Identifier
-
Mp00307:
Posets
—promotion cycle type⟶
Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001490: Skew partitions ⟶ ℤ
Values
([],1) => [1] => [[1],[]] => 1
([],2) => [2] => [[2],[]] => 1
([(0,1)],2) => [1] => [[1],[]] => 1
([(1,2)],3) => [3] => [[3],[]] => 1
([(0,1),(0,2)],3) => [2] => [[2],[]] => 1
([(0,2),(2,1)],3) => [1] => [[1],[]] => 1
([(0,2),(1,2)],3) => [2] => [[2],[]] => 1
([(0,2),(0,3),(3,1)],4) => [3] => [[3],[]] => 1
([(0,1),(0,2),(1,3),(2,3)],4) => [2] => [[2],[]] => 1
([(1,2),(2,3)],4) => [4] => [[4],[]] => 1
([(0,3),(3,1),(3,2)],4) => [2] => [[2],[]] => 1
([(0,3),(1,3),(3,2)],4) => [2] => [[2],[]] => 1
([(0,3),(1,2),(1,3)],4) => [3,2] => [[3,2],[]] => 1
([(0,2),(0,3),(1,2),(1,3)],4) => [2,2] => [[2,2],[]] => 1
([(0,3),(2,1),(3,2)],4) => [1] => [[1],[]] => 1
([(0,3),(1,2),(2,3)],4) => [3] => [[3],[]] => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => [2] => [[2],[]] => 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => [[3,2],[]] => 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => [2,2] => [[2,2],[]] => 1
([(0,4),(1,4),(4,2),(4,3)],5) => [2,2] => [[2,2],[]] => 1
([(0,4),(1,4),(2,3),(4,2)],5) => [2] => [[2],[]] => 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => [3,2] => [[3,2],[]] => 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => [2,2] => [[2,2],[]] => 1
([(0,2),(0,4),(3,1),(4,3)],5) => [4] => [[4],[]] => 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => [3] => [[3],[]] => 1
([(1,4),(3,2),(4,3)],5) => [5] => [[5],[]] => 1
([(0,3),(3,4),(4,1),(4,2)],5) => [2] => [[2],[]] => 1
([(0,4),(1,2),(2,4),(4,3)],5) => [3] => [[3],[]] => 1
([(0,4),(3,2),(4,1),(4,3)],5) => [3] => [[3],[]] => 1
([(0,4),(2,3),(3,1),(4,2)],5) => [1] => [[1],[]] => 1
([(0,4),(1,2),(2,3),(3,4)],5) => [4] => [[4],[]] => 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => [2] => [[2],[]] => 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) => [2,2] => [[2,2],[]] => 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => [2,2] => [[2,2],[]] => 1
([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => [2,2] => [[2,2],[]] => 1
([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [2] => [[2],[]] => 1
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => [2,2] => [[2,2],[]] => 1
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6) => [3,2] => [[3,2],[]] => 1
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) => [2,2] => [[2,2],[]] => 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [3,2] => [[3,2],[]] => 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => [3] => [[3],[]] => 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => [4] => [[4],[]] => 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => [2] => [[2],[]] => 1
([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => [5] => [[5],[]] => 1
([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => [2] => [[2],[]] => 1
([(0,5),(3,4),(4,2),(5,1),(5,3)],6) => [4] => [[4],[]] => 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => [2] => [[2],[]] => 1
([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => [4] => [[4],[]] => 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6) => [2,2] => [[2,2],[]] => 1
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6) => [3,2] => [[3,2],[]] => 1
([(0,4),(3,2),(4,5),(5,1),(5,3)],6) => [3] => [[3],[]] => 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [1] => [[1],[]] => 1
([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => [3] => [[3],[]] => 1
([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => [5] => [[5],[]] => 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => [2] => [[2],[]] => 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => [3] => [[3],[]] => 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7) => [2,2] => [[2,2],[]] => 1
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7) => [2,2] => [[2,2],[]] => 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => [2,2] => [[2,2],[]] => 1
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7) => [2,2] => [[2,2],[]] => 1
([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7) => [5] => [[5],[]] => 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => [2] => [[2],[]] => 1
([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7) => [2] => [[2],[]] => 1
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7) => [2,2] => [[2,2],[]] => 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7) => [2,2] => [[2,2],[]] => 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => [3,2] => [[3,2],[]] => 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => [4] => [[4],[]] => 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => [2] => [[2],[]] => 1
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7) => [2,2] => [[2,2],[]] => 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => [3,2] => [[3,2],[]] => 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7) => [2,2] => [[2,2],[]] => 1
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7) => [2,2] => [[2,2],[]] => 1
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => [3] => [[3],[]] => 1
([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7) => [3,2] => [[3,2],[]] => 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => [5] => [[5],[]] => 1
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => [3] => [[3],[]] => 1
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7) => [2,2] => [[2,2],[]] => 1
([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7) => [3,2] => [[3,2],[]] => 1
([(0,5),(3,4),(4,6),(5,3),(6,1),(6,2)],7) => [2] => [[2],[]] => 1
([(0,5),(3,4),(4,1),(5,6),(6,2),(6,3)],7) => [4] => [[4],[]] => 1
([(0,6),(3,5),(4,3),(5,1),(6,2),(6,4)],7) => [5] => [[5],[]] => 1
([(0,5),(3,6),(4,1),(5,3),(6,2),(6,4)],7) => [3] => [[3],[]] => 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [1] => [[1],[]] => 1
([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7) => [3] => [[3],[]] => 1
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => [3] => [[3],[]] => 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => [2] => [[2],[]] => 1
([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7) => [4] => [[4],[]] => 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => [2] => [[2],[]] => 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => [4] => [[4],[]] => 1
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => [3,2] => [[3,2],[]] => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of connected components of a skew partition.
Map
to skew partition
Description
The partition regarded as a skew partition.
Map
promotion cycle type
Description
The cycle type of promotion on the linear extensions of a poset.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!