Your data matches 464 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001599
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001599: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,2,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,5,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,3,2,1,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,5,3,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[5,1,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[5,2,1,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[5,2,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees.
Mp00160: Permutations graph of inversionsGraphs
Mp00274: Graphs block-cut treeGraphs
Mp00157: Graphs connected complementGraphs
St000455: Graphs ⟶ ℤResult quality: 3% values known / values provided: 6%distinct values known / distinct values provided: 3%
Values
[1,2,3] => ([],3)
=> ([],3)
=> ([],3)
=> ? = 1 - 1
[1,2,3,4] => ([],4)
=> ([],4)
=> ([],4)
=> ? = 1 - 1
[1,2,4,3] => ([(2,3)],4)
=> ([],3)
=> ([],3)
=> ? = 1 - 1
[1,3,2,4] => ([(2,3)],4)
=> ([],3)
=> ([],3)
=> ? = 1 - 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],2)
=> ? = 1 - 1
[2,1,3,4] => ([(2,3)],4)
=> ([],3)
=> ([],3)
=> ? = 1 - 1
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],2)
=> ? = 1 - 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
[1,2,3,4,5] => ([],5)
=> ([],5)
=> ([],5)
=> ? = 1 - 1
[1,2,3,5,4] => ([(3,4)],5)
=> ([],4)
=> ([],4)
=> ? = 1 - 1
[1,2,4,3,5] => ([(3,4)],5)
=> ([],4)
=> ([],4)
=> ? = 1 - 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],3)
=> ? = 1 - 1
[1,3,2,4,5] => ([(3,4)],5)
=> ([],4)
=> ([],4)
=> ? = 1 - 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> ([],3)
=> ? = 1 - 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],3)
=> ? = 1 - 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],2)
=> ? = 1 - 1
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ? = 1 - 1
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ? = 1 - 1
[2,1,3,4,5] => ([(3,4)],5)
=> ([],4)
=> ([],4)
=> ? = 1 - 1
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> ([],3)
=> ? = 1 - 1
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([],3)
=> ([],3)
=> ? = 1 - 1
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ? = 1 - 1
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],3)
=> ? = 1 - 1
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ? = 1 - 1
[3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],2)
=> ? = 1 - 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
[4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ? = 1 - 1
[4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
[4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ? = 1 - 1
[4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
[5,1,3,4,2] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
[5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
[5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
[5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
[1,2,3,4,5,6] => ([],6)
=> ([],6)
=> ([],6)
=> ? = 2 - 1
[1,2,3,4,6,5] => ([(4,5)],6)
=> ([],5)
=> ([],5)
=> ? = 1 - 1
[1,2,3,5,4,6] => ([(4,5)],6)
=> ([],5)
=> ([],5)
=> ? = 1 - 1
[1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],4)
=> ? = 1 - 1
[1,2,4,3,5,6] => ([(4,5)],6)
=> ([],5)
=> ([],5)
=> ? = 1 - 1
[1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ([],4)
=> ([],4)
=> ? = 1 - 1
[1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,4,6,5,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],4)
=> ? = 1 - 1
[1,2,5,4,6,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],3)
=> ? = 1 - 1
[1,2,5,6,4,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],3)
=> ? = 1 - 1
[1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,2,6,4,3,5] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,2,6,4,5,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],3)
=> ? = 1 - 1
[1,2,6,5,3,4] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],3)
=> ? = 1 - 1
[1,2,6,5,4,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],3)
=> ? = 1 - 1
[1,3,2,4,5,6] => ([(4,5)],6)
=> ([],5)
=> ([],5)
=> ? = 1 - 1
[1,3,2,4,6,5] => ([(2,5),(3,4)],6)
=> ([],4)
=> ([],4)
=> ? = 1 - 1
[1,3,2,5,6,4] => ([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,2,6,4,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,4,2,5,6] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,3,4,2,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,4,5,2,6] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,3,4,6,5,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,5,4,2,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,5,4,6,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,5,6,2,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,3,6,4,5,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,3,6,5,4,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,4,2,3,5,6] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,4,2,3,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,3,5,2,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,3,5,6,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,3,6,5,2] => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,4,5,2,6,3] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,5,2,3,4,6] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,5,2,4,3,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Matching statistic: St000260
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00248: Permutations DEX compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000260: Graphs ⟶ ℤResult quality: 3% values known / values provided: 4%distinct values known / distinct values provided: 3%
Values
[1,2,3] => [1,2,3] => [3] => ([],3)
=> ? = 1
[1,2,3,4] => [1,2,3,4] => [4] => ([],4)
=> ? = 1
[1,2,4,3] => [1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1
[1,3,2,4] => [1,3,2,4] => [1,3] => ([(2,3)],4)
=> ? = 1
[1,4,3,2] => [1,3,4,2] => [1,3] => ([(2,3)],4)
=> ? = 1
[2,1,3,4] => [2,1,3,4] => [4] => ([],4)
=> ? = 1
[3,2,1,4] => [2,3,1,4] => [4] => ([],4)
=> ? = 1
[4,2,3,1] => [2,3,4,1] => [4] => ([],4)
=> ? = 1
[1,2,3,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? = 1
[1,2,3,5,4] => [1,2,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[1,2,4,3,5] => [1,2,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[1,2,4,5,3] => [1,2,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[1,2,5,3,4] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,2,5,4,3] => [1,2,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,4] => ([(3,4)],5)
=> ? = 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,3,4,2,5] => [1,4,2,3,5] => [1,4] => ([(3,4)],5)
=> ? = 1
[1,3,5,4,2] => [1,4,5,2,3] => [1,4] => ([(3,4)],5)
=> ? = 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,4,3,2,5] => [1,3,4,2,5] => [1,4] => ([(3,4)],5)
=> ? = 1
[1,4,3,5,2] => [1,3,5,2,4] => [1,4] => ([(3,4)],5)
=> ? = 1
[1,4,5,2,3] => [1,4,2,5,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,5,2,4,3] => [1,4,5,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,5,3,2,4] => [1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,5,3,4,2] => [1,3,4,5,2] => [1,4] => ([(3,4)],5)
=> ? = 1
[1,5,4,3,2] => [1,4,3,5,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[2,1,3,4,5] => [2,1,3,4,5] => [5] => ([],5)
=> ? = 1
[2,1,3,5,4] => [2,1,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[2,1,4,3,5] => [2,1,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[2,1,5,4,3] => [2,1,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[2,3,1,4,5] => [3,1,2,4,5] => [5] => ([],5)
=> ? = 1
[2,4,3,1,5] => [3,4,1,2,5] => [5] => ([],5)
=> ? = 1
[2,5,3,4,1] => [3,4,5,1,2] => [5] => ([],5)
=> ? = 1
[3,1,2,4,5] => [3,2,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[3,2,1,4,5] => [2,3,1,4,5] => [5] => ([],5)
=> ? = 1
[3,2,1,5,4] => [2,3,1,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[3,2,4,1,5] => [2,4,1,3,5] => [5] => ([],5)
=> ? = 1
[3,2,5,4,1] => [2,4,5,1,3] => [5] => ([],5)
=> ? = 1
[3,4,1,2,5] => [3,1,4,2,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[3,5,1,4,2] => [3,1,4,5,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[4,1,3,2,5] => [3,4,2,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[4,2,1,3,5] => [2,4,3,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[4,2,3,1,5] => [2,3,4,1,5] => [5] => ([],5)
=> ? = 1
[4,2,3,5,1] => [2,3,5,1,4] => [5] => ([],5)
=> ? = 1
[4,2,5,1,3] => [2,4,1,5,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[4,3,2,1,5] => [3,2,4,1,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[4,5,3,1,2] => [3,4,1,5,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[5,1,3,4,2] => [3,4,5,2,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,2,1,4,3] => [2,4,5,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,2,3,1,4] => [2,3,5,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,2,3,4,1] => [2,3,4,5,1] => [5] => ([],5)
=> ? = 1
[5,2,4,3,1] => [2,4,3,5,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[5,3,2,4,1] => [3,2,4,5,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[5,4,3,2,1] => [3,4,2,5,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [6] => ([],6)
=> ? = 2
[1,2,3,4,6,5] => [1,2,3,4,6,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
[1,2,3,6,4,5] => [1,2,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,5,6,4,3] => [1,2,6,3,5,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,6,3,4,5] => [1,2,6,5,4,3] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,6,3,5,4] => [1,2,5,6,4,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,6,4,3,5] => [1,2,4,6,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,6,5,3,4] => [1,2,6,4,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,3,2,6,4,5] => [1,3,2,6,5,4] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,4,6,2,3,5] => [1,4,2,6,5,3] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,4,6,3,5,2] => [1,5,6,2,4,3] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,5,3,6,4,2] => [1,3,6,2,5,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,5,6,3,2,4] => [1,5,2,6,4,3] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,5,6,4,3,2] => [1,4,6,2,5,3] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,6,2,3,5,4] => [1,5,6,4,3,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,6,2,4,3,5] => [1,4,6,5,3,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,6,2,4,5,3] => [1,4,5,6,3,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,6,2,5,4,3] => [1,5,4,6,3,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,6,3,2,4,5] => [1,3,6,5,4,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,6,3,2,5,4] => [1,3,5,6,4,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,6,3,4,2,5] => [1,3,4,6,5,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,6,3,5,2,4] => [1,3,6,4,5,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,6,4,2,5,3] => [1,5,6,3,4,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,6,4,3,2,5] => [1,4,3,6,5,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,6,5,2,3,4] => [1,5,3,6,4,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,6,5,4,2,3] => [1,4,6,3,5,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,1,3,6,4,5] => [2,1,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,1,6,3,5,4] => [2,1,5,6,4,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,1,6,4,3,5] => [2,1,4,6,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[3,2,1,6,4,5] => [2,3,1,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[3,6,1,2,5,4] => [3,1,5,6,4,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[3,6,1,4,2,5] => [3,1,4,6,5,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[3,6,2,4,5,1] => [4,5,6,1,3,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[4,2,6,1,3,5] => [2,4,1,6,5,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[4,2,6,3,5,1] => [2,5,6,1,4,3] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[4,6,2,1,5,3] => [4,1,5,6,3,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[4,6,3,1,2,5] => [3,4,1,6,5,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[4,6,3,2,5,1] => [3,5,6,1,4,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[5,2,3,6,4,1] => [2,3,6,1,5,4] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[5,2,6,3,1,4] => [2,5,1,6,4,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[5,2,6,4,3,1] => [2,4,6,1,5,3] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[5,6,2,4,1,3] => [4,5,1,6,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[5,6,3,2,1,4] => [3,5,1,6,4,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[5,6,3,4,2,1] => [3,4,6,1,5,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[6,1,2,4,5,3] => [4,5,6,3,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[6,1,3,2,5,4] => [3,5,6,4,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Matching statistic: St000259
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00248: Permutations DEX compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000259: Graphs ⟶ ℤResult quality: 3% values known / values provided: 4%distinct values known / distinct values provided: 3%
Values
[1,2,3] => [1,2,3] => [3] => ([],3)
=> ? = 1 + 1
[1,2,3,4] => [1,2,3,4] => [4] => ([],4)
=> ? = 1 + 1
[1,2,4,3] => [1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 1
[1,3,2,4] => [1,3,2,4] => [1,3] => ([(2,3)],4)
=> ? = 1 + 1
[1,4,3,2] => [1,3,4,2] => [1,3] => ([(2,3)],4)
=> ? = 1 + 1
[2,1,3,4] => [2,1,3,4] => [4] => ([],4)
=> ? = 1 + 1
[3,2,1,4] => [2,3,1,4] => [4] => ([],4)
=> ? = 1 + 1
[4,2,3,1] => [2,3,4,1] => [4] => ([],4)
=> ? = 1 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? = 1 + 1
[1,2,3,5,4] => [1,2,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,2,4,3,5] => [1,2,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 1
[1,2,4,5,3] => [1,2,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 1
[1,2,5,3,4] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,5,4,3] => [1,2,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,4] => ([(3,4)],5)
=> ? = 1 + 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,3,4,2,5] => [1,4,2,3,5] => [1,4] => ([(3,4)],5)
=> ? = 1 + 1
[1,3,5,4,2] => [1,4,5,2,3] => [1,4] => ([(3,4)],5)
=> ? = 1 + 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,4,3,2,5] => [1,3,4,2,5] => [1,4] => ([(3,4)],5)
=> ? = 1 + 1
[1,4,3,5,2] => [1,3,5,2,4] => [1,4] => ([(3,4)],5)
=> ? = 1 + 1
[1,4,5,2,3] => [1,4,2,5,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,5,2,4,3] => [1,4,5,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,5,3,2,4] => [1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,5,3,4,2] => [1,3,4,5,2] => [1,4] => ([(3,4)],5)
=> ? = 1 + 1
[1,5,4,3,2] => [1,4,3,5,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[2,1,3,4,5] => [2,1,3,4,5] => [5] => ([],5)
=> ? = 1 + 1
[2,1,3,5,4] => [2,1,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[2,1,4,3,5] => [2,1,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 1
[2,1,5,4,3] => [2,1,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 1
[2,3,1,4,5] => [3,1,2,4,5] => [5] => ([],5)
=> ? = 1 + 1
[2,4,3,1,5] => [3,4,1,2,5] => [5] => ([],5)
=> ? = 1 + 1
[2,5,3,4,1] => [3,4,5,1,2] => [5] => ([],5)
=> ? = 1 + 1
[3,1,2,4,5] => [3,2,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 1
[3,2,1,4,5] => [2,3,1,4,5] => [5] => ([],5)
=> ? = 1 + 1
[3,2,1,5,4] => [2,3,1,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[3,2,4,1,5] => [2,4,1,3,5] => [5] => ([],5)
=> ? = 1 + 1
[3,2,5,4,1] => [2,4,5,1,3] => [5] => ([],5)
=> ? = 1 + 1
[3,4,1,2,5] => [3,1,4,2,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 1
[3,5,1,4,2] => [3,1,4,5,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 1
[4,1,3,2,5] => [3,4,2,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[4,2,1,3,5] => [2,4,3,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[4,2,3,1,5] => [2,3,4,1,5] => [5] => ([],5)
=> ? = 1 + 1
[4,2,3,5,1] => [2,3,5,1,4] => [5] => ([],5)
=> ? = 1 + 1
[4,2,5,1,3] => [2,4,1,5,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[4,3,2,1,5] => [3,2,4,1,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 1
[4,5,3,1,2] => [3,4,1,5,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[5,1,3,4,2] => [3,4,5,2,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5,2,1,4,3] => [2,4,5,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5,2,3,1,4] => [2,3,5,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5,2,3,4,1] => [2,3,4,5,1] => [5] => ([],5)
=> ? = 1 + 1
[5,2,4,3,1] => [2,4,3,5,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[5,3,2,4,1] => [3,2,4,5,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 1
[5,4,3,2,1] => [3,4,2,5,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [6] => ([],6)
=> ? = 2 + 1
[1,2,3,4,6,5] => [1,2,3,4,6,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,2,3,6,4,5] => [1,2,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,5,6,4,3] => [1,2,6,3,5,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,6,3,4,5] => [1,2,6,5,4,3] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,6,3,5,4] => [1,2,5,6,4,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,6,4,3,5] => [1,2,4,6,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,6,5,3,4] => [1,2,6,4,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,3,2,6,4,5] => [1,3,2,6,5,4] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,4,6,2,3,5] => [1,4,2,6,5,3] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,4,6,3,5,2] => [1,5,6,2,4,3] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,5,3,6,4,2] => [1,3,6,2,5,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,5,6,3,2,4] => [1,5,2,6,4,3] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,5,6,4,3,2] => [1,4,6,2,5,3] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,6,2,3,5,4] => [1,5,6,4,3,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,6,2,4,3,5] => [1,4,6,5,3,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,6,2,4,5,3] => [1,4,5,6,3,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,6,2,5,4,3] => [1,5,4,6,3,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,6,3,2,4,5] => [1,3,6,5,4,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,6,3,2,5,4] => [1,3,5,6,4,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,6,3,4,2,5] => [1,3,4,6,5,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,6,3,5,2,4] => [1,3,6,4,5,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,6,4,2,5,3] => [1,5,6,3,4,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,6,4,3,2,5] => [1,4,3,6,5,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,6,5,2,3,4] => [1,5,3,6,4,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,6,5,4,2,3] => [1,4,6,3,5,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,1,3,6,4,5] => [2,1,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,1,6,3,5,4] => [2,1,5,6,4,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,1,6,4,3,5] => [2,1,4,6,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[3,2,1,6,4,5] => [2,3,1,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[3,6,1,2,5,4] => [3,1,5,6,4,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[3,6,1,4,2,5] => [3,1,4,6,5,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[3,6,2,4,5,1] => [4,5,6,1,3,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[4,2,6,1,3,5] => [2,4,1,6,5,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[4,2,6,3,5,1] => [2,5,6,1,4,3] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[4,6,2,1,5,3] => [4,1,5,6,3,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[4,6,3,1,2,5] => [3,4,1,6,5,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[4,6,3,2,5,1] => [3,5,6,1,4,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[5,2,3,6,4,1] => [2,3,6,1,5,4] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[5,2,6,3,1,4] => [2,5,1,6,4,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[5,2,6,4,3,1] => [2,4,6,1,5,3] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[5,6,2,4,1,3] => [4,5,1,6,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[5,6,3,2,1,4] => [3,5,1,6,4,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[5,6,3,4,2,1] => [3,4,6,1,5,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[6,1,2,4,5,3] => [4,5,6,3,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[6,1,3,2,5,4] => [3,5,6,4,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Matching statistic: St000456
Mp00160: Permutations graph of inversionsGraphs
Mp00274: Graphs block-cut treeGraphs
St000456: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 3%
Values
[1,2,3] => ([],3)
=> ([],3)
=> ? = 1
[1,2,3,4] => ([],4)
=> ([],4)
=> ? = 1
[1,2,4,3] => ([(2,3)],4)
=> ([],3)
=> ? = 1
[1,3,2,4] => ([(2,3)],4)
=> ([],3)
=> ? = 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 1
[2,1,3,4] => ([(2,3)],4)
=> ([],3)
=> ? = 1
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1
[1,2,3,4,5] => ([],5)
=> ([],5)
=> ? = 1
[1,2,3,5,4] => ([(3,4)],5)
=> ([],4)
=> ? = 1
[1,2,4,3,5] => ([(3,4)],5)
=> ([],4)
=> ? = 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? = 1
[1,3,2,4,5] => ([(3,4)],5)
=> ([],4)
=> ? = 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 1
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? = 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ? = 1
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 1
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 1
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1
[2,1,3,4,5] => ([(3,4)],5)
=> ([],4)
=> ? = 1
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 1
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 1
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? = 1
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1
[3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ? = 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
[4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 1
[4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 1
[4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1
[4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
[4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1
[4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
[5,1,3,4,2] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
[5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
[5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
[5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
[1,2,3,4,5,6] => ([],6)
=> ([],6)
=> ? = 2
[1,2,3,4,6,5] => ([(4,5)],6)
=> ([],5)
=> ? = 1
[2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[2,4,6,1,5,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[2,5,3,6,1,4] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[2,5,6,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[2,6,1,4,5,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[2,6,3,1,5,4] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[2,6,3,4,1,5] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[2,6,3,4,5,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[2,6,3,5,4,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[2,6,4,3,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[3,1,6,4,5,2] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[3,2,5,6,1,4] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[3,2,6,1,5,4] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,2,6,4,1,5] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,2,6,4,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[3,4,1,6,5,2] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[3,5,1,4,6,2] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[3,6,1,2,5,4] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[3,6,1,4,2,5] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[4,1,3,6,5,2] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[4,1,6,2,5,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[4,2,1,6,5,3] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[4,2,3,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[4,2,3,6,1,5] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[4,2,3,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[4,2,5,1,6,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[4,2,6,1,3,5] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[4,3,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[4,5,3,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[4,6,3,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[5,1,3,4,6,2] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[5,1,3,6,2,4] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[5,1,6,4,2,3] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[5,2,1,4,6,3] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[5,2,1,6,3,4] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[5,2,3,1,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[5,2,3,4,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
[5,2,4,3,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
Description
The monochromatic index of a connected graph. This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path. For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00142: Dyck paths promotionDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St001256: Dyck paths ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 7%
Values
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1
[4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1
[4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1
[4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1
[4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[1,2,3,4,5,7,6] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,2,3,4,6,5,7] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 2
[1,2,3,4,6,7,5] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,2,3,4,7,5,6] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 1
[1,2,3,4,7,6,5] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 2
[1,2,3,5,4,6,7] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[1,2,3,5,4,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> ? = 1
[1,2,3,5,6,4,7] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1
[1,2,3,5,6,7,4] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[1,2,3,5,7,4,6] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 1
[1,2,3,5,7,6,4] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 1
[1,2,3,6,4,5,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 1
[1,2,3,6,4,7,5] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 1
[1,2,3,6,5,4,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 2
[1,2,3,6,5,7,4] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 1
[1,2,3,6,7,4,5] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 1
[1,2,3,6,7,5,4] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 1
[1,2,3,7,4,5,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> ? = 1
[1,2,3,7,4,6,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> ? = 1
[1,2,3,7,5,4,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> ? = 1
[1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> ? = 2
[1,2,3,7,6,4,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> ? = 1
[1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> ? = 1
[1,2,4,3,5,6,7] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> ? = 2
[1,2,4,3,5,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 1
[1,2,4,3,6,5,7] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 1
[1,2,4,3,6,7,5] => [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> ? = 1
[1,2,4,3,7,5,6] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> ? = 1
[1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> ? = 1
[1,2,4,5,3,6,7] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1
[1,2,4,5,3,7,6] => [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> ? = 1
[1,2,4,5,6,3,7] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> ? = 1
[1,2,4,5,6,7,3] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,2,4,5,7,3,6] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 1
[1,2,4,5,7,6,3] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 1
[1,2,4,6,3,5,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 1
[1,2,4,6,3,7,5] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 1
[1,2,4,6,5,3,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 1
[1,2,4,6,5,7,3] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 1
[1,2,4,6,7,3,5] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 1
[1,2,4,6,7,5,3] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 1
[1,2,4,7,3,5,6] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> ? = 1
[1,2,4,7,3,6,5] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> ? = 1
[1,2,4,7,5,3,6] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> ? = 1
[1,2,4,7,5,6,3] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> ? = 1
[1,2,4,7,6,3,5] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> ? = 1
[1,2,4,7,6,5,3] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> ? = 1
[1,2,5,3,4,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> ? = 1
[1,2,5,3,4,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> ? = 1
Description
Number of simple reflexive modules that are 2-stable reflexive. See Definition 3.1. in the reference for the definition of 2-stable reflexive.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00103: Dyck paths peeling mapDyck paths
St001231: Dyck paths ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 7%
Values
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 4 - 1
[1,2,3,4,5,7,6] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 2 - 1
[1,2,3,4,6,5,7] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[1,2,3,4,6,7,5] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,4,7,5,6] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,4,7,6,5] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[1,2,3,5,4,6,7] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
[1,2,3,5,4,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,5,6,4,7] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,5,6,7,4] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,5,7,4,6] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,5,7,6,4] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,6,4,5,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,6,4,7,5] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,6,5,4,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
[1,2,3,6,5,7,4] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,6,7,4,5] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,6,7,5,4] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,7,4,5,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,7,4,6,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,7,5,4,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
[1,2,3,7,6,4,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,3,5,6,7] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2 - 1
[1,2,4,3,5,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,3,6,5,7] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,3,6,7,5] => [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,3,7,5,6] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,5,3,6,7] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 1 - 1
[1,2,4,5,3,7,6] => [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,5,6,3,7] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 1 - 1
[1,2,4,5,6,7,3] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1 - 1
[1,2,4,5,7,3,6] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,5,7,6,3] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,6,3,5,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,6,3,7,5] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,6,5,3,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,6,5,7,3] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,6,7,3,5] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,6,7,5,3] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,7,3,5,6] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,7,3,6,5] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,7,5,3,6] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,7,5,6,3] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,7,6,3,5] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,7,6,5,3] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,5,3,4,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,5,3,4,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
Description
The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. Actually the same statistics results for algebras with at most 7 simple modules when dropping the assumption that the module has projective dimension one. The author is not sure whether this holds in general.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00103: Dyck paths peeling mapDyck paths
St001234: Dyck paths ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 7%
Values
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 4 - 1
[1,2,3,4,5,7,6] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 2 - 1
[1,2,3,4,6,5,7] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[1,2,3,4,6,7,5] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,4,7,5,6] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,4,7,6,5] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[1,2,3,5,4,6,7] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
[1,2,3,5,4,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,5,6,4,7] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,5,6,7,4] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,5,7,4,6] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,5,7,6,4] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,6,4,5,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,6,4,7,5] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,6,5,4,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
[1,2,3,6,5,7,4] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,6,7,4,5] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,6,7,5,4] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,7,4,5,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,7,4,6,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,7,5,4,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
[1,2,3,7,6,4,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,3,5,6,7] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2 - 1
[1,2,4,3,5,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,3,6,5,7] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,3,6,7,5] => [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,3,7,5,6] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,5,3,6,7] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 1 - 1
[1,2,4,5,3,7,6] => [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,5,6,3,7] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 1 - 1
[1,2,4,5,6,7,3] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1 - 1
[1,2,4,5,7,3,6] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,5,7,6,3] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,6,3,5,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,6,3,7,5] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,6,5,3,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,6,5,7,3] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,6,7,3,5] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,6,7,5,3] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,7,3,5,6] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,7,3,6,5] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,7,5,3,6] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,7,5,6,3] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,7,6,3,5] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,4,7,6,5,3] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,5,3,4,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[1,2,5,3,4,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
Description
The number of indecomposable three dimensional modules with projective dimension one. It return zero when there are no such modules.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
Mp00137: Dyck paths to symmetric ASMAlternating sign matrices
St000889: Alternating sign matrices ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 3%
Values
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> 1
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> 1
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 1
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> 1
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> 1
[2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 1
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> 1
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> 1
[3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 1
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> 1
[3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 1
[3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 1
[3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 1
[4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 1
[4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 1
[4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 1
[4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 1
[4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0]]
=> ? = 2
[1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ? = 4
[1,2,3,4,5,7,6] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> ? = 2
[1,2,3,4,6,5,7] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> ? = 2
[1,2,3,4,6,7,5] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ? = 1
[1,2,3,4,7,5,6] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ? = 1
[1,2,3,4,7,6,5] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ? = 2
[1,2,3,5,4,6,7] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [[0,0,1,0,0,0,0],[0,1,-1,0,0,0,1],[1,-1,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> ? = 2
[1,2,3,5,4,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ? = 1
[1,2,3,5,6,4,7] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ? = 1
[1,2,3,5,6,7,4] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,3,5,7,4,6] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,3,5,7,6,4] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,3,6,4,5,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ? = 1
[1,2,3,6,4,7,5] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,3,6,5,4,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ? = 2
[1,2,3,6,5,7,4] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,3,6,7,4,5] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,3,6,7,5,4] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,3,7,4,5,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,3,7,4,6,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,3,7,5,4,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 2
[1,2,3,7,6,4,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,4,3,5,6,7] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [[0,0,0,1,0,0,0],[0,0,1,-1,0,0,1],[0,1,-1,0,0,1,0],[1,-1,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> ? = 2
[1,2,4,3,5,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,0,1,-1,0,0,1],[0,1,-1,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ? = 1
[1,2,4,3,6,5,7] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[1,-1,1,-1,0,0,1],[0,1,-1,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ? = 1
[1,2,4,3,6,7,5] => [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,4,3,7,5,6] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,4,5,3,6,7] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,0,0,1],[1,0,-1,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ? = 1
[1,2,4,5,3,7,6] => [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,-1,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,4,5,6,3,7] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,-1,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,4,5,6,7,3] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 1
[1,2,4,5,7,3,6] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 1
[1,2,4,5,7,6,3] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 1
[1,2,4,6,3,5,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,4,6,3,7,5] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 1
[1,2,4,6,5,3,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,2,4,6,5,7,3] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 1
[1,2,4,6,7,3,5] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 1
[1,2,4,6,7,5,3] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 1
[1,2,4,7,3,5,6] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 1
[1,2,4,7,3,6,5] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 1
[1,2,4,7,5,3,6] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 1
[1,2,4,7,5,6,3] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 1
[1,2,4,7,6,3,5] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 1
[1,2,4,7,6,5,3] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 1
[1,2,5,3,4,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,0,1],[0,1,-1,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ? = 1
Description
The number of alternating sign matrices with the same antidiagonal sums. The X-ray of an alternating sign matrix $A$ is the vector of the sums of the antidiagonals of $A$, read from top to bottom. This statistic records the number of alternating sign matrices having the same X-ray as the given matrix. The analogous concept for permutations is called the degeneracy of the X-ray of the permutation in [1], see [[St000886]]. The number of alternating sign matrices determined by their X-ray is the Catalan number, see [2].
Matching statistic: St001316
Mp00160: Permutations graph of inversionsGraphs
Mp00203: Graphs coneGraphs
Mp00111: Graphs complementGraphs
St001316: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 3%
Values
[1,2,3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
[1,2,3,4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,2,4,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,2,4] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
[2,1,3,4] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> 1
[1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,3,5,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,4,3,5] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,3,2,4,5] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[2,1,3,4,5] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
[3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 1
[3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 1
[4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 1
[4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> 1
[5,1,3,4,2] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 1
[5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,3,4,5,6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,2,3,4,5,6,7] => ([],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,2,3,4,5,7,6] => ([(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,2,3,4,6,5,7] => ([(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,2,3,4,6,7,5] => ([(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,3,4,7,5,6] => ([(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,3,4,7,6,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,2,3,5,4,6,7] => ([(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,2,3,5,4,7,6] => ([(3,6),(4,5)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,3,5,6,4,7] => ([(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,3,5,6,7,4] => ([(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,3,5,7,4,6] => ([(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,3,5,7,6,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,3,6,4,5,7] => ([(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,3,6,4,7,5] => ([(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,3,6,5,4,7] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,2,3,6,5,7,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,3,6,7,4,5] => ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,3,6,7,5,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,3,7,4,5,6] => ([(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,3,7,4,6,5] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,3,7,5,4,6] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,3,7,5,6,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,2,3,7,6,4,5] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,3,7,6,5,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,3,5,6,7] => ([(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,2,4,3,5,7,6] => ([(3,6),(4,5)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,4,3,6,5,7] => ([(3,6),(4,5)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,4,3,6,7,5] => ([(2,3),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,4,3,7,5,6] => ([(2,3),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,4,3,7,6,5] => ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,4,5,3,6,7] => ([(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,5,3,7,6] => ([(2,3),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,4,5,6,3,7] => ([(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,5,6,7,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,5,7,3,6] => ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,4,5,7,6,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,6,3,5,7] => ([(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,4,6,3,7,5] => ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,4,6,5,3,7] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,6,5,7,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,6,7,3,5] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,4,6,7,5,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,7,3,5,6] => ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,4,7,3,6,5] => ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,4,7,5,3,6] => ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,4,7,5,6,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,7,6,3,5] => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,4,7,6,5,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,5,3,4,6,7] => ([(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
Description
The domatic number of a graph. This is the maximal size of a partition of the vertices into dominating sets.
The following 454 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001281The normalized isoperimetric number of a graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001357The maximal degree of a regular spanning subgraph of a graph. St001395The number of strictly unfriendly partitions of a graph. St001703The villainy of a graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000264The girth of a graph, which is not a tree. St000284The Plancherel distribution on integer partitions. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000817The sum of the entries in the column specified by the composition of the change of basis matrix from dual immaculate quasisymmetric functions to monomial quasisymmetric functions. St000818The sum of the entries in the column specified by the composition of the change of basis matrix from quasisymmetric Schur functions to monomial quasisymmetric functions. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000993The multiplicity of the largest part of an integer partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St000379The number of Hamiltonian cycles in a graph. St000567The sum of the products of all pairs of parts. St000699The toughness times the least common multiple of 1,. St000879The number of long braid edges in the graph of braid moves of a permutation. St000929The constant term of the character polynomial of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St001592The maximal number of simple paths between any two different vertices of a graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St001322The size of a minimal independent dominating set in a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001339The irredundance number of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001363The Euler characteristic of a graph according to Knill. St001367The smallest number which does not occur as degree of a vertex in a graph. St001260The permanent of an alternating sign matrix. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000487The length of the shortest cycle of a permutation. St000501The size of the first part in the decomposition of a permutation. St000542The number of left-to-right-minima of a permutation. St000990The first ascent of a permutation. St001271The competition number of a graph. St001468The smallest fixpoint of a permutation. St000210Minimum over maximum difference of elements in cycles. St000406The number of occurrences of the pattern 3241 in a permutation. St000407The number of occurrences of the pattern 2143 in a permutation. St000516The number of stretching pairs of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000799The number of occurrences of the vincular pattern |213 in a permutation. St000800The number of occurrences of the vincular pattern |231 in a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St001084The number of occurrences of the vincular pattern |1-23 in a permutation. St001060The distinguishing index of a graph. St000640The rank of the largest boolean interval in a poset. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001301The first Betti number of the order complex associated with the poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001434The number of negative sum pairs of a signed permutation. St001947The number of ties in a parking function. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001396Number of triples of incomparable elements in a finite poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000255The number of reduced Kogan faces with the permutation as type. St000078The number of alternating sign matrices whose left key is the permutation. St000788The number of nesting-similar perfect matchings of a perfect matching. St000787The number of flips required to make a perfect matching noncrossing. St000066The column of the unique '1' in the first row of the alternating sign matrix. St000065The number of entries equal to -1 in an alternating sign matrix. St001307The number of induced stars on four vertices in a graph. St000360The number of occurrences of the pattern 32-1. St000367The number of simsun double descents of a permutation. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000623The number of occurrences of the pattern 52341 in a permutation. St000750The number of occurrences of the pattern 4213 in a permutation. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001513The number of nested exceedences of a permutation. St001550The number of inversions between exceedances where the greater exceedance is linked. St001552The number of inversions between excedances and fixed points of a permutation. St001663The number of occurrences of the Hertzsprung pattern 132 in a permutation. St001715The number of non-records in a permutation. St001728The number of invisible descents of a permutation. St001847The number of occurrences of the pattern 1432 in a permutation. St001613The binary logarithm of the size of the center of a lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001616The number of neutral elements in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St000508Eigenvalues of the random-to-random operator acting on a simple module. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001371The length of the longest Yamanouchi prefix of a binary word. St001557The number of inversions of the second entry of a permutation. St001730The number of times the path corresponding to a binary word crosses the base line. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000744The length of the path to the largest entry in a standard Young tableau. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St000044The number of vertices of the unicellular map given by a perfect matching. St000017The number of inversions of a standard tableau. St001721The degree of a binary word. St000016The number of attacking pairs of a standard tableau. St001624The breadth of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001132The number of leaves in the subtree whose sister has label 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St000754The Grundy value for the game of removing nestings in a perfect matching. St001381The fertility of a permutation. St001895The oddness of a signed permutation. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St001870The number of positive entries followed by a negative entry in a signed permutation. St001889The size of the connectivity set of a signed permutation. St000297The number of leading ones in a binary word. St000326The position of the first one in a binary word after appending a 1 at the end. St001162The minimum jump of a permutation. St001344The neighbouring number of a permutation. St000709The number of occurrences of 14-2-3 or 14-3-2. St000803The number of occurrences of the vincular pattern |132 in a permutation. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St001766The number of cells which are not occupied by the same tile in all reduced pipe dreams corresponding to a permutation. St000717The number of ordinal summands of a poset. St000281The size of the preimage of the map 'to poset' from Binary trees to Posets. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000741The Colin de Verdière graph invariant. St000781The number of proper colouring schemes of a Ferrers diagram. St001964The interval resolution global dimension of a poset. St001820The size of the image of the pop stack sorting operator. St001133The smallest label in the subtree rooted at the sister of 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St001618The cardinality of the Frattini sublattice of a lattice. St001845The number of join irreducibles minus the rank of a lattice. St001846The number of elements which do not have a complement in the lattice. St000666The number of right tethers of a permutation. St001130The number of two successive successions in a permutation. St000447The number of pairs of vertices of a graph with distance 3. St000449The number of pairs of vertices of a graph with distance 4. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001429The number of negative entries in a signed permutation. St000056The decomposition (or block) number of a permutation. St000069The number of maximal elements of a poset. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000181The number of connected components of the Hasse diagram for the poset. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000286The number of connected components of the complement of a graph. St000287The number of connected components of a graph. St000486The number of cycles of length at least 3 of a permutation. St000694The number of affine bounded permutations that project to a given permutation. St001081The number of minimal length factorizations of a permutation into star transpositions. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001461The number of topologically connected components of the chord diagram of a permutation. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001590The crossing number of a perfect matching. St001661Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation. St001830The chord expansion number of a perfect matching. St001832The number of non-crossing perfect matchings in the chord expansion of a perfect matching. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001890The maximum magnitude of the Möbius function of a poset. St000096The number of spanning trees of a graph. St000188The area of the Dyck path corresponding to a parking function and the total displacement of a parking function. St000195The number of secondary dinversion pairs of the dyck path corresponding to a parking function. St000221The number of strong fixed points of a permutation. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000274The number of perfect matchings of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000279The size of the preimage of the map 'cycle-as-one-line notation' from Permutations to Permutations. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St000315The number of isolated vertices of a graph. St000488The number of cycles of a permutation of length at most 2. St000489The number of cycles of a permutation of length at most 3. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000943The number of spots the most unlucky car had to go further in a parking function. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St001430The number of positive entries in a signed permutation. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001444The rank of the skew-symmetric form which is non-zero on crossing arcs of a perfect matching. St001520The number of strict 3-descents. St001549The number of restricted non-inversions between exceedances. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001810The number of fixed points of a permutation smaller than its largest moved point. St001811The Castelnuovo-Mumford regularity of a permutation. St001837The number of occurrences of a 312 pattern in the restricted growth word of a perfect matching. St001850The number of Hecke atoms of a permutation. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St001948The number of augmented double ascents of a permutation. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000007The number of saliances of the permutation. St000037The sign of a permutation. St000061The number of nodes on the left branch of a binary tree. St000084The number of subtrees. St000183The side length of the Durfee square of an integer partition. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St000212The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row. St000230Sum of the minimal elements of the blocks of a set partition. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000314The number of left-to-right-maxima of a permutation. St000450The number of edges minus the number of vertices plus 2 of a graph. St000570The Edelman-Greene number of a permutation. St000627The exponent of a binary word. St000654The first descent of a permutation. St000667The greatest common divisor of the parts of the partition. St000740The last entry of a permutation. St000745The index of the last row whose first entry is the row number in a standard Young tableau. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000756The sum of the positions of the left to right maxima of a permutation. St000759The smallest missing part in an integer partition. St000843The decomposition number of a perfect matching. St000864The number of circled entries of the shifted recording tableau of a permutation. St000873The aix statistic of a permutation. St000876The number of factors in the Catalan decomposition of a binary word. St000913The number of ways to refine the partition into singletons. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000958The number of Bruhat factorizations of a permutation. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n−1}]$ by adding $c_0$ to $c_{n−1}$. St000991The number of right-to-left minima of a permutation. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001041The depth of the label 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St001043The depth of the leaf closest to the root in the binary unordered tree associated with the perfect matching. St001048The number of leaves in the subtree containing 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001064Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules. St001121The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St001385The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001481The minimal height of a peak of a Dyck path. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001518The number of graphs with the same ordinary spectrum as the given graph. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001589The nesting number of a perfect matching. St001665The number of pure excedances of a permutation. St001711The number of permutations such that conjugation with a permutation of given cycle type yields the squared permutation. St001737The number of descents of type 2 in a permutation. St001761The maximal multiplicity of a letter in a reduced word of a permutation. St001765The number of connected components of the friends and strangers graph. St001828The Euler characteristic of a graph. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001941The evaluation at 1 of the modified Kazhdan--Lusztig R polynomial (as in [1, Section 5. St001960The number of descents of a permutation minus one if its first entry is not one. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000042The number of crossings of a perfect matching. St000051The size of the left subtree of a binary tree. St000062The length of the longest increasing subsequence of the permutation. St000095The number of triangles of a graph. St000117The number of centered tunnels of a Dyck path. St000124The cardinality of the preimage of the Simion-Schmidt map. St000133The "bounce" of a permutation. St000142The number of even parts of a partition. St000148The number of odd parts of a partition. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000217The number of occurrences of the pattern 312 in a permutation. St000234The number of global ascents of a permutation. St000241The number of cyclical small excedances. St000295The length of the border of a binary word. St000296The length of the symmetric border of a binary word. St000308The height of the tree associated to a permutation. St000317The cycle descent number of a permutation. St000322The skewness of a graph. St000338The number of pixed points of a permutation. St000357The number of occurrences of the pattern 12-3. St000358The number of occurrences of the pattern 31-2. St000365The number of double ascents of a permutation. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St000405The number of occurrences of the pattern 1324 in a permutation. St000461The rix statistic of a permutation. St000475The number of parts equal to 1 in a partition. St000485The length of the longest cycle of a permutation. St000500Eigenvalues of the random-to-random operator acting on the regular representation. St000546The number of global descents of a permutation. St000549The number of odd partial sums of an integer partition. St000622The number of occurrences of the patterns 2143 or 4231 in a permutation. St000664The number of right ropes of a permutation. St000674The number of hills of a Dyck path. St000732The number of double deficiencies of a permutation. St000733The row containing the largest entry of a standard tableau. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St000804The number of occurrences of the vincular pattern |123 in a permutation. St000822The Hadwiger number of the graph. St000877The depth of the binary word interpreted as a path. St000878The number of ones minus the number of zeros of a binary word. St000885The number of critical steps in the Catalan decomposition of a binary word. St000895The number of ones on the main diagonal of an alternating sign matrix. St000944The 3-degree of an integer partition. St000950Number of tilting modules of the corresponding LNakayama algebra, where a tilting module is a generalised tilting module of projective dimension 1. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St000962The 3-shifted major index of a permutation. St000989The number of final rises of a permutation. St000995The largest even part of an integer partition. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St001047The maximal number of arcs crossing a given arc of a perfect matching. St001049The smallest label in the subtree not containing 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St001059Number of occurrences of the patterns 41352,42351,51342,52341 in a permutation. St001061The number of indices that are both descents and recoils of a permutation. St001082The number of boxed occurrences of 123 in a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001092The number of distinct even parts of a partition. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001131The number of trivial trees on the path to label one in the decreasing labelled binary unordered tree associated with the perfect matching. St001139The number of occurrences of hills of size 2 in a Dyck path. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001141The number of occurrences of hills of size 3 in a Dyck path. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001175The size of a partition minus the hook length of the base cell. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001241The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one. St001248Sum of the even parts of a partition. St001252Half the sum of the even parts of a partition. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001411The number of patterns 321 or 3412 in a permutation. St001465The number of adjacent transpositions in the cycle decomposition of a permutation. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001537The number of cyclic crossings of a permutation. St001555The order of a signed permutation. St001556The number of inversions of the third entry of a permutation. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001577The minimal number of edges to add or remove to make a graph a cograph. St001586The number of odd parts smaller than the largest even part in an integer partition. St001587Half of the largest even part of an integer partition. St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001657The number of twos in an integer partition. St001682The number of distinct positions of the pattern letter 1 in occurrences of 123 in a permutation. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001705The number of occurrences of the pattern 2413 in a permutation. St001741The largest integer such that all patterns of this size are contained in the permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001772The number of occurrences of the signed pattern 12 in a signed permutation. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001831The multiplicity of the non-nesting perfect matching in the chord expansion of a perfect matching. St001856The number of edges in the reduced word graph of a permutation. St001862The number of crossings of a signed permutation. St001863The number of weak excedances of a signed permutation. St001864The number of excedances of a signed permutation. St001866The nesting alignments of a signed permutation. St001867The number of alignments of type EN of a signed permutation. St001868The number of alignments of type NE of a signed permutation. St001871The number of triconnected components of a graph. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000478Another weight of a partition according to Alladi. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000713The dimension of the irreducible representation of Sp(4) labelled by an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000635The number of strictly order preserving maps of a poset into itself. St001884The number of borders of a binary word. St000454The largest eigenvalue of a graph if it is integral. St001625The Möbius invariant of a lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001621The number of atoms of a lattice. St001623The number of doubly irreducible elements of a lattice. St001626The number of maximal proper sublattices of a lattice. St001875The number of simple modules with projective dimension at most 1. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St001754The number of tolerances of a finite lattice. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000225Difference between largest and smallest parts in a partition. St000474Dyson's crank of a partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000668The least common multiple of the parts of the partition. St000770The major index of an integer partition when read from bottom to top. St000937The number of positive values of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000997The even-odd crank of an integer partition. St001095The number of non-isomorphic posets with precisely one further covering relation. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001383The BG-rank of an integer partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001571The Cartan determinant of the integer partition. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St000046The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition. St000068The number of minimal elements in a poset. St001330The hat guessing number of a graph. St001851The number of Hecke atoms of a signed permutation. St001817The number of flag weak exceedances of a signed permutation. St000256The number of parts from which one can substract 2 and still get an integer partition. St001617The dimension of the space of valuations of a lattice.