Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001587
Mp00307: Posets promotion cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001587: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],3)
=> [3,3]
=> [3]
=> 0
([(2,3)],4)
=> [4,4,4]
=> [4,4]
=> 2
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [3]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [3]
=> 0
([(0,3),(1,2)],4)
=> [4,2]
=> [2]
=> 1
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [2]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> 1
([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> [15]
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [4,4]
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 0
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [5]
=> 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [2]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2]
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [2]
=> 1
([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [5,5,5]
=> 0
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [5]
=> 0
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [3]
=> 0
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [5]
=> 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [2]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [15,15]
=> [15]
=> 0
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [3]
=> 0
([(0,4),(1,4),(2,3)],5)
=> [10,10]
=> [10]
=> 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> [12,4]
=> [4]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [6]
=> 3
([(0,4),(1,4),(2,3),(2,4)],5)
=> [10,4,4]
=> [4,4]
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [4,4]
=> 2
([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> [5,5]
=> 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [4]
=> 2
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [5,5,5]
=> 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [2]
=> 1
([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> [10]
=> 5
([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> [4,4]
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [4,3]
=> 2
([(0,3),(0,4),(1,2),(1,4)],5)
=> [12,4]
=> [4]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [6]
=> 3
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [3]
=> 0
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [4]
=> 2
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> [5]
=> 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> [2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6)
=> [15,15]
=> [15]
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> [3]
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> [10,10]
=> [10]
=> 5
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> [12,4]
=> [4]
=> 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> [6]
=> 3
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> [10,4,4]
=> [4,4]
=> 2
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,5]
=> [5]
=> 0
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> [15,5,5]
=> [5,5]
=> 0
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,5,5,5]
=> [5,5,5]
=> 0
([(0,4),(0,5),(5,1),(5,2),(5,3)],6)
=> [15,15]
=> [15]
=> 0
Description
Half of the largest even part of an integer partition. The largest even part is recorded by [[St000995]].
Mp00307: Posets promotion cycle typeInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001487: Skew partitions ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 17%
Values
([],3)
=> [3,3]
=> [[3,3],[]]
=> ? = 0
([(2,3)],4)
=> [4,4,4]
=> [[4,4,4],[]]
=> ? = 2
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [[3,3],[]]
=> ? = 0
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [[3,3],[]]
=> ? = 0
([(0,3),(1,2)],4)
=> [4,2]
=> [[4,2],[]]
=> ? = 1
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[2,2],[]]
=> 1
([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> [[15,15],[]]
=> ? = 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [[4,4,4],[]]
=> ? = 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [[3,3],[]]
=> ? = 0
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [[5,5],[]]
=> ? = 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [[4,2],[]]
=> ? = 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [[2,2],[]]
=> 1
([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [[5,5,5,5],[]]
=> ? = 0
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [[5,5],[]]
=> ? = 0
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [[3,3],[]]
=> ? = 0
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [[5,5],[]]
=> ? = 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [[2,2],[]]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [15,15]
=> [[15,15],[]]
=> ? = 0
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [[3,3],[]]
=> ? = 0
([(0,4),(1,4),(2,3)],5)
=> [10,10]
=> [[10,10],[]]
=> ? = 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> [12,4]
=> [[12,4],[]]
=> ? = 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [[6,6],[]]
=> ? = 3
([(0,4),(1,4),(2,3),(2,4)],5)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? = 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [[4,4,4],[]]
=> ? = 2
([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> [[15,5,5],[]]
=> ? = 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [[5,4],[]]
=> ? = 2
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [[3,2],[]]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [[5,5,5,5],[]]
=> ? = 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> [[10,10],[]]
=> ? = 5
([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? = 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [[4,4,3],[]]
=> ? = 2
([(0,3),(0,4),(1,2),(1,4)],5)
=> [12,4]
=> [[12,4],[]]
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [[6,6],[]]
=> ? = 3
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [[5,3],[]]
=> ? = 0
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [[5,4],[]]
=> ? = 2
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> [[5,5],[]]
=> ? = 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> [[4,2],[]]
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6)
=> [15,15]
=> [[15,15],[]]
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> [[3,3],[]]
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> [10,10]
=> [[10,10],[]]
=> ? = 5
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> [12,4]
=> [[12,4],[]]
=> ? = 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> [[6,6],[]]
=> ? = 3
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? = 2
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,5]
=> [[5,5],[]]
=> ? = 0
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> [15,5,5]
=> [[15,5,5],[]]
=> ? = 0
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,5,5,5]
=> [[5,5,5,5],[]]
=> ? = 0
([(0,4),(0,5),(5,1),(5,2),(5,3)],6)
=> [15,15]
=> [[15,15],[]]
=> ? = 0
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> [10,10]
=> [[10,10],[]]
=> ? = 5
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? = 2
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> [12,4]
=> [[12,4],[]]
=> ? = 2
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [6,6]
=> [[6,6],[]]
=> ? = 3
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [3,3]
=> [[3,3],[]]
=> ? = 0
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [6,6]
=> [[6,6],[]]
=> ? = 3
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [6,6]
=> [[6,6],[]]
=> ? = 3
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> [3,2]
=> [[3,2],[]]
=> 1
Description
The number of inner corners of a skew partition.
Mp00307: Posets promotion cycle typeInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001490: Skew partitions ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 17%
Values
([],3)
=> [3,3]
=> [[3,3],[]]
=> ? = 0
([(2,3)],4)
=> [4,4,4]
=> [[4,4,4],[]]
=> ? = 2
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [[3,3],[]]
=> ? = 0
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [[3,3],[]]
=> ? = 0
([(0,3),(1,2)],4)
=> [4,2]
=> [[4,2],[]]
=> ? = 1
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[2,2],[]]
=> 1
([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> [[15,15],[]]
=> ? = 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [[4,4,4],[]]
=> ? = 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [[3,3],[]]
=> ? = 0
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [[5,5],[]]
=> ? = 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [[4,2],[]]
=> ? = 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [[2,2],[]]
=> 1
([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [[5,5,5,5],[]]
=> ? = 0
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [[5,5],[]]
=> ? = 0
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [[3,3],[]]
=> ? = 0
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [[5,5],[]]
=> ? = 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [[2,2],[]]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [15,15]
=> [[15,15],[]]
=> ? = 0
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [[3,3],[]]
=> ? = 0
([(0,4),(1,4),(2,3)],5)
=> [10,10]
=> [[10,10],[]]
=> ? = 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> [12,4]
=> [[12,4],[]]
=> ? = 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [[6,6],[]]
=> ? = 3
([(0,4),(1,4),(2,3),(2,4)],5)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? = 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [[4,4,4],[]]
=> ? = 2
([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> [[15,5,5],[]]
=> ? = 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [[5,4],[]]
=> ? = 2
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [[3,2],[]]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [[5,5,5,5],[]]
=> ? = 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> [[10,10],[]]
=> ? = 5
([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? = 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [[4,4,3],[]]
=> ? = 2
([(0,3),(0,4),(1,2),(1,4)],5)
=> [12,4]
=> [[12,4],[]]
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [[6,6],[]]
=> ? = 3
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [[5,3],[]]
=> ? = 0
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [[5,4],[]]
=> ? = 2
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> [[5,5],[]]
=> ? = 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> [[4,2],[]]
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6)
=> [15,15]
=> [[15,15],[]]
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> [[3,3],[]]
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> [10,10]
=> [[10,10],[]]
=> ? = 5
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> [12,4]
=> [[12,4],[]]
=> ? = 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> [[6,6],[]]
=> ? = 3
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? = 2
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,5]
=> [[5,5],[]]
=> ? = 0
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> [15,5,5]
=> [[15,5,5],[]]
=> ? = 0
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,5,5,5]
=> [[5,5,5,5],[]]
=> ? = 0
([(0,4),(0,5),(5,1),(5,2),(5,3)],6)
=> [15,15]
=> [[15,15],[]]
=> ? = 0
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> [10,10]
=> [[10,10],[]]
=> ? = 5
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? = 2
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> [12,4]
=> [[12,4],[]]
=> ? = 2
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [6,6]
=> [[6,6],[]]
=> ? = 3
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [3,3]
=> [[3,3],[]]
=> ? = 0
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [6,6]
=> [[6,6],[]]
=> ? = 3
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [6,6]
=> [[6,6],[]]
=> ? = 3
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7)
=> [2,2]
=> [[2,2],[]]
=> 1
([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7)
=> [3,2]
=> [[3,2],[]]
=> 1
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> [3,2]
=> [[3,2],[]]
=> 1
Description
The number of connected components of a skew partition.
Mp00307: Posets promotion cycle typeInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001435: Skew partitions ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 17%
Values
([],3)
=> [3,3]
=> [[3,3],[]]
=> ? = 0 - 1
([(2,3)],4)
=> [4,4,4]
=> [[4,4,4],[]]
=> ? = 2 - 1
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [[3,3],[]]
=> ? = 0 - 1
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [[3,3],[]]
=> ? = 0 - 1
([(0,3),(1,2)],4)
=> [4,2]
=> [[4,2],[]]
=> ? = 1 - 1
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> [[15,15],[]]
=> ? = 0 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [[4,4,4],[]]
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [[3,3],[]]
=> ? = 0 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [[5,5],[]]
=> ? = 0 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [[4,2],[]]
=> ? = 1 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [[5,5,5,5],[]]
=> ? = 0 - 1
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [[5,5],[]]
=> ? = 0 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [[3,3],[]]
=> ? = 0 - 1
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [[5,5],[]]
=> ? = 0 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(1,4),(2,4),(3,4)],5)
=> [15,15]
=> [[15,15],[]]
=> ? = 0 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [[3,3],[]]
=> ? = 0 - 1
([(0,4),(1,4),(2,3)],5)
=> [10,10]
=> [[10,10],[]]
=> ? = 5 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [12,4]
=> [[12,4],[]]
=> ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [[6,6],[]]
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [[4,4,4],[]]
=> ? = 2 - 1
([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> [[15,5,5],[]]
=> ? = 0 - 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [[5,4],[]]
=> ? = 2 - 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [[5,5,5,5],[]]
=> ? = 0 - 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> [[10,10],[]]
=> ? = 5 - 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [[4,4,3],[]]
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> [12,4]
=> [[12,4],[]]
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [[6,6],[]]
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [[5,3],[]]
=> ? = 0 - 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [[5,4],[]]
=> ? = 2 - 1
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> [[5,5],[]]
=> ? = 0 - 1
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> [[4,2],[]]
=> ? = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6)
=> [15,15]
=> [[15,15],[]]
=> ? = 0 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> [[3,3],[]]
=> ? = 0 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> [10,10]
=> [[10,10],[]]
=> ? = 5 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> [12,4]
=> [[12,4],[]]
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> [[6,6],[]]
=> ? = 3 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,5]
=> [[5,5],[]]
=> ? = 0 - 1
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> [15,5,5]
=> [[15,5,5],[]]
=> ? = 0 - 1
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,5,5,5]
=> [[5,5,5,5],[]]
=> ? = 0 - 1
([(0,4),(0,5),(5,1),(5,2),(5,3)],6)
=> [15,15]
=> [[15,15],[]]
=> ? = 0 - 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> [10,10]
=> [[10,10],[]]
=> ? = 5 - 1
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? = 2 - 1
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> [12,4]
=> [[12,4],[]]
=> ? = 2 - 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [6,6]
=> [[6,6],[]]
=> ? = 3 - 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [3,3]
=> [[3,3],[]]
=> ? = 0 - 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [6,6]
=> [[6,6],[]]
=> ? = 3 - 1
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [6,6]
=> [[6,6],[]]
=> ? = 3 - 1
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
Description
The number of missing boxes in the first row.
Mp00307: Posets promotion cycle typeInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001438: Skew partitions ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 17%
Values
([],3)
=> [3,3]
=> [[3,3],[]]
=> ? = 0 - 1
([(2,3)],4)
=> [4,4,4]
=> [[4,4,4],[]]
=> ? = 2 - 1
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [[3,3],[]]
=> ? = 0 - 1
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [[3,3],[]]
=> ? = 0 - 1
([(0,3),(1,2)],4)
=> [4,2]
=> [[4,2],[]]
=> ? = 1 - 1
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> [[15,15],[]]
=> ? = 0 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [[4,4,4],[]]
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [[3,3],[]]
=> ? = 0 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [[5,5],[]]
=> ? = 0 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [[4,2],[]]
=> ? = 1 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [[5,5,5,5],[]]
=> ? = 0 - 1
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [[5,5],[]]
=> ? = 0 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [[3,3],[]]
=> ? = 0 - 1
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [[5,5],[]]
=> ? = 0 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(1,4),(2,4),(3,4)],5)
=> [15,15]
=> [[15,15],[]]
=> ? = 0 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [[3,3],[]]
=> ? = 0 - 1
([(0,4),(1,4),(2,3)],5)
=> [10,10]
=> [[10,10],[]]
=> ? = 5 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [12,4]
=> [[12,4],[]]
=> ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [[6,6],[]]
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [[4,4,4],[]]
=> ? = 2 - 1
([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> [[15,5,5],[]]
=> ? = 0 - 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [[5,4],[]]
=> ? = 2 - 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [[5,5,5,5],[]]
=> ? = 0 - 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> [[10,10],[]]
=> ? = 5 - 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [[4,4,3],[]]
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> [12,4]
=> [[12,4],[]]
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [[6,6],[]]
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [[5,3],[]]
=> ? = 0 - 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [[5,4],[]]
=> ? = 2 - 1
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> [[5,5],[]]
=> ? = 0 - 1
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> [[4,2],[]]
=> ? = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6)
=> [15,15]
=> [[15,15],[]]
=> ? = 0 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> [[3,3],[]]
=> ? = 0 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> [10,10]
=> [[10,10],[]]
=> ? = 5 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> [12,4]
=> [[12,4],[]]
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> [[6,6],[]]
=> ? = 3 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,5]
=> [[5,5],[]]
=> ? = 0 - 1
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> [15,5,5]
=> [[15,5,5],[]]
=> ? = 0 - 1
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,5,5,5]
=> [[5,5,5,5],[]]
=> ? = 0 - 1
([(0,4),(0,5),(5,1),(5,2),(5,3)],6)
=> [15,15]
=> [[15,15],[]]
=> ? = 0 - 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> [10,10]
=> [[10,10],[]]
=> ? = 5 - 1
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? = 2 - 1
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> [12,4]
=> [[12,4],[]]
=> ? = 2 - 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [6,6]
=> [[6,6],[]]
=> ? = 3 - 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [3,3]
=> [[3,3],[]]
=> ? = 0 - 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [6,6]
=> [[6,6],[]]
=> ? = 3 - 1
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [6,6]
=> [[6,6],[]]
=> ? = 3 - 1
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7)
=> [2,2]
=> [[2,2],[]]
=> 0 = 1 - 1
([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> [3,2]
=> [[3,2],[]]
=> 0 = 1 - 1
Description
The number of missing boxes of a skew partition.
Mp00307: Posets promotion cycle typeInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St001491: Binary words ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 17%
Values
([],3)
=> [3,3]
=> 11000 => ? = 0
([(2,3)],4)
=> [4,4,4]
=> 1110000 => ? = 2
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> 11000 => ? = 0
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> 11000 => ? = 0
([(0,3),(1,2)],4)
=> [4,2]
=> 100100 => ? = 1
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> 10100 => ? = 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 1100 => 1
([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> 11000000000000000 => ? = 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> 1110000 => ? = 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 11000 => ? = 0
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> 1100000 => ? = 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> 100100 => ? = 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 10100 => ? = 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> 1100 => 1
([(2,3),(3,4)],5)
=> [5,5,5,5]
=> 111100000 => ? = 0
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> 1100000 => ? = 0
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> 11000 => ? = 0
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> 1100000 => ? = 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> 1100 => 1
([(1,4),(2,4),(3,4)],5)
=> [15,15]
=> 11000000000000000 => ? = 0
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> 11000 => ? = 0
([(0,4),(1,4),(2,3)],5)
=> [10,10]
=> 110000000000 => ? = 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> [12,4]
=> 10000000010000 => ? = 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> 11000000 => ? = 3
([(0,4),(1,4),(2,3),(2,4)],5)
=> [10,4,4]
=> 1000000110000 => ? = 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> 1110000 => ? = 2
([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> 100000000001100000 => ? = 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> 1010000 => ? = 2
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => ? = 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> 111100000 => ? = 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> 1100 => 1
([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> 110000000000 => ? = 5
([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> 1000000110000 => ? = 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> 1101000 => ? = 2
([(0,3),(0,4),(1,2),(1,4)],5)
=> [12,4]
=> 10000000010000 => ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> 11000000 => ? = 3
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> 1001000 => ? = 0
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> 1010000 => ? = 2
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> 1100000 => ? = 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> 100100 => ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6)
=> [15,15]
=> 11000000000000000 => ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> 11000 => ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> [10,10]
=> 110000000000 => ? = 5
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> [12,4]
=> 10000000010000 => ? = 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> 11000000 => ? = 3
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> [10,4,4]
=> 1000000110000 => ? = 2
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,5]
=> 1100000 => ? = 0
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> [15,5,5]
=> 100000000001100000 => ? = 0
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,5,5,5]
=> 111100000 => ? = 0
([(0,4),(0,5),(5,1),(5,2),(5,3)],6)
=> [15,15]
=> 11000000000000000 => ? = 0
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> 1100 => 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> 1100 => 1
([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> [10,10]
=> 110000000000 => ? = 5
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> [10,4,4]
=> 1000000110000 => ? = 2
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> [12,4]
=> 10000000010000 => ? = 2
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [6,6]
=> 11000000 => ? = 3
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> 1100 => 1
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [2,2]
=> 1100 => 1
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> [2,2]
=> 1100 => 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> [2,2]
=> 1100 => 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7)
=> [2,2]
=> 1100 => 1
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7)
=> [2,2]
=> 1100 => 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [2,2]
=> 1100 => 1
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7)
=> [2,2]
=> 1100 => 1
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7)
=> [2,2]
=> 1100 => 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7)
=> [2,2]
=> 1100 => 1
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> [2,2]
=> 1100 => 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> [2,2]
=> 1100 => 1
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> [2,2]
=> 1100 => 1
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7)
=> [2,2]
=> 1100 => 1
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset. Let $A_n=K[x]/(x^n)$. We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.