searching the database
Your data matches 14 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000297
Mp00109: Permutations —descent word⟶ Binary words
Mp00104: Binary words —reverse⟶ Binary words
Mp00280: Binary words —path rowmotion⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00104: Binary words —reverse⟶ Binary words
Mp00280: Binary words —path rowmotion⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,3,2] => 01 => 10 => 11 => 2
[2,3,1] => 01 => 10 => 11 => 2
[1,2,4,3] => 001 => 100 => 011 => 0
[1,3,4,2] => 001 => 100 => 011 => 0
[2,1,4,3] => 101 => 101 => 110 => 2
[2,3,4,1] => 001 => 100 => 011 => 0
[3,1,4,2] => 101 => 101 => 110 => 2
[3,2,4,1] => 101 => 101 => 110 => 2
[4,1,3,2] => 101 => 101 => 110 => 2
[4,2,3,1] => 101 => 101 => 110 => 2
[1,2,3,5,4] => 0001 => 1000 => 0011 => 0
[1,2,4,5,3] => 0001 => 1000 => 0011 => 0
[1,3,2,5,4] => 0101 => 1010 => 1101 => 2
[1,3,4,5,2] => 0001 => 1000 => 0011 => 0
[1,4,2,5,3] => 0101 => 1010 => 1101 => 2
[1,4,3,5,2] => 0101 => 1010 => 1101 => 2
[1,5,2,4,3] => 0101 => 1010 => 1101 => 2
[1,5,3,4,2] => 0101 => 1010 => 1101 => 2
[2,1,3,5,4] => 1001 => 1001 => 0110 => 0
[2,1,4,5,3] => 1001 => 1001 => 0110 => 0
[2,3,1,5,4] => 0101 => 1010 => 1101 => 2
[2,3,4,5,1] => 0001 => 1000 => 0011 => 0
[2,4,1,5,3] => 0101 => 1010 => 1101 => 2
[2,4,3,5,1] => 0101 => 1010 => 1101 => 2
[2,5,1,4,3] => 0101 => 1010 => 1101 => 2
[2,5,3,4,1] => 0101 => 1010 => 1101 => 2
[3,1,2,5,4] => 1001 => 1001 => 0110 => 0
[3,1,4,5,2] => 1001 => 1001 => 0110 => 0
[3,2,1,5,4] => 1101 => 1011 => 1100 => 2
[3,2,4,5,1] => 1001 => 1001 => 0110 => 0
[3,4,1,5,2] => 0101 => 1010 => 1101 => 2
[3,4,2,5,1] => 0101 => 1010 => 1101 => 2
[3,5,1,4,2] => 0101 => 1010 => 1101 => 2
[3,5,2,4,1] => 0101 => 1010 => 1101 => 2
[4,1,2,5,3] => 1001 => 1001 => 0110 => 0
[4,1,3,5,2] => 1001 => 1001 => 0110 => 0
[4,2,1,5,3] => 1101 => 1011 => 1100 => 2
[4,2,3,5,1] => 1001 => 1001 => 0110 => 0
[4,3,1,5,2] => 1101 => 1011 => 1100 => 2
[4,3,2,5,1] => 1101 => 1011 => 1100 => 2
[4,5,1,3,2] => 0101 => 1010 => 1101 => 2
[4,5,2,3,1] => 0101 => 1010 => 1101 => 2
[5,1,2,4,3] => 1001 => 1001 => 0110 => 0
[5,1,3,4,2] => 1001 => 1001 => 0110 => 0
[5,2,1,4,3] => 1101 => 1011 => 1100 => 2
[5,2,3,4,1] => 1001 => 1001 => 0110 => 0
[5,3,1,4,2] => 1101 => 1011 => 1100 => 2
[5,3,2,4,1] => 1101 => 1011 => 1100 => 2
[5,4,1,3,2] => 1101 => 1011 => 1100 => 2
[5,4,2,3,1] => 1101 => 1011 => 1100 => 2
Description
The number of leading ones in a binary word.
Matching statistic: St001545
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St001545: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St001545: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 2
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 2
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 2
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 2
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 2
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[2,1,3,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[2,1,4,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[2,3,1,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[2,4,1,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[2,4,3,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[2,5,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[2,5,3,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[3,1,2,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[3,1,4,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[3,2,1,5,4] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[3,2,4,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[3,4,1,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[3,4,2,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[3,5,1,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[3,5,2,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[4,1,2,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[4,1,3,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[4,2,1,5,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[4,2,3,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[4,3,1,5,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[4,3,2,5,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[4,5,1,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[4,5,2,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[5,1,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[5,1,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[5,2,1,4,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[5,2,3,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[5,3,1,4,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[5,3,2,4,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[5,4,1,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
[5,4,2,3,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
Description
The second Elser number of a connected graph.
For a connected graph G the k-th Elser number is
elsk(G)=(−1)|V(G)|+1∑N(−1)|E(N)||V(N)|k
where the sum is over all nuclei of G, that is, the connected subgraphs of G whose vertex set is a vertex cover of G.
It is clear that this number is even. It was shown in [1] that it is non-negative.
Matching statistic: St001694
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St001694: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St001694: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,1,3,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,4,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,1,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[2,4,1,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,4,3,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,5,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,5,3,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,1,2,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,1,4,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,2,1,5,4] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,2,4,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,4,1,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,4,2,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,5,1,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,5,2,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[4,1,2,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[4,1,3,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[4,2,1,5,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[4,2,3,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[4,3,1,5,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[4,3,2,5,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[4,5,1,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[4,5,2,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[5,1,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[5,1,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[5,2,1,4,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[5,2,3,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[5,3,1,4,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[5,3,2,4,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[5,4,1,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[5,4,2,3,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
Description
The number of maximal dissociation sets in a graph.
Matching statistic: St001645
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 64%●distinct values known / distinct values provided: 50%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 64%●distinct values known / distinct values provided: 50%
Values
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[2,1,3,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,1,4,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,3,1,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 2
[2,4,1,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[2,4,3,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[2,5,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[2,5,3,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[3,1,2,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[3,1,4,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[3,2,1,5,4] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[3,2,4,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[3,4,1,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[3,4,2,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[3,5,1,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[3,5,2,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[4,1,2,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[4,1,3,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[4,2,1,5,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[4,2,3,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[4,3,1,5,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[4,3,2,5,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[4,5,1,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[4,5,2,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[5,1,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[5,1,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[5,2,1,4,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[5,2,3,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[5,3,1,4,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[5,3,2,4,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[5,4,1,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[5,4,2,3,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,2,4,3,6,5] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,2,5,3,6,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,2,5,4,6,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,2,6,3,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,2,6,4,5,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,3,2,4,6,5] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,3,2,5,6,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,3,4,2,6,5] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,3,5,2,6,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,3,5,4,6,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,3,6,2,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,3,6,4,5,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,4,2,3,6,5] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,4,2,5,6,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,4,3,2,6,5] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,4,3,5,6,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,4,5,2,6,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,4,5,3,6,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,4,6,2,5,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,4,6,3,5,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,5,2,3,6,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,5,2,4,6,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,5,3,2,6,4] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,5,3,4,6,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,5,4,2,6,3] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,5,4,3,6,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 4 = 2 + 2
[1,6,2,3,5,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,6,2,4,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,6,3,4,5,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,1,3,4,6,5] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 2
[2,1,3,5,6,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 2
[2,1,4,5,6,3] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 2
[2,3,1,4,6,5] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,3,1,5,6,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,4,1,3,6,5] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,4,1,5,6,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,4,3,5,6,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,5,1,3,6,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,5,1,4,6,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,5,3,4,6,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,6,1,3,5,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,6,1,4,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,6,3,4,5,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[3,1,2,4,6,5] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 2
[3,1,2,5,6,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 2
[3,1,4,5,6,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 2
[3,2,1,4,6,5] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[3,2,1,5,6,4] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[3,2,4,5,6,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 2
[3,4,1,2,6,5] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
Description
The pebbling number of a connected graph.
Matching statistic: St000454
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 50%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 50%
Values
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[2,1,3,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,1,4,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,3,1,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,4,1,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[2,4,3,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[2,5,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[2,5,3,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[3,1,2,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[3,1,4,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[3,2,1,5,4] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[3,2,4,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[3,4,1,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[3,4,2,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[3,5,1,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[3,5,2,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[4,1,2,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[4,1,3,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[4,2,1,5,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[4,2,3,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[4,3,1,5,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[4,3,2,5,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[4,5,1,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[4,5,2,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[5,1,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[5,1,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[5,2,1,4,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[5,2,3,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[5,3,1,4,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[5,3,2,4,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[5,4,1,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[5,4,2,3,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[1,2,4,3,6,5] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[1,2,5,3,6,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[1,2,5,4,6,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[1,2,6,3,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[2,1,3,4,6,5] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,1,3,5,6,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,1,4,5,6,3] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,1,2,4,6,5] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,1,2,5,6,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,1,4,5,6,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,2,4,5,6,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[4,1,2,3,6,5] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[4,1,2,5,6,3] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[4,1,3,5,6,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[4,2,3,5,6,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[5,1,2,3,6,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[5,1,2,4,6,3] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[5,1,3,4,6,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[5,2,3,4,6,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[6,1,2,3,5,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[6,1,2,4,5,3] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[6,1,3,4,5,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[6,2,3,4,5,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,3,2,4,5,7,6] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,3,2,4,6,7,5] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,3,2,5,6,7,4] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,4,2,3,5,7,6] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,4,2,3,6,7,5] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,4,2,5,6,7,3] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,4,3,5,6,7,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,5,2,3,4,7,6] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,5,2,3,6,7,4] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,5,2,4,6,7,3] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,5,3,4,6,7,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,6,2,3,4,7,5] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,6,2,3,5,7,4] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,6,2,4,5,7,3] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,6,3,4,5,7,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,7,2,3,4,6,5] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,7,2,3,5,6,4] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,7,2,4,5,6,3] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,7,3,4,5,6,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,3,1,4,5,7,6] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,3,1,4,6,7,5] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,3,1,5,6,7,4] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,4,1,3,5,7,6] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,4,1,3,6,7,5] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,4,1,5,6,7,3] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,4,3,5,6,7,1] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,5,1,3,4,7,6] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
Description
The largest eigenvalue of a graph if it is integral.
If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St000422
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 50%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 50%
Values
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 4
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 4
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 4
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[2,1,3,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 4
[2,1,4,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 4
[2,3,1,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[2,4,1,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[2,4,3,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[2,5,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[2,5,3,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[3,1,2,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 4
[3,1,4,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 4
[3,2,1,5,4] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[3,2,4,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 4
[3,4,1,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[3,4,2,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[3,5,1,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[3,5,2,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[4,1,2,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 4
[4,1,3,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 4
[4,2,1,5,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[4,2,3,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 4
[4,3,1,5,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[4,3,2,5,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[4,5,1,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[4,5,2,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[5,1,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 4
[5,1,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 4
[5,2,1,4,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[5,2,3,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 4
[5,3,1,4,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[5,3,2,4,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[5,4,1,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[5,4,2,3,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[1,2,4,3,6,5] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[1,2,5,3,6,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[1,2,5,4,6,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[1,2,6,3,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 4
[2,1,3,4,6,5] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[2,1,3,5,6,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[2,1,4,5,6,3] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[3,1,2,4,6,5] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[3,1,2,5,6,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[3,1,4,5,6,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[3,2,4,5,6,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[4,1,2,3,6,5] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[4,1,2,5,6,3] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[4,1,3,5,6,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[4,2,3,5,6,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[5,1,2,3,6,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[5,1,2,4,6,3] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[5,1,3,4,6,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[5,2,3,4,6,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[6,1,2,3,5,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[6,1,2,4,5,3] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[6,1,3,4,5,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[6,2,3,4,5,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,3,2,4,5,7,6] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,3,2,4,6,7,5] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,3,2,5,6,7,4] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,4,2,3,5,7,6] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,4,2,3,6,7,5] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,4,2,5,6,7,3] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,4,3,5,6,7,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,5,2,3,4,7,6] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,5,2,3,6,7,4] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,5,2,4,6,7,3] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,5,3,4,6,7,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,6,2,3,4,7,5] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,6,2,3,5,7,4] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,6,2,4,5,7,3] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,6,3,4,5,7,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,7,2,3,4,6,5] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,7,2,3,5,6,4] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,7,2,4,5,6,3] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[1,7,3,4,5,6,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[2,3,1,4,5,7,6] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[2,3,1,4,6,7,5] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[2,3,1,5,6,7,4] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[2,4,1,3,5,7,6] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[2,4,1,3,6,7,5] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[2,4,1,5,6,7,3] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[2,4,3,5,6,7,1] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
[2,5,1,3,4,7,6] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 0 + 4
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph Kn equals 2n−2. For this reason, we do not define the energy of the empty graph.
Matching statistic: St001534
Mp00109: Permutations —descent word⟶ Binary words
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St001534: Posets ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 100%
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St001534: Posets ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 100%
Values
[1,3,2] => 01 => 00 => ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[2,3,1] => 01 => 00 => ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[1,2,4,3] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> -1 = 0 - 1
[1,3,4,2] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> -1 = 0 - 1
[2,1,4,3] => 101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,3,4,1] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> -1 = 0 - 1
[3,1,4,2] => 101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,2,4,1] => 101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[4,1,3,2] => 101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[4,2,3,1] => 101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,2,3,5,4] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 0 - 1
[1,2,4,5,3] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 0 - 1
[1,3,2,5,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[1,3,4,5,2] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 0 - 1
[1,4,2,5,3] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[1,4,3,5,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[1,5,2,4,3] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[1,5,3,4,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[2,1,3,5,4] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 1
[2,1,4,5,3] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 1
[2,3,1,5,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[2,3,4,5,1] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 0 - 1
[2,4,1,5,3] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[2,4,3,5,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[2,5,1,4,3] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[2,5,3,4,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[3,1,2,5,4] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 1
[3,1,4,5,2] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 1
[3,2,1,5,4] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[3,2,4,5,1] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 1
[3,4,1,5,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[3,4,2,5,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[3,5,1,4,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[3,5,2,4,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[4,1,2,5,3] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 1
[4,1,3,5,2] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 1
[4,2,1,5,3] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[4,2,3,5,1] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 1
[4,3,1,5,2] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[4,3,2,5,1] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[4,5,1,3,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[4,5,2,3,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[5,1,2,4,3] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 1
[5,1,3,4,2] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 1
[5,2,1,4,3] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[5,2,3,4,1] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 1
[5,3,1,4,2] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[5,3,2,4,1] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[5,4,1,3,2] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[5,4,2,3,1] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[1,2,4,3,6,5] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[1,2,5,3,6,4] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[1,2,5,4,6,3] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[1,2,6,3,5,4] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[1,2,6,4,5,3] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[1,3,2,4,6,5] => 01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 - 1
[1,3,2,5,6,4] => 01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 - 1
[1,3,4,2,6,5] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[1,3,5,2,6,4] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[1,3,5,4,6,2] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[1,3,6,2,5,4] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[1,3,6,4,5,2] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[1,4,2,3,6,5] => 01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 - 1
[1,4,2,5,6,3] => 01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 - 1
[1,4,3,2,6,5] => 01101 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 - 1
[1,4,3,5,6,2] => 01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 - 1
[1,4,5,2,6,3] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[1,4,5,3,6,2] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[1,4,6,2,5,3] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[1,4,6,3,5,2] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 1
[1,5,2,3,6,4] => 01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 - 1
[1,5,2,4,6,3] => 01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 - 1
[1,5,3,2,6,4] => 01101 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 - 1
[1,5,3,4,6,2] => 01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 - 1
[1,5,4,2,6,3] => 01101 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 - 1
[1,5,4,3,6,2] => 01101 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 - 1
[2,1,4,3,6,5] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[2,1,5,3,6,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[2,1,5,4,6,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[2,1,6,3,5,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[2,1,6,4,5,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[3,1,4,2,6,5] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[3,1,5,2,6,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[3,1,5,4,6,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[3,1,6,2,5,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[3,1,6,4,5,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[3,2,4,1,6,5] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[3,2,5,1,6,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[3,2,5,4,6,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[3,2,6,1,5,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[3,2,6,4,5,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,1,3,2,6,5] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,1,5,2,6,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,1,5,3,6,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,1,6,2,5,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,1,6,3,5,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,2,3,1,6,5] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,2,5,1,6,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,2,5,3,6,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,2,6,1,5,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
Description
The alternating sum of the coefficients of the Poincare polynomial of the poset cone.
For a poset P on {1,…,n}, let KP={→x∈Rn|xi<xj for i<Pj}. Furthermore let L(A) be the intersection lattice of the braid arrangement An−1 and let Lint={X∈L(A)|X∩KP≠∅}.
Then the Poincare polynomial of the poset cone is Poin(t)=∑X∈Lint|μ(0,X)|tcodimX.
This statistic records its Poin(−1).
Matching statistic: St001964
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00109: Permutations —descent word⟶ Binary words
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St001964: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St001964: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Values
[1,3,2] => 01 => 00 => ([(0,2),(2,1)],3)
=> 0 = 2 - 2
[2,3,1] => 01 => 00 => ([(0,2),(2,1)],3)
=> 0 = 2 - 2
[1,2,4,3] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0 - 2
[1,3,4,2] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0 - 2
[2,1,4,3] => 101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 0 = 2 - 2
[2,3,4,1] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0 - 2
[3,1,4,2] => 101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 0 = 2 - 2
[3,2,4,1] => 101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 0 = 2 - 2
[4,1,3,2] => 101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 0 = 2 - 2
[4,2,3,1] => 101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 0 = 2 - 2
[1,2,3,5,4] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 0 - 2
[1,2,4,5,3] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 0 - 2
[1,3,2,5,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[1,3,4,5,2] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 0 - 2
[1,4,2,5,3] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[1,4,3,5,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[1,5,2,4,3] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[1,5,3,4,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[2,1,3,5,4] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 2
[2,1,4,5,3] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 2
[2,3,1,5,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[2,3,4,5,1] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 0 - 2
[2,4,1,5,3] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[2,4,3,5,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[2,5,1,4,3] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[2,5,3,4,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[3,1,2,5,4] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 2
[3,1,4,5,2] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 2
[3,2,1,5,4] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 2
[3,2,4,5,1] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 2
[3,4,1,5,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[3,4,2,5,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[3,5,1,4,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[3,5,2,4,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[4,1,2,5,3] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 2
[4,1,3,5,2] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 2
[4,2,1,5,3] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 2
[4,2,3,5,1] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 2
[4,3,1,5,2] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 2
[4,3,2,5,1] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 2
[4,5,1,3,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[4,5,2,3,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[5,1,2,4,3] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 2
[5,1,3,4,2] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 2
[5,2,1,4,3] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 2
[5,2,3,4,1] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 2
[5,3,1,4,2] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 2
[5,3,2,4,1] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 2
[5,4,1,3,2] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 2
[5,4,2,3,1] => 1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 2
[1,2,4,3,6,5] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 2
[1,2,5,3,6,4] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 2
[1,2,5,4,6,3] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 2
[1,2,6,3,5,4] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 2
[1,2,6,4,5,3] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 2
[1,3,2,4,6,5] => 01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 - 2
[1,3,2,5,6,4] => 01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 - 2
[1,3,4,2,6,5] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 2
[1,3,5,2,6,4] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 2
[1,3,5,4,6,2] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 2
[1,3,6,2,5,4] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 2
[1,3,6,4,5,2] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 2
[1,4,2,3,6,5] => 01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 - 2
[1,4,2,5,6,3] => 01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 - 2
[1,4,3,2,6,5] => 01101 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 - 2
[1,4,3,5,6,2] => 01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 - 2
[1,4,5,2,6,3] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 2
[1,4,5,3,6,2] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 2
[1,4,6,2,5,3] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 2
[1,4,6,3,5,2] => 00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2 - 2
[1,5,2,3,6,4] => 01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 - 2
[1,5,2,4,6,3] => 01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 - 2
[1,5,3,2,6,4] => 01101 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 - 2
[2,1,4,3,6,5] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[2,1,5,3,6,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[2,1,5,4,6,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[2,1,6,3,5,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[2,1,6,4,5,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[3,1,4,2,6,5] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[3,1,5,2,6,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[3,1,5,4,6,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[3,1,6,2,5,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[3,1,6,4,5,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[3,2,4,1,6,5] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[3,2,5,1,6,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[3,2,5,4,6,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[3,2,6,1,5,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[3,2,6,4,5,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[4,1,3,2,6,5] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[4,1,5,2,6,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[4,1,5,3,6,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[4,1,6,2,5,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[4,1,6,3,5,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[4,2,3,1,6,5] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[4,2,5,1,6,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[4,2,5,3,6,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[4,2,6,1,5,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[4,2,6,3,5,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[4,3,5,1,6,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[4,3,5,2,6,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Matching statistic: St001330
Mp00064: Permutations —reverse⟶ Permutations
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 50%
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 50%
Values
[1,3,2] => [2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[2,3,1] => [1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,2,4,3] => [3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0
[1,3,4,2] => [2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0
[2,1,4,3] => [3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[2,3,4,1] => [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0
[3,1,4,2] => [2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[3,2,4,1] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[4,1,3,2] => [2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[4,2,3,1] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,2,3,5,4] => [4,5,3,2,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,2,4,5,3] => [3,5,4,2,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,3,2,5,4] => [4,5,2,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[1,3,4,5,2] => [2,5,4,3,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,4,2,5,3] => [3,5,2,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[1,4,3,5,2] => [2,5,3,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[1,5,2,4,3] => [3,4,2,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[1,5,3,4,2] => [2,4,3,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[2,1,3,5,4] => [4,5,3,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[2,1,4,5,3] => [3,5,4,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[2,3,1,5,4] => [4,5,1,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[2,3,4,5,1] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[2,4,1,5,3] => [3,5,1,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[2,4,3,5,1] => [1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[2,5,1,4,3] => [3,4,1,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[2,5,3,4,1] => [1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[3,1,2,5,4] => [4,5,2,1,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[3,1,4,5,2] => [2,5,4,1,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[3,2,1,5,4] => [4,5,1,2,3] => [2,3] => ([(2,4),(3,4)],5)
=> 2
[3,2,4,5,1] => [1,5,4,2,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[3,4,1,5,2] => [2,5,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[3,4,2,5,1] => [1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[3,5,1,4,2] => [2,4,1,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[3,5,2,4,1] => [1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[4,1,2,5,3] => [3,5,2,1,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[4,1,3,5,2] => [2,5,3,1,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[4,2,1,5,3] => [3,5,1,2,4] => [2,3] => ([(2,4),(3,4)],5)
=> 2
[4,2,3,5,1] => [1,5,3,2,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[4,3,1,5,2] => [2,5,1,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> 2
[4,3,2,5,1] => [1,5,2,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> 2
[4,5,1,3,2] => [2,3,1,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[4,5,2,3,1] => [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[5,1,2,4,3] => [3,4,2,1,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[5,1,3,4,2] => [2,4,3,1,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[5,2,1,4,3] => [3,4,1,2,5] => [2,3] => ([(2,4),(3,4)],5)
=> 2
[5,2,3,4,1] => [1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[5,3,1,4,2] => [2,4,1,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> 2
[5,3,2,4,1] => [1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> 2
[5,4,1,3,2] => [2,3,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> 2
[5,4,2,3,1] => [1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> 2
[1,2,4,3,6,5] => [5,6,3,4,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,2,5,3,6,4] => [4,6,3,5,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,2,5,4,6,3] => [3,6,4,5,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,2,6,3,5,4] => [4,5,3,6,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,2,6,4,5,3] => [3,5,4,6,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,3,2,4,6,5] => [5,6,4,2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,3,2,5,6,4] => [4,6,5,2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,3,4,2,6,5] => [5,6,2,4,3,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,3,5,2,6,4] => [4,6,2,5,3,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,3,5,4,6,2] => [2,6,4,5,3,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,3,6,2,5,4] => [4,5,2,6,3,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,3,6,4,5,2] => [2,5,4,6,3,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,4,2,3,6,5] => [5,6,3,2,4,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,4,2,5,6,3] => [3,6,5,2,4,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,4,3,2,6,5] => [5,6,2,3,4,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,4,3,5,6,2] => [2,6,5,3,4,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[4,3,2,1,6,5] => [5,6,1,2,3,4] => [2,4] => ([(3,5),(4,5)],6)
=> 2
[5,3,2,1,6,4] => [4,6,1,2,3,5] => [2,4] => ([(3,5),(4,5)],6)
=> 2
[5,4,2,1,6,3] => [3,6,1,2,4,5] => [2,4] => ([(3,5),(4,5)],6)
=> 2
[5,4,3,1,6,2] => [2,6,1,3,4,5] => [2,4] => ([(3,5),(4,5)],6)
=> 2
[5,4,3,2,6,1] => [1,6,2,3,4,5] => [2,4] => ([(3,5),(4,5)],6)
=> 2
[6,3,2,1,5,4] => [4,5,1,2,3,6] => [2,4] => ([(3,5),(4,5)],6)
=> 2
[6,4,2,1,5,3] => [3,5,1,2,4,6] => [2,4] => ([(3,5),(4,5)],6)
=> 2
[6,4,3,1,5,2] => [2,5,1,3,4,6] => [2,4] => ([(3,5),(4,5)],6)
=> 2
[6,4,3,2,5,1] => [1,5,2,3,4,6] => [2,4] => ([(3,5),(4,5)],6)
=> 2
[6,5,2,1,4,3] => [3,4,1,2,5,6] => [2,4] => ([(3,5),(4,5)],6)
=> 2
[6,5,3,1,4,2] => [2,4,1,3,5,6] => [2,4] => ([(3,5),(4,5)],6)
=> 2
[6,5,3,2,4,1] => [1,4,2,3,5,6] => [2,4] => ([(3,5),(4,5)],6)
=> 2
[6,5,4,1,3,2] => [2,3,1,4,5,6] => [2,4] => ([(3,5),(4,5)],6)
=> 2
[6,5,4,2,3,1] => [1,3,2,4,5,6] => [2,4] => ([(3,5),(4,5)],6)
=> 2
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St001632
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001632: Posets ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 50%
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001632: Posets ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 50%
Values
[1,3,2] => [1,3,2] => [3,1,2] => ([(1,2)],3)
=> ? = 2 - 2
[2,3,1] => [2,3,1] => [2,3,1] => ([(1,2)],3)
=> ? = 2 - 2
[1,2,4,3] => [1,4,3,2] => [4,3,1,2] => ([(2,3)],4)
=> ? = 0 - 2
[1,3,4,2] => [1,4,3,2] => [4,3,1,2] => ([(2,3)],4)
=> ? = 0 - 2
[2,1,4,3] => [2,1,4,3] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> ? = 2 - 2
[2,3,4,1] => [2,4,3,1] => [4,2,3,1] => ([(2,3)],4)
=> ? = 0 - 2
[3,1,4,2] => [3,1,4,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? = 2 - 2
[3,2,4,1] => [3,2,4,1] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> ? = 2 - 2
[4,1,3,2] => [4,1,3,2] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? = 2 - 2
[4,2,3,1] => [4,2,3,1] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ? = 2 - 2
[1,2,3,5,4] => [1,5,4,3,2] => [5,4,3,1,2] => ([(3,4)],5)
=> ? = 0 - 2
[1,2,4,5,3] => [1,5,4,3,2] => [5,4,3,1,2] => ([(3,4)],5)
=> ? = 0 - 2
[1,3,2,5,4] => [1,5,4,3,2] => [5,4,3,1,2] => ([(3,4)],5)
=> ? = 2 - 2
[1,3,4,5,2] => [1,5,4,3,2] => [5,4,3,1,2] => ([(3,4)],5)
=> ? = 0 - 2
[1,4,2,5,3] => [1,5,4,3,2] => [5,4,3,1,2] => ([(3,4)],5)
=> ? = 2 - 2
[1,4,3,5,2] => [1,5,4,3,2] => [5,4,3,1,2] => ([(3,4)],5)
=> ? = 2 - 2
[1,5,2,4,3] => [1,5,4,3,2] => [5,4,3,1,2] => ([(3,4)],5)
=> ? = 2 - 2
[1,5,3,4,2] => [1,5,4,3,2] => [5,4,3,1,2] => ([(3,4)],5)
=> ? = 2 - 2
[2,1,3,5,4] => [2,1,5,4,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> ? = 0 - 2
[2,1,4,5,3] => [2,1,5,4,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> ? = 0 - 2
[2,3,1,5,4] => [2,5,1,4,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 2 - 2
[2,3,4,5,1] => [2,5,4,3,1] => [5,4,2,3,1] => ([(3,4)],5)
=> ? = 0 - 2
[2,4,1,5,3] => [2,5,1,4,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 2 - 2
[2,4,3,5,1] => [2,5,4,3,1] => [5,4,2,3,1] => ([(3,4)],5)
=> ? = 2 - 2
[2,5,1,4,3] => [2,5,1,4,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 2 - 2
[2,5,3,4,1] => [2,5,4,3,1] => [5,4,2,3,1] => ([(3,4)],5)
=> ? = 2 - 2
[3,1,2,5,4] => [3,1,5,4,2] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ? = 0 - 2
[3,1,4,5,2] => [3,1,5,4,2] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ? = 0 - 2
[3,2,1,5,4] => [3,2,1,5,4] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2 - 2
[3,2,4,5,1] => [3,2,5,4,1] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ? = 0 - 2
[3,4,1,5,2] => [3,5,1,4,2] => [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> 0 = 2 - 2
[3,4,2,5,1] => [3,5,2,4,1] => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 2 - 2
[3,5,1,4,2] => [3,5,1,4,2] => [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> 0 = 2 - 2
[3,5,2,4,1] => [3,5,2,4,1] => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 2 - 2
[4,1,2,5,3] => [4,1,5,3,2] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ? = 0 - 2
[4,1,3,5,2] => [4,1,5,3,2] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ? = 0 - 2
[4,2,1,5,3] => [4,2,1,5,3] => [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> ? = 2 - 2
[4,2,3,5,1] => [4,2,5,3,1] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? = 0 - 2
[4,3,1,5,2] => [4,3,1,5,2] => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ? = 2 - 2
[4,3,2,5,1] => [4,3,2,5,1] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2 - 2
[4,5,1,3,2] => [4,5,1,3,2] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> 0 = 2 - 2
[4,5,2,3,1] => [4,5,2,3,1] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ? = 2 - 2
[5,1,2,4,3] => [5,1,4,3,2] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? = 0 - 2
[5,1,3,4,2] => [5,1,4,3,2] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? = 0 - 2
[5,2,1,4,3] => [5,2,1,4,3] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ? = 2 - 2
[5,2,3,4,1] => [5,2,4,3,1] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> ? = 0 - 2
[5,3,1,4,2] => [5,3,1,4,2] => [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> ? = 2 - 2
[5,3,2,4,1] => [5,3,2,4,1] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> ? = 2 - 2
[5,4,1,3,2] => [5,4,1,3,2] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> ? = 2 - 2
[5,4,2,3,1] => [5,4,2,3,1] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ? = 2 - 2
[1,2,4,3,6,5] => [1,6,5,4,3,2] => [6,5,4,3,1,2] => ([(4,5)],6)
=> ? = 2 - 2
[1,2,5,3,6,4] => [1,6,5,4,3,2] => [6,5,4,3,1,2] => ([(4,5)],6)
=> ? = 2 - 2
[1,2,5,4,6,3] => [1,6,5,4,3,2] => [6,5,4,3,1,2] => ([(4,5)],6)
=> ? = 2 - 2
[3,4,5,1,6,2] => [3,6,5,1,4,2] => [3,6,5,1,4,2] => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6)
=> 0 = 2 - 2
[3,4,6,1,5,2] => [3,6,5,1,4,2] => [3,6,5,1,4,2] => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6)
=> 0 = 2 - 2
[3,5,4,1,6,2] => [3,6,5,1,4,2] => [3,6,5,1,4,2] => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6)
=> 0 = 2 - 2
[3,5,6,1,4,2] => [3,6,5,1,4,2] => [3,6,5,1,4,2] => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6)
=> 0 = 2 - 2
[3,6,4,1,5,2] => [3,6,5,1,4,2] => [3,6,5,1,4,2] => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6)
=> 0 = 2 - 2
[3,6,5,1,4,2] => [3,6,5,1,4,2] => [3,6,5,1,4,2] => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6)
=> 0 = 2 - 2
[4,2,3,1,6,5] => [4,2,6,1,5,3] => [4,6,2,1,5,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> 0 = 2 - 2
[4,2,5,1,6,3] => [4,2,6,1,5,3] => [4,6,2,1,5,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> 0 = 2 - 2
[4,2,6,1,5,3] => [4,2,6,1,5,3] => [4,6,2,1,5,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> 0 = 2 - 2
[4,3,5,1,6,2] => [4,3,6,1,5,2] => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> 0 = 2 - 2
[4,3,6,1,5,2] => [4,3,6,1,5,2] => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> 0 = 2 - 2
[4,5,2,1,6,3] => [4,6,2,1,5,3] => [4,6,2,5,1,3] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> 0 = 2 - 2
[4,6,2,1,5,3] => [4,6,2,1,5,3] => [4,6,2,5,1,3] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> 0 = 2 - 2
[5,2,3,1,6,4] => [5,2,6,1,4,3] => [5,2,6,1,4,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 0 = 2 - 2
[5,2,4,1,6,3] => [5,2,6,1,4,3] => [5,2,6,1,4,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 0 = 2 - 2
[5,2,6,1,4,3] => [5,2,6,1,4,3] => [5,2,6,1,4,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 0 = 2 - 2
[5,3,4,1,6,2] => [5,3,6,1,4,2] => [3,5,6,1,4,2] => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> 0 = 2 - 2
[5,3,6,1,4,2] => [5,3,6,1,4,2] => [3,5,6,1,4,2] => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> 0 = 2 - 2
[5,4,6,1,3,2] => [5,4,6,1,3,2] => [5,1,4,6,3,2] => ([(0,5),(1,2),(1,3),(1,4),(4,5)],6)
=> 0 = 2 - 2
[5,6,2,1,4,3] => [5,6,2,1,4,3] => [5,2,6,4,1,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5)],6)
=> 0 = 2 - 2
[5,6,4,1,3,2] => [5,6,4,1,3,2] => [5,1,6,4,3,2] => ([(0,5),(1,2),(1,3),(1,4),(1,5)],6)
=> 0 = 2 - 2
[6,3,4,1,5,2] => [6,3,5,1,4,2] => [3,6,1,5,4,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6)
=> 0 = 2 - 2
[6,3,5,1,4,2] => [6,3,5,1,4,2] => [3,6,1,5,4,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6)
=> 0 = 2 - 2
[6,4,5,1,3,2] => [6,4,5,1,3,2] => [4,1,6,5,3,2] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6)
=> 0 = 2 - 2
Description
The number of indecomposable injective modules I with dimExt1(I,A)=1 for the incidence algebra A of a poset.
The following 4 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000181The number of connected components of the Hasse diagram for the poset. St000635The number of strictly order preserving maps of a poset into itself. St001890The maximum magnitude of the Möbius function of a poset. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!