Identifier
Values
[1,2] => 0 => 0 => ([(0,1)],2) => 1
[2,1] => 1 => 1 => ([(0,1)],2) => 1
[1,2,3] => 00 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[1,3,2] => 01 => 00 => ([(0,2),(2,1)],3) => 1
[2,1,3] => 10 => 11 => ([(0,2),(2,1)],3) => 1
[2,3,1] => 01 => 00 => ([(0,2),(2,1)],3) => 1
[3,1,2] => 10 => 11 => ([(0,2),(2,1)],3) => 1
[3,2,1] => 11 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[1,2,3,4] => 000 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 0
[1,2,4,3] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[1,3,2,4] => 010 => 000 => ([(0,3),(2,1),(3,2)],4) => 1
[1,3,4,2] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[1,4,2,3] => 010 => 000 => ([(0,3),(2,1),(3,2)],4) => 1
[1,4,3,2] => 011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[2,1,3,4] => 100 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[2,1,4,3] => 101 => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[2,3,1,4] => 010 => 000 => ([(0,3),(2,1),(3,2)],4) => 1
[2,3,4,1] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[2,4,1,3] => 010 => 000 => ([(0,3),(2,1),(3,2)],4) => 1
[2,4,3,1] => 011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[3,1,2,4] => 100 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[3,1,4,2] => 101 => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[3,2,1,4] => 110 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[3,2,4,1] => 101 => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[3,4,1,2] => 010 => 000 => ([(0,3),(2,1),(3,2)],4) => 1
[3,4,2,1] => 011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[4,1,2,3] => 100 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[4,1,3,2] => 101 => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[4,2,1,3] => 110 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[4,2,3,1] => 101 => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[4,3,1,2] => 110 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[4,3,2,1] => 111 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 0
[1,3,2,5,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,4,2,5,3] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,4,3,5,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,5,2,4,3] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,5,3,4,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,1,4,3,5] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,1,5,3,4] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,3,1,5,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,4,1,5,3] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,4,3,5,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,5,1,4,3] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,5,3,4,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,1,4,2,5] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,1,5,2,4] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,2,4,1,5] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,2,5,1,4] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,4,1,5,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,4,2,5,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,5,1,4,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,5,2,4,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,1,3,2,5] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,1,5,2,3] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,2,3,1,5] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,2,5,1,3] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,3,5,1,2] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,5,1,3,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,5,2,3,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[5,1,3,2,4] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[5,1,4,2,3] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[5,2,3,1,4] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[5,2,4,1,3] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[5,3,4,1,2] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,3,2,5,4,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,3,2,6,4,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,4,2,5,3,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,4,2,6,3,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,4,3,5,2,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,4,3,6,2,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,5,2,4,3,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,5,2,6,3,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,5,3,4,2,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,5,3,6,2,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,5,4,6,2,3] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,6,2,4,3,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,6,2,5,3,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,6,3,4,2,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,6,3,5,2,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,6,4,5,2,3] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,1,4,3,6,5] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,1,5,3,6,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,1,5,4,6,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,1,6,3,5,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,1,6,4,5,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,3,1,5,4,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,3,1,6,4,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,4,1,5,3,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,4,1,6,3,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,4,3,5,1,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,4,3,6,1,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,5,1,4,3,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,5,1,6,3,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,5,3,4,1,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,5,3,6,1,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,5,4,6,1,3] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,6,1,4,3,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,6,1,5,3,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,6,3,4,1,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,6,3,5,1,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,6,4,5,1,3] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
>>> Load all 186 entries. <<<
[3,1,4,2,6,5] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,1,5,2,6,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,1,5,4,6,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,1,6,2,5,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,1,6,4,5,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,2,4,1,6,5] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,2,5,1,6,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,2,5,4,6,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,2,6,1,5,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,2,6,4,5,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,4,1,5,2,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,4,1,6,2,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,4,2,5,1,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,4,2,6,1,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,5,1,4,2,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,5,1,6,2,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,5,2,4,1,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,5,2,6,1,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,5,4,6,1,2] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,6,1,4,2,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,6,1,5,2,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,6,2,4,1,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,6,2,5,1,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,6,4,5,1,2] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,1,3,2,6,5] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,1,5,2,6,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,1,5,3,6,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,1,6,2,5,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,1,6,3,5,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,2,3,1,6,5] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,2,5,1,6,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,2,5,3,6,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,2,6,1,5,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,2,6,3,5,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,3,5,1,6,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,3,5,2,6,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,3,6,1,5,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,3,6,2,5,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,5,1,3,2,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,5,1,6,2,3] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,5,2,3,1,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,5,2,6,1,3] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,5,3,6,1,2] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,6,1,3,2,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,6,1,5,2,3] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,6,2,3,1,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,6,2,5,1,3] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,6,3,5,1,2] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,1,3,2,6,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,1,4,2,6,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,1,4,3,6,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,1,6,2,4,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,1,6,3,4,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,2,3,1,6,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,2,4,1,6,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,2,4,3,6,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,2,6,1,4,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,2,6,3,4,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,3,4,1,6,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,3,4,2,6,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,3,6,1,4,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,3,6,2,4,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,4,6,1,3,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,4,6,2,3,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,6,1,3,2,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,6,1,4,2,3] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,6,2,3,1,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,6,2,4,1,3] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,6,3,4,1,2] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,1,3,2,5,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,1,4,2,5,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,1,4,3,5,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,1,5,2,4,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,1,5,3,4,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,2,3,1,5,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,2,4,1,5,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,2,4,3,5,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,2,5,1,4,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,2,5,3,4,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,3,4,1,5,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,3,4,2,5,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,3,5,1,4,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,3,5,2,4,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,4,5,1,3,2] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,4,5,2,3,1] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The alternating sum of the coefficients of the Poincare polynomial of the poset cone.
For a poset $P$ on $\{1,\dots,n\}$, let $\mathcal K_P = \{\vec x\in\mathbb R^n| x_i < x_j \text{ for } i < _P j\}$. Furthermore let $\mathcal L(\mathcal A)$ be the intersection lattice of the braid arrangement $A_{n-1}$ and let $\mathcal L^{int} = \{ X \in \mathcal L(\mathcal A) | X \cap \mathcal K_P \neq \emptyset \}$.
Then the Poincare polynomial of the poset cone is $Poin(t) = \sum_{X\in\mathcal L^{int}} |\mu(0, X)| t^{codim X}$.
This statistic records its $Poin(-1)$.
Map
descent word
Description
The descent positions of a permutation as a binary word.
For a permutation $\pi$ of $n$ letters and each $1\leq i\leq n-1$ such that $\pi(i) > \pi(i+1)$ we set $w_i=1$, otherwise $w_i=0$.
Thus, the length of the word is one less the size of the permutation. In particular, the descent word is undefined for the empty permutation.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.
Map
alternating inverse
Description
Sends a binary word $w_1\cdots w_m$ to the binary word $v_1 \cdots v_m$ with $v_i = w_i$ if $i$ is odd and $v_i = 1 - w_i$ if $i$ is even.
This map is used in [1], see Definitions 3.2 and 5.1.