Identifier
-
Mp00109:
Permutations
—descent word⟶
Binary words
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St001534: Posets ⟶ ℤ
Values
[1,2] => 0 => 0 => ([(0,1)],2) => 1
[2,1] => 1 => 1 => ([(0,1)],2) => 1
[1,2,3] => 00 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[1,3,2] => 01 => 00 => ([(0,2),(2,1)],3) => 1
[2,1,3] => 10 => 11 => ([(0,2),(2,1)],3) => 1
[2,3,1] => 01 => 00 => ([(0,2),(2,1)],3) => 1
[3,1,2] => 10 => 11 => ([(0,2),(2,1)],3) => 1
[3,2,1] => 11 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[1,2,3,4] => 000 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 0
[1,2,4,3] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[1,3,2,4] => 010 => 000 => ([(0,3),(2,1),(3,2)],4) => 1
[1,3,4,2] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[1,4,2,3] => 010 => 000 => ([(0,3),(2,1),(3,2)],4) => 1
[1,4,3,2] => 011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[2,1,3,4] => 100 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[2,1,4,3] => 101 => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[2,3,1,4] => 010 => 000 => ([(0,3),(2,1),(3,2)],4) => 1
[2,3,4,1] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[2,4,1,3] => 010 => 000 => ([(0,3),(2,1),(3,2)],4) => 1
[2,4,3,1] => 011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[3,1,2,4] => 100 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[3,1,4,2] => 101 => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[3,2,1,4] => 110 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[3,2,4,1] => 101 => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[3,4,1,2] => 010 => 000 => ([(0,3),(2,1),(3,2)],4) => 1
[3,4,2,1] => 011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[4,1,2,3] => 100 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[4,1,3,2] => 101 => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[4,2,1,3] => 110 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[4,2,3,1] => 101 => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[4,3,1,2] => 110 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[4,3,2,1] => 111 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 0
[1,3,2,5,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,4,2,5,3] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,4,3,5,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,5,2,4,3] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,5,3,4,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,1,4,3,5] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,1,5,3,4] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,3,1,5,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,4,1,5,3] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,4,3,5,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,5,1,4,3] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,5,3,4,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,1,4,2,5] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,1,5,2,4] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,2,4,1,5] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,2,5,1,4] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,4,1,5,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,4,2,5,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,5,1,4,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,5,2,4,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,1,3,2,5] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,1,5,2,3] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,2,3,1,5] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,2,5,1,3] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,3,5,1,2] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,5,1,3,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,5,2,3,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[5,1,3,2,4] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[5,1,4,2,3] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[5,2,3,1,4] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[5,2,4,1,3] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[5,3,4,1,2] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,3,2,5,4,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,3,2,6,4,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,4,2,5,3,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,4,2,6,3,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,4,3,5,2,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,4,3,6,2,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,5,2,4,3,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,5,2,6,3,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,5,3,4,2,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,5,3,6,2,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,5,4,6,2,3] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,6,2,4,3,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,6,2,5,3,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,6,3,4,2,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,6,3,5,2,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,6,4,5,2,3] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,1,4,3,6,5] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,1,5,3,6,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,1,5,4,6,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,1,6,3,5,4] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,1,6,4,5,3] => 10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,3,1,5,4,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,3,1,6,4,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,4,1,5,3,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,4,1,6,3,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,4,3,5,1,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,4,3,6,1,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,5,1,4,3,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,5,1,6,3,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,5,3,4,1,6] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,5,3,6,1,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,5,4,6,1,3] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,6,1,4,3,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,6,1,5,3,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,6,3,4,1,5] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,6,3,5,1,4] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,6,4,5,1,3] => 01010 => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
>>> Load all 186 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The alternating sum of the coefficients of the Poincare polynomial of the poset cone.
For a poset $P$ on $\{1,\dots,n\}$, let $\mathcal K_P = \{\vec x\in\mathbb R^n| x_i < x_j \text{ for } i < _P j\}$. Furthermore let $\mathcal L(\mathcal A)$ be the intersection lattice of the braid arrangement $A_{n-1}$ and let $\mathcal L^{int} = \{ X \in \mathcal L(\mathcal A) | X \cap \mathcal K_P \neq \emptyset \}$.
Then the Poincare polynomial of the poset cone is $Poin(t) = \sum_{X\in\mathcal L^{int}} |\mu(0, X)| t^{codim X}$.
This statistic records its $Poin(-1)$.
For a poset $P$ on $\{1,\dots,n\}$, let $\mathcal K_P = \{\vec x\in\mathbb R^n| x_i < x_j \text{ for } i < _P j\}$. Furthermore let $\mathcal L(\mathcal A)$ be the intersection lattice of the braid arrangement $A_{n-1}$ and let $\mathcal L^{int} = \{ X \in \mathcal L(\mathcal A) | X \cap \mathcal K_P \neq \emptyset \}$.
Then the Poincare polynomial of the poset cone is $Poin(t) = \sum_{X\in\mathcal L^{int}} |\mu(0, X)| t^{codim X}$.
This statistic records its $Poin(-1)$.
Map
descent word
Description
The descent positions of a permutation as a binary word.
For a permutation $\pi$ of $n$ letters and each $1\leq i\leq n-1$ such that $\pi(i) > \pi(i+1)$ we set $w_i=1$, otherwise $w_i=0$.
Thus, the length of the word is one less the size of the permutation. In particular, the descent word is undefined for the empty permutation.
For a permutation $\pi$ of $n$ letters and each $1\leq i\leq n-1$ such that $\pi(i) > \pi(i+1)$ we set $w_i=1$, otherwise $w_i=0$.
Thus, the length of the word is one less the size of the permutation. In particular, the descent word is undefined for the empty permutation.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.
Map
alternating inverse
Description
Sends a binary word $w_1\cdots w_m$ to the binary word $v_1 \cdots v_m$ with $v_i = w_i$ if $i$ is odd and $v_i = 1 - w_i$ if $i$ is even.
This map is used in [1], see Definitions 3.2 and 5.1.
This map is used in [1], see Definitions 3.2 and 5.1.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!