = 6 - 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[1,2,4,5,9],[3,6,7,8,10]]
=> ? = 3 - 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 3 - 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> ? = 2 - 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,3,4,5,8],[2,6,7,9,10]]
=> ? = 3 - 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> ? = 6 - 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[1,3,4,6,7],[2,5,8,9,10]]
=> ? = 3 - 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[1,3,4,5,6,8],[2,7,9,10,11,12]]
=> ? = 2 - 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[1,3,4,5,6,7,8],[2,9,10,11,12,13,14]]
=> ? = 3 - 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[1,2,3,4,5,6,7,15],[8,9,10,11,12,13,14,16]]
=> ? = 7 - 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[1,2,3,4,5,7,13],[6,8,9,10,11,12,14]]
=> ? = 1 - 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [[1,2,3,4,7,11],[5,6,8,9,10,12]]
=> ? = 7 - 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [[1,2,3,5,6,11],[4,7,8,9,10,12]]
=> ? = 7 - 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> ? = 7 - 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> ? = 7 - 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> ? = 1 - 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[1,2,4,7,8],[3,5,6,9,10]]
=> ? = 7 - 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[1,2,5,6,8],[3,4,7,9,10]]
=> ? = 7 - 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,3,4,6,8],[2,5,7,9,10]]
=> ? = 7 - 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [[1,3,4,5,6,9],[2,7,8,10,11,12]]
=> ? = 7 - 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> ? = 7 - 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [[1,3,4,5,7,8],[2,6,9,10,11,12]]
=> ? = 7 - 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[1,3,4,5,6,7,9],[2,8,10,11,12,13,14]]
=> ? = 1 - 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[1,3,4,5,6,7,8,9],[2,10,11,12,13,14,15,16]]
=> ? = 7 - 1
Description
Eigenvalues of the top-to-random operator acting on a simple module.
These eigenvalues are given in [1] and [3].
The simple module of the symmetric group indexed by a partition $\lambda$ has dimension equal to the number of standard tableaux of shape $\lambda$. Hence, the eigenvalues of any linear operator defined on this module can be indexed by standard tableaux of shape $\lambda$; this statistic gives all the eigenvalues of the operator acting on the module.
This statistic bears different names, such as the type in [2] or eig in [3].
Similarly, the eigenvalues of the random-to-random operator acting on a simple module is [[St000508]].
Matching statistic: St000492
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00033: Dyck paths —to two-row standard tableau⟶ Standard tableaux
Mp00284: Standard tableaux —rows⟶ Set partitions
St000492: Set partitions ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 29%
Mp00033: Dyck paths —to two-row standard tableau⟶ Standard tableaux
Mp00284: Standard tableaux —rows⟶ Set partitions
St000492: Set partitions ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 29%
Values
[1]
=> [1,0,1,0]
=> [[1,3],[2,4]]
=> {{1,3},{2,4}}
=> 1
[2]
=> [1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> {{1,2,5},{3,4,6}}
=> 2
[1,1]
=> [1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> {{1,3,4},{2,5,6}}
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> {{1,2,3,7},{4,5,6,8}}
=> ? = 3
[2,1]
=> [1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> {{1,3,5},{2,4,6}}
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> {{1,3,4,5},{2,6,7,8}}
=> ? = 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[1,2,3,4,9],[5,6,7,8,10]]
=> {{1,2,3,4,9},{5,6,7,8,10}}
=> ? = 4
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> {{1,2,4,7},{3,5,6,8}}
=> ? = 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> {{1,2,5,6},{3,4,7,8}}
=> ? = 4
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> {{1,3,4,6},{2,5,7,8}}
=> ? = 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> {{1,3,4,5,6},{2,7,8,9,10}}
=> ? = 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[1,2,3,4,5,11],[6,7,8,9,10,12]]
=> {{1,2,3,4,5,11},{6,7,8,9,10,12}}
=> ? = 5
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> {{1,2,3,5,9},{4,6,7,8,10}}
=> ? = 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> {{1,2,5,7},{3,4,6,8}}
=> ? = 5
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> {{1,3,4,7},{2,5,6,8}}
=> ? = 5
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> {{1,3,5,6},{2,4,7,8}}
=> ? = 5
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> {{1,3,4,5,7},{2,6,8,9,10}}
=> ? = 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,3,4,5,6,7],[2,8,9,10,11,12]]
=> {{1,3,4,5,6,7},{2,8,9,10,11,12}}
=> ? = 5
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[1,2,3,4,5,6,13],[7,8,9,10,11,12,14]]
=> {{1,2,3,4,5,6,13},{7,8,9,10,11,12,14}}
=> ? = 6
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [[1,2,3,4,6,11],[5,7,8,9,10,12]]
=> {{1,2,3,4,6,11},{5,7,8,9,10,12}}
=> ? = 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[1,2,3,6,9],[4,5,7,8,10]]
=> {{1,2,3,6,9},{4,5,7,8,10}}
=> ? = 6
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[1,2,4,5,9],[3,6,7,8,10]]
=> {{1,2,4,5,9},{3,6,7,8,10}}
=> ? = 3
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> {{1,2,3,7,8},{4,5,6,9,10}}
=> ? = 3
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> {{1,3,5,7},{2,4,6,8}}
=> ? = 2
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,3,4,5,8],[2,6,7,9,10]]
=> {{1,3,4,5,8},{2,6,7,9,10}}
=> ? = 3
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> {{1,2,5,6,7},{3,4,8,9,10}}
=> ? = 6
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[1,3,4,6,7],[2,5,8,9,10]]
=> {{1,3,4,6,7},{2,5,8,9,10}}
=> ? = 3
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[1,3,4,5,6,8],[2,7,9,10,11,12]]
=> {{1,3,4,5,6,8},{2,7,9,10,11,12}}
=> ? = 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[1,3,4,5,6,7,8],[2,9,10,11,12,13,14]]
=> {{1,3,4,5,6,7,8},{2,9,10,11,12,13,14}}
=> ? = 3
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[1,2,3,4,5,6,7,15],[8,9,10,11,12,13,14,16]]
=> {{1,2,3,4,5,6,7,15},{8,9,10,11,12,13,14,16}}
=> ? = 7
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[1,2,3,4,5,7,13],[6,8,9,10,11,12,14]]
=> {{1,2,3,4,5,7,13},{6,8,9,10,11,12,14}}
=> ? = 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [[1,2,3,4,7,11],[5,6,8,9,10,12]]
=> {{1,2,3,4,7,11},{5,6,8,9,10,12}}
=> ? = 7
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [[1,2,3,5,6,11],[4,7,8,9,10,12]]
=> {{1,2,3,5,6,11},{4,7,8,9,10,12}}
=> ? = 7
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> {{1,2,3,7,9},{4,5,6,8,10}}
=> ? = 7
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> {{1,2,4,6,9},{3,5,7,8,10}}
=> ? = 7
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> {{1,3,4,5,9},{2,6,7,8,10}}
=> ? = 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[1,2,4,7,8],[3,5,6,9,10]]
=> {{1,2,4,7,8},{3,5,6,9,10}}
=> ? = 7
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[1,2,5,6,8],[3,4,7,9,10]]
=> {{1,2,5,6,8},{3,4,7,9,10}}
=> ? = 7
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,3,4,6,8],[2,5,7,9,10]]
=> {{1,3,4,6,8},{2,5,7,9,10}}
=> ? = 7
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [[1,3,4,5,6,9],[2,7,8,10,11,12]]
=> {{1,3,4,5,6,9},{2,7,8,10,11,12}}
=> ? = 7
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> {{1,3,5,6,7},{2,4,8,9,10}}
=> ? = 7
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [[1,3,4,5,7,8],[2,6,9,10,11,12]]
=> {{1,3,4,5,7,8},{2,6,9,10,11,12}}
=> ? = 7
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[1,3,4,5,6,7,9],[2,8,10,11,12,13,14]]
=> {{1,3,4,5,6,7,9},{2,8,10,11,12,13,14}}
=> ? = 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[1,3,4,5,6,7,8,9],[2,10,11,12,13,14,15,16]]
=> {{1,3,4,5,6,7,8,9},{2,10,11,12,13,14,15,16}}
=> ? = 7
Description
The rob statistic of a set partition.
Let $S = B_1,\ldots,B_k$ be a set partition with ordered blocks $B_i$ and with $\operatorname{min} B_a < \operatorname{min} B_b$ for $a < b$.
According to [1, Definition 3], a '''rob''' (right-opener-bigger) of $S$ is given by a pair $i < j$ such that $j = \operatorname{min} B_b$ and $i \in B_a$ for $a < b$.
This is also the number of occurrences of the pattern {{1}, {2}}, such that 2 is the minimal element of a block.
Matching statistic: St000541
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
St000541: Permutations ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 29%
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
St000541: Permutations ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 29%
Values
[1]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 1
[2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => 2
[1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => ? = 3
[2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => ? = 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [5,6,7,8,4,3,2,1,10,9] => ? = 4
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => ? = 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => ? = 4
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => ? = 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,7,8,9,10,6,5,4,3] => ? = 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6),(11,12)]
=> [6,7,8,9,10,5,4,3,2,1,12,11] => ? = 5
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [4,6,7,3,8,5,2,1,10,9] => ? = 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => ? = 5
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => ? = 5
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => ? = 5
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,6,8,9,5,10,7,4,3] => ? = 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,8,9,10,11,12,7,6,5,4,3] => ? = 5
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,14)]
=> [7,8,9,10,11,12,6,5,4,3,2,1,14,13] => ? = 6
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7),(11,12)]
=> [5,7,8,9,4,10,6,3,2,1,12,11] => ? = 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [4,5,7,3,2,8,6,1,10,9] => ? = 6
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [3,6,2,7,8,5,4,1,10,9] => ? = 3
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [4,5,6,3,2,1,9,10,8,7] => ? = 3
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => ? = 2
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,6,7,9,5,4,10,8,3] => ? = 3
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [3,4,2,1,8,9,10,7,6,5] => ? = 6
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,5,8,4,9,10,7,6,3] => ? = 3
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> [2,1,7,9,10,11,6,12,8,5,4,3] => ? = 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,9,10,11,12,13,14,8,7,6,5,4,3] => ? = 3
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,16)]
=> [8,9,10,11,12,13,14,7,6,5,4,3,2,1,16,15] => ? = 7
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,6),(7,8),(13,14)]
=> [6,8,9,10,11,5,12,7,4,3,2,1,14,13] => ? = 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8),(11,12)]
=> [5,6,8,9,4,3,10,7,2,1,12,11] => ? = 7
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)]
=> [4,7,8,3,9,10,6,5,2,1,12,11] => ? = 7
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [4,5,6,3,2,1,8,7,10,9] => ? = 7
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => ? = 7
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,6,7,8,5,4,3,10,9] => ? = 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [3,5,2,6,4,1,9,10,8,7] => ? = 7
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => ? = 7
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => ? = 7
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> [2,1,7,8,10,11,6,5,12,9,4,3] => ? = 7
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,8,9,10,7,6,5] => ? = 7
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)]
=> [2,1,6,9,10,5,11,12,8,7,4,3] => ? = 7
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,8,10,11,12,13,7,14,9,6,5,4,3] => ? = 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10)]
=> [2,1,10,11,12,13,14,15,16,9,8,7,6,5,4,3] => ? = 7
Description
The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right.
For a permutation $\pi$ of length $n$, this is the number of indices $2 \leq j \leq n$ such that for all $1 \leq i < j$, the pair $(i,j)$ is an inversion of $\pi$.
The following 21 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000597The number of occurrences of the pattern {{1},{2,3}} such that 2 is minimal, (2,3) are consecutive in a block. St000654The first descent of a permutation. St000695The number of blocks in the first part of the atomic decomposition of a set partition. St001151The number of blocks with odd minimum. St001722The number of minimal chains with small intervals between a binary word and the top element. St001896The number of right descents of a signed permutations. St001904The length of the initial strictly increasing segment of a parking function. St000075The orbit size of a standard tableau under promotion. St000089The absolute variation of a composition. St000091The descent variation of a composition. St000542The number of left-to-right-minima of a permutation. St000562The number of internal points of a set partition. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000839The largest opener of a set partition. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition. St001867The number of alignments of type EN of a signed permutation. St000230Sum of the minimal elements of the blocks of a set partition. St000090The variation of a composition.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!