searching the database
Your data matches 84 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001541
Mp00252: Permutations —restriction⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001541: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001541: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2,3] => [1,2] => [1,1]
=> [1]
=> 0
[1,3,2] => [1,2] => [1,1]
=> [1]
=> 0
[3,1,2] => [1,2] => [1,1]
=> [1]
=> 0
[1,2,3,4] => [1,2,3] => [1,1,1]
=> [1,1]
=> 0
[1,2,4,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 0
[1,3,2,4] => [1,3,2] => [2,1]
=> [1]
=> 0
[1,3,4,2] => [1,3,2] => [2,1]
=> [1]
=> 0
[1,4,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 0
[1,4,3,2] => [1,3,2] => [2,1]
=> [1]
=> 0
[2,1,3,4] => [2,1,3] => [2,1]
=> [1]
=> 0
[2,1,4,3] => [2,1,3] => [2,1]
=> [1]
=> 0
[2,4,1,3] => [2,1,3] => [2,1]
=> [1]
=> 0
[3,2,1,4] => [3,2,1] => [2,1]
=> [1]
=> 0
[3,2,4,1] => [3,2,1] => [2,1]
=> [1]
=> 0
[3,4,2,1] => [3,2,1] => [2,1]
=> [1]
=> 0
[4,1,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 0
[4,1,3,2] => [1,3,2] => [2,1]
=> [1]
=> 0
[4,2,1,3] => [2,1,3] => [2,1]
=> [1]
=> 0
[4,3,2,1] => [3,2,1] => [2,1]
=> [1]
=> 0
[1,2,3,4,5] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,2,3,5,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,2,4,3,5] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 0
[1,2,4,5,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 0
[1,2,5,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,2,5,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 0
[1,3,2,4,5] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 0
[1,3,2,5,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 0
[1,3,4,2,5] => [1,3,4,2] => [3,1]
=> [1]
=> 0
[1,3,4,5,2] => [1,3,4,2] => [3,1]
=> [1]
=> 0
[1,3,5,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 0
[1,3,5,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> 0
[1,4,2,3,5] => [1,4,2,3] => [3,1]
=> [1]
=> 0
[1,4,2,5,3] => [1,4,2,3] => [3,1]
=> [1]
=> 0
[1,4,3,2,5] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 0
[1,4,3,5,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 0
[1,4,5,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> 0
[1,4,5,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 0
[1,5,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,5,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 0
[1,5,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 0
[1,5,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> 0
[1,5,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> 0
[1,5,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 0
[2,1,3,4,5] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 0
[2,1,3,5,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 0
[2,1,4,3,5] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,4,5,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,5,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 0
[2,1,5,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,3,1,4,5] => [2,3,1,4] => [3,1]
=> [1]
=> 0
Description
The Gini index of an integer partition.
As discussed in [1], this statistic is equal to [[St000567]] applied to the conjugate partition.
Matching statistic: St001301
(load all 80 compositions to match this statistic)
(load all 80 compositions to match this statistic)
Mp00088: Permutations —Kreweras complement⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001301: Posets ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 7%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001301: Posets ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 7%
Values
[1,2,3] => [2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0
[1,3,2] => [2,1,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0
[3,1,2] => [3,1,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,2,3,4] => [2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,4,3] => [2,3,1,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,2,4] => [2,4,3,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0
[1,3,4,2] => [2,1,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[1,4,2,3] => [2,4,1,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0
[1,4,3,2] => [2,1,4,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[2,1,3,4] => [3,2,4,1] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 0
[2,1,4,3] => [3,2,1,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 0
[2,4,1,3] => [4,2,1,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0
[3,2,1,4] => [4,3,2,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 0
[3,2,4,1] => [1,3,2,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[3,4,2,1] => [1,4,2,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0
[4,1,2,3] => [3,4,1,2] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 0
[4,1,3,2] => [3,1,4,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 0
[4,2,1,3] => [4,3,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 0
[4,3,2,1] => [1,4,3,2] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0
[1,2,3,4,5] => [2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,3,5,4] => [2,3,4,1,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,3,5] => [2,3,5,4,1] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[1,2,4,5,3] => [2,3,1,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,5,3,4] => [2,3,5,1,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[1,2,5,4,3] => [2,3,1,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,3,2,4,5] => [2,4,3,5,1] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[1,3,2,5,4] => [2,4,3,1,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[1,3,4,2,5] => [2,5,3,4,1] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[1,3,4,5,2] => [2,1,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,3,5,2,4] => [2,5,3,1,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0
[1,3,5,4,2] => [2,1,3,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,4,2,3,5] => [2,4,5,3,1] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[1,4,2,5,3] => [2,4,1,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[1,4,3,2,5] => [2,5,4,3,1] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[1,4,3,5,2] => [2,1,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,4,5,2,3] => [2,5,1,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0
[1,4,5,3,2] => [2,1,5,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[1,5,2,3,4] => [2,4,5,1,3] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[1,5,2,4,3] => [2,4,1,5,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[1,5,3,2,4] => [2,5,4,1,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[1,5,3,4,2] => [2,1,4,5,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,5,4,2,3] => [2,5,1,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[1,5,4,3,2] => [2,1,5,4,3] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[2,1,3,4,5] => [3,2,4,5,1] => [1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[2,1,3,5,4] => [3,2,4,1,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0
[2,1,4,3,5] => [3,2,5,4,1] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 1
[2,1,4,5,3] => [3,2,1,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1
[2,1,5,3,4] => [3,2,5,1,4] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0
[2,1,5,4,3] => [3,2,1,5,4] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1
[2,3,1,4,5] => [4,2,3,5,1] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 0
[2,3,1,5,4] => [4,2,3,1,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0
[2,3,5,1,4] => [5,2,3,1,4] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0
[2,4,3,1,5] => [5,2,4,3,1] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[2,4,3,5,1] => [1,2,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,4,5,3,1] => [1,2,5,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[2,5,1,3,4] => [4,2,5,1,3] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0
[2,5,1,4,3] => [4,2,1,5,3] => [1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1
[2,5,3,1,4] => [5,2,4,1,3] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0
[2,5,4,3,1] => [1,2,5,4,3] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[3,1,2,4,5] => [3,4,2,5,1] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[3,1,2,5,4] => [3,4,2,1,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[3,1,5,2,4] => [3,5,2,1,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 0
[3,2,1,4,5] => [4,3,2,5,1] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 0
[3,2,1,5,4] => [4,3,2,1,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0
[3,2,4,1,5] => [5,3,2,4,1] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[3,2,4,5,1] => [1,3,2,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[3,2,5,1,4] => [5,3,2,1,4] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0
[3,2,5,4,1] => [1,3,2,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[3,4,1,2,5] => [4,5,2,3,1] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1
[3,4,1,5,2] => [4,1,2,3,5] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1
[3,4,5,1,2] => [5,1,2,3,4] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
[3,5,1,2,4] => [4,5,2,1,3] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 0
[3,5,2,1,4] => [5,4,2,1,3] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0
[3,5,2,4,1] => [1,4,2,5,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0
[3,5,4,1,2] => [5,1,2,4,3] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1
[4,1,3,2,5] => [3,5,4,2,1] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0
[4,1,3,5,2] => [3,1,4,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0
[4,1,5,3,2] => [3,1,5,2,4] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0
[4,2,1,3,5] => [4,3,5,2,1] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0
[4,2,1,5,3] => [4,3,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0
[4,2,3,5,1] => [1,3,4,2,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,3,4,5,6] => [2,3,4,5,6,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,3,4,6,5] => [2,3,4,5,1,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,3,5,6,4] => [2,3,4,1,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,3,6,5,4] => [2,3,4,1,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,4,5,6,3] => [2,3,1,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,4,6,5,3] => [2,3,1,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,5,4,6,3] => [2,3,1,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,6,4,5,3] => [2,3,1,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,3,4,5,6,2] => [2,1,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,3,4,6,5,2] => [2,1,3,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,3,5,4,6,2] => [2,1,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,3,6,4,5,2] => [2,1,3,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,4,3,5,6,2] => [2,1,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,4,3,6,5,2] => [2,1,4,3,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,5,3,4,6,2] => [2,1,4,5,3,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,6,3,4,5,2] => [2,1,4,5,6,3] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[2,3,5,4,6,1] => [1,2,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[2,4,3,5,6,1] => [1,2,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[2,4,3,6,5,1] => [1,2,4,3,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
Description
The first Betti number of the order complex associated with the poset.
The order complex of a poset is the simplicial complex whose faces are the chains of the poset. This statistic is the rank of the first homology group of the order complex.
Matching statistic: St000908
(load all 80 compositions to match this statistic)
(load all 80 compositions to match this statistic)
Mp00088: Permutations —Kreweras complement⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000908: Posets ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 7%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000908: Posets ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 7%
Values
[1,2,3] => [2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,3,2] => [2,1,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[3,1,2] => [3,1,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,3,4] => [2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,3] => [2,3,1,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2,4] => [2,4,3,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,3,4,2] => [2,1,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,2,3] => [2,4,1,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,4,3,2] => [2,1,4,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1,3,4] => [3,2,4,1] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[2,1,4,3] => [3,2,1,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[2,4,1,3] => [4,2,1,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[3,2,1,4] => [4,3,2,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[3,2,4,1] => [1,3,2,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,4,2,1] => [1,4,2,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[4,1,2,3] => [3,4,1,2] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[4,1,3,2] => [3,1,4,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[4,2,1,3] => [4,3,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[4,3,2,1] => [1,4,3,2] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,2,3,4,5] => [2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,5,4] => [2,3,4,1,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,3,5] => [2,3,5,4,1] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[1,2,4,5,3] => [2,3,1,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,5,3,4] => [2,3,5,1,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[1,2,5,4,3] => [2,3,1,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,2,4,5] => [2,4,3,5,1] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,3,2,5,4] => [2,4,3,1,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,3,4,2,5] => [2,5,3,4,1] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,3,4,5,2] => [2,1,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,5,2,4] => [2,5,3,1,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 1
[1,3,5,4,2] => [2,1,3,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,4,2,3,5] => [2,4,5,3,1] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,4,2,5,3] => [2,4,1,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,4,3,2,5] => [2,5,4,3,1] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,4,3,5,2] => [2,1,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,4,5,2,3] => [2,5,1,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 1
[1,4,5,3,2] => [2,1,5,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[1,5,2,3,4] => [2,4,5,1,3] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,5,2,4,3] => [2,4,1,5,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,5,3,2,4] => [2,5,4,1,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,5,3,4,2] => [2,1,4,5,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,5,4,2,3] => [2,5,1,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,5,4,3,2] => [2,1,5,4,3] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[2,1,3,4,5] => [3,2,4,5,1] => [1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[2,1,3,5,4] => [3,2,4,1,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[2,1,4,3,5] => [3,2,5,4,1] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 1 + 1
[2,1,4,5,3] => [3,2,1,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[2,1,5,3,4] => [3,2,5,1,4] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0 + 1
[2,1,5,4,3] => [3,2,1,5,4] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[2,3,1,4,5] => [4,2,3,5,1] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 0 + 1
[2,3,1,5,4] => [4,2,3,1,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[2,3,5,1,4] => [5,2,3,1,4] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[2,4,3,1,5] => [5,2,4,3,1] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[2,4,3,5,1] => [1,2,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,4,5,3,1] => [1,2,5,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[2,5,1,3,4] => [4,2,5,1,3] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[2,5,1,4,3] => [4,2,1,5,3] => [1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
[2,5,3,1,4] => [5,2,4,1,3] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0 + 1
[2,5,4,3,1] => [1,2,5,4,3] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[3,1,2,4,5] => [3,4,2,5,1] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,1,2,5,4] => [3,4,2,1,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,1,5,2,4] => [3,5,2,1,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 0 + 1
[3,2,1,4,5] => [4,3,2,5,1] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 0 + 1
[3,2,1,5,4] => [4,3,2,1,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[3,2,4,1,5] => [5,3,2,4,1] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,2,4,5,1] => [1,3,2,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,2,5,1,4] => [5,3,2,1,4] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[3,2,5,4,1] => [1,3,2,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,4,1,2,5] => [4,5,2,3,1] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
[3,4,1,5,2] => [4,1,2,3,5] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
[3,4,5,1,2] => [5,1,2,3,4] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[3,5,1,2,4] => [4,5,2,1,3] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 0 + 1
[3,5,2,1,4] => [5,4,2,1,3] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0 + 1
[3,5,2,4,1] => [1,4,2,5,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,5,4,1,2] => [5,1,2,4,3] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1 + 1
[4,1,3,2,5] => [3,5,4,2,1] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[4,1,3,5,2] => [3,1,4,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[4,1,5,3,2] => [3,1,5,2,4] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0 + 1
[4,2,1,3,5] => [4,3,5,2,1] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[4,2,1,5,3] => [4,3,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[4,2,3,5,1] => [1,3,4,2,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,4,5,6] => [2,3,4,5,6,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [2,3,4,5,1,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,5,6,4] => [2,3,4,1,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,6,5,4] => [2,3,4,1,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,5,6,3] => [2,3,1,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,6,5,3] => [2,3,1,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,5,4,6,3] => [2,3,1,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,6,4,5,3] => [2,3,1,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,4,5,6,2] => [2,1,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,4,6,5,2] => [2,1,3,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,5,4,6,2] => [2,1,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,6,4,5,2] => [2,1,3,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,4,3,5,6,2] => [2,1,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,4,3,6,5,2] => [2,1,4,3,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,5,3,4,6,2] => [2,1,4,5,3,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,6,3,4,5,2] => [2,1,4,5,6,3] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,3,5,4,6,1] => [1,2,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,4,3,5,6,1] => [1,2,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,4,3,6,5,1] => [1,2,4,3,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
Description
The length of the shortest maximal antichain in a poset.
Matching statistic: St000914
(load all 80 compositions to match this statistic)
(load all 80 compositions to match this statistic)
Mp00088: Permutations —Kreweras complement⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000914: Posets ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 7%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000914: Posets ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 7%
Values
[1,2,3] => [2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,3,2] => [2,1,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[3,1,2] => [3,1,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,3,4] => [2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,3] => [2,3,1,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2,4] => [2,4,3,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,3,4,2] => [2,1,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,2,3] => [2,4,1,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,4,3,2] => [2,1,4,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1,3,4] => [3,2,4,1] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[2,1,4,3] => [3,2,1,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[2,4,1,3] => [4,2,1,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[3,2,1,4] => [4,3,2,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[3,2,4,1] => [1,3,2,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,4,2,1] => [1,4,2,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[4,1,2,3] => [3,4,1,2] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[4,1,3,2] => [3,1,4,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[4,2,1,3] => [4,3,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[4,3,2,1] => [1,4,3,2] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,2,3,4,5] => [2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,5,4] => [2,3,4,1,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,3,5] => [2,3,5,4,1] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[1,2,4,5,3] => [2,3,1,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,5,3,4] => [2,3,5,1,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[1,2,5,4,3] => [2,3,1,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,2,4,5] => [2,4,3,5,1] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,3,2,5,4] => [2,4,3,1,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,3,4,2,5] => [2,5,3,4,1] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,3,4,5,2] => [2,1,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,5,2,4] => [2,5,3,1,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 1
[1,3,5,4,2] => [2,1,3,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,4,2,3,5] => [2,4,5,3,1] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,4,2,5,3] => [2,4,1,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,4,3,2,5] => [2,5,4,3,1] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,4,3,5,2] => [2,1,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,4,5,2,3] => [2,5,1,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 1
[1,4,5,3,2] => [2,1,5,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[1,5,2,3,4] => [2,4,5,1,3] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,5,2,4,3] => [2,4,1,5,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,5,3,2,4] => [2,5,4,1,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,5,3,4,2] => [2,1,4,5,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,5,4,2,3] => [2,5,1,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,5,4,3,2] => [2,1,5,4,3] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[2,1,3,4,5] => [3,2,4,5,1] => [1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[2,1,3,5,4] => [3,2,4,1,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[2,1,4,3,5] => [3,2,5,4,1] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 1 + 1
[2,1,4,5,3] => [3,2,1,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[2,1,5,3,4] => [3,2,5,1,4] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0 + 1
[2,1,5,4,3] => [3,2,1,5,4] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
[2,3,1,4,5] => [4,2,3,5,1] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 0 + 1
[2,3,1,5,4] => [4,2,3,1,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[2,3,5,1,4] => [5,2,3,1,4] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[2,4,3,1,5] => [5,2,4,3,1] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[2,4,3,5,1] => [1,2,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,4,5,3,1] => [1,2,5,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[2,5,1,3,4] => [4,2,5,1,3] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[2,5,1,4,3] => [4,2,1,5,3] => [1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
[2,5,3,1,4] => [5,2,4,1,3] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0 + 1
[2,5,4,3,1] => [1,2,5,4,3] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[3,1,2,4,5] => [3,4,2,5,1] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,1,2,5,4] => [3,4,2,1,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,1,5,2,4] => [3,5,2,1,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 0 + 1
[3,2,1,4,5] => [4,3,2,5,1] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 0 + 1
[3,2,1,5,4] => [4,3,2,1,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[3,2,4,1,5] => [5,3,2,4,1] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,2,4,5,1] => [1,3,2,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,2,5,1,4] => [5,3,2,1,4] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[3,2,5,4,1] => [1,3,2,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,4,1,2,5] => [4,5,2,3,1] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
[3,4,1,5,2] => [4,1,2,3,5] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
[3,4,5,1,2] => [5,1,2,3,4] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[3,5,1,2,4] => [4,5,2,1,3] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 0 + 1
[3,5,2,1,4] => [5,4,2,1,3] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0 + 1
[3,5,2,4,1] => [1,4,2,5,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,5,4,1,2] => [5,1,2,4,3] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1 + 1
[4,1,3,2,5] => [3,5,4,2,1] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[4,1,3,5,2] => [3,1,4,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[4,1,5,3,2] => [3,1,5,2,4] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0 + 1
[4,2,1,3,5] => [4,3,5,2,1] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[4,2,1,5,3] => [4,3,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[4,2,3,5,1] => [1,3,4,2,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,4,5,6] => [2,3,4,5,6,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [2,3,4,5,1,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,5,6,4] => [2,3,4,1,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,6,5,4] => [2,3,4,1,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,5,6,3] => [2,3,1,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,6,5,3] => [2,3,1,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,5,4,6,3] => [2,3,1,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,6,4,5,3] => [2,3,1,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,4,5,6,2] => [2,1,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,4,6,5,2] => [2,1,3,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,5,4,6,2] => [2,1,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,3,6,4,5,2] => [2,1,3,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,4,3,5,6,2] => [2,1,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,4,3,6,5,2] => [2,1,4,3,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,5,3,4,6,2] => [2,1,4,5,3,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,6,3,4,5,2] => [2,1,4,5,6,3] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,3,5,4,6,1] => [1,2,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,4,3,5,6,1] => [1,2,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[2,4,3,6,5,1] => [1,2,4,3,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
Description
The sum of the values of the Möbius function of a poset.
The Möbius function μ of a finite poset is defined as
μ(x,y)={1if x=y−∑z:x≤z<yμ(x,z)for x<y0otherwise.
Since μ(x,y)=0 whenever x≰, this statistic is
\sum_{x\leq y} \mu(x,y).
If the poset has a minimal or a maximal element, then the definition implies immediately that the statistic equals 1. Moreover, the statistic equals the sum of the statistics of the connected components.
This statistic is also called the magnitude of a poset.
Matching statistic: St001634
(load all 80 compositions to match this statistic)
(load all 80 compositions to match this statistic)
Mp00088: Permutations —Kreweras complement⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001634: Posets ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 7%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001634: Posets ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 7%
Values
[1,2,3] => [2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> -1 = 0 - 1
[1,3,2] => [2,1,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> -1 = 0 - 1
[3,1,2] => [3,1,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> -1 = 0 - 1
[1,2,3,4] => [2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> -1 = 0 - 1
[1,2,4,3] => [2,3,1,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> -1 = 0 - 1
[1,3,2,4] => [2,4,3,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> -1 = 0 - 1
[1,3,4,2] => [2,1,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> -1 = 0 - 1
[1,4,2,3] => [2,4,1,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> -1 = 0 - 1
[1,4,3,2] => [2,1,4,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> -1 = 0 - 1
[2,1,3,4] => [3,2,4,1] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> -1 = 0 - 1
[2,1,4,3] => [3,2,1,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> -1 = 0 - 1
[2,4,1,3] => [4,2,1,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> -1 = 0 - 1
[3,2,1,4] => [4,3,2,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> -1 = 0 - 1
[3,2,4,1] => [1,3,2,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> -1 = 0 - 1
[3,4,2,1] => [1,4,2,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> -1 = 0 - 1
[4,1,2,3] => [3,4,1,2] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> -1 = 0 - 1
[4,1,3,2] => [3,1,4,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> -1 = 0 - 1
[4,2,1,3] => [4,3,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> -1 = 0 - 1
[4,3,2,1] => [1,4,3,2] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> -1 = 0 - 1
[1,2,3,4,5] => [2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> -1 = 0 - 1
[1,2,3,5,4] => [2,3,4,1,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> -1 = 0 - 1
[1,2,4,3,5] => [2,3,5,4,1] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 - 1
[1,2,4,5,3] => [2,3,1,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> -1 = 0 - 1
[1,2,5,3,4] => [2,3,5,1,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 - 1
[1,2,5,4,3] => [2,3,1,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> -1 = 0 - 1
[1,3,2,4,5] => [2,4,3,5,1] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 - 1
[1,3,2,5,4] => [2,4,3,1,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 - 1
[1,3,4,2,5] => [2,5,3,4,1] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 - 1
[1,3,4,5,2] => [2,1,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> -1 = 0 - 1
[1,3,5,2,4] => [2,5,3,1,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 1
[1,3,5,4,2] => [2,1,3,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> -1 = 0 - 1
[1,4,2,3,5] => [2,4,5,3,1] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 - 1
[1,4,2,5,3] => [2,4,1,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 - 1
[1,4,3,2,5] => [2,5,4,3,1] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 - 1
[1,4,3,5,2] => [2,1,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> -1 = 0 - 1
[1,4,5,2,3] => [2,5,1,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 - 1
[1,4,5,3,2] => [2,1,5,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 - 1
[1,5,2,3,4] => [2,4,5,1,3] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 - 1
[1,5,2,4,3] => [2,4,1,5,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 - 1
[1,5,3,2,4] => [2,5,4,1,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 - 1
[1,5,3,4,2] => [2,1,4,5,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> -1 = 0 - 1
[1,5,4,2,3] => [2,5,1,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 - 1
[1,5,4,3,2] => [2,1,5,4,3] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 - 1
[2,1,3,4,5] => [3,2,4,5,1] => [1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 - 1
[2,1,3,5,4] => [3,2,4,1,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 - 1
[2,1,4,3,5] => [3,2,5,4,1] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 1 - 1
[2,1,4,5,3] => [3,2,1,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 - 1
[2,1,5,3,4] => [3,2,5,1,4] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0 - 1
[2,1,5,4,3] => [3,2,1,5,4] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 - 1
[2,3,1,4,5] => [4,2,3,5,1] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 0 - 1
[2,3,1,5,4] => [4,2,3,1,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 - 1
[2,3,5,1,4] => [5,2,3,1,4] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 - 1
[2,4,3,1,5] => [5,2,4,3,1] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 - 1
[2,4,3,5,1] => [1,2,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> -1 = 0 - 1
[2,4,5,3,1] => [1,2,5,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 - 1
[2,5,1,3,4] => [4,2,5,1,3] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 - 1
[2,5,1,4,3] => [4,2,1,5,3] => [1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 - 1
[2,5,3,1,4] => [5,2,4,1,3] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0 - 1
[2,5,4,3,1] => [1,2,5,4,3] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 - 1
[3,1,2,4,5] => [3,4,2,5,1] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 - 1
[3,1,2,5,4] => [3,4,2,1,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 - 1
[3,1,5,2,4] => [3,5,2,1,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 0 - 1
[3,2,1,4,5] => [4,3,2,5,1] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 0 - 1
[3,2,1,5,4] => [4,3,2,1,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 - 1
[3,2,4,1,5] => [5,3,2,4,1] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 - 1
[3,2,4,5,1] => [1,3,2,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> -1 = 0 - 1
[3,2,5,1,4] => [5,3,2,1,4] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 - 1
[3,2,5,4,1] => [1,3,2,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> -1 = 0 - 1
[3,4,1,2,5] => [4,5,2,3,1] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 - 1
[3,4,1,5,2] => [4,1,2,3,5] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 - 1
[3,4,5,1,2] => [5,1,2,3,4] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 - 1
[3,5,1,2,4] => [4,5,2,1,3] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 0 - 1
[3,5,2,1,4] => [5,4,2,1,3] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0 - 1
[3,5,2,4,1] => [1,4,2,5,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 - 1
[3,5,4,1,2] => [5,1,2,4,3] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1 - 1
[4,1,3,2,5] => [3,5,4,2,1] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 - 1
[4,1,3,5,2] => [3,1,4,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 - 1
[4,1,5,3,2] => [3,1,5,2,4] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0 - 1
[4,2,1,3,5] => [4,3,5,2,1] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 - 1
[4,2,1,5,3] => [4,3,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 - 1
[4,2,3,5,1] => [1,3,4,2,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> -1 = 0 - 1
[1,2,3,4,5,6] => [2,3,4,5,6,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[1,2,3,4,6,5] => [2,3,4,5,1,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[1,2,3,5,6,4] => [2,3,4,1,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[1,2,3,6,5,4] => [2,3,4,1,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[1,2,4,5,6,3] => [2,3,1,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[1,2,4,6,5,3] => [2,3,1,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[1,2,5,4,6,3] => [2,3,1,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[1,2,6,4,5,3] => [2,3,1,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[1,3,4,5,6,2] => [2,1,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[1,3,4,6,5,2] => [2,1,3,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[1,3,5,4,6,2] => [2,1,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[1,3,6,4,5,2] => [2,1,3,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[1,4,3,5,6,2] => [2,1,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[1,4,3,6,5,2] => [2,1,4,3,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[1,5,3,4,6,2] => [2,1,4,5,3,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[1,6,3,4,5,2] => [2,1,4,5,6,3] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[2,3,5,4,6,1] => [1,2,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[2,4,3,5,6,1] => [1,2,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
[2,4,3,6,5,1] => [1,2,4,3,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> -1 = 0 - 1
Description
The trace of the Coxeter matrix of the incidence algebra of a poset.
Matching statistic: St001771
(load all 237 compositions to match this statistic)
(load all 237 compositions to match this statistic)
Mp00066: Permutations —inverse⟶ Permutations
Mp00254: Permutations —Inverse fireworks map⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001771: Signed permutations ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 7%
Mp00254: Permutations —Inverse fireworks map⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001771: Signed permutations ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 7%
Values
[1,2,3] => [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => [1,3,2] => [1,3,2] => 0
[3,1,2] => [2,3,1] => [1,3,2] => [1,3,2] => 0
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 0
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 0
[1,3,4,2] => [1,4,2,3] => [1,4,2,3] => [1,4,2,3] => 0
[1,4,2,3] => [1,3,4,2] => [1,2,4,3] => [1,2,4,3] => 0
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 0
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 0
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 0
[2,4,1,3] => [3,1,4,2] => [2,1,4,3] => [2,1,4,3] => 0
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 0
[3,2,4,1] => [4,2,1,3] => [4,2,1,3] => [4,2,1,3] => 0
[3,4,2,1] => [4,3,1,2] => [4,3,1,2] => [4,3,1,2] => 0
[4,1,2,3] => [2,3,4,1] => [1,2,4,3] => [1,2,4,3] => 0
[4,1,3,2] => [2,4,3,1] => [1,4,3,2] => [1,4,3,2] => 0
[4,2,1,3] => [3,2,4,1] => [2,1,4,3] => [2,1,4,3] => 0
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 0
[1,2,4,5,3] => [1,2,5,3,4] => [1,2,5,3,4] => [1,2,5,3,4] => 0
[1,2,5,3,4] => [1,2,4,5,3] => [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 0
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 0
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,3,4,2,5] => [1,4,2,3,5] => [1,4,2,3,5] => [1,4,2,3,5] => 0
[1,3,4,5,2] => [1,5,2,3,4] => [1,5,2,3,4] => [1,5,2,3,4] => 0
[1,3,5,2,4] => [1,4,2,5,3] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,3,5,4,2] => [1,5,2,4,3] => [1,5,2,4,3] => [1,5,2,4,3] => 0
[1,4,2,3,5] => [1,3,4,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => 0
[1,4,2,5,3] => [1,3,5,2,4] => [1,3,5,2,4] => [1,3,5,2,4] => 0
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 0
[1,4,3,5,2] => [1,5,3,2,4] => [1,5,3,2,4] => [1,5,3,2,4] => 0
[1,4,5,2,3] => [1,4,5,2,3] => [1,3,5,2,4] => [1,3,5,2,4] => 0
[1,4,5,3,2] => [1,5,4,2,3] => [1,5,4,2,3] => [1,5,4,2,3] => 0
[1,5,2,3,4] => [1,3,4,5,2] => [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,5,2,4,3] => [1,3,5,4,2] => [1,2,5,4,3] => [1,2,5,4,3] => 0
[1,5,3,2,4] => [1,4,3,5,2] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,5,3,4,2] => [1,5,3,4,2] => [1,5,2,4,3] => [1,5,2,4,3] => 0
[1,5,4,2,3] => [1,4,5,3,2] => [1,2,5,4,3] => [1,2,5,4,3] => 0
[1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => 0
[2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ? = 0
[2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => ? = 0
[2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => ? = 1
[2,1,4,5,3] => [2,1,5,3,4] => [2,1,5,3,4] => [2,1,5,3,4] => ? = 1
[2,1,5,3,4] => [2,1,4,5,3] => [2,1,3,5,4] => [2,1,3,5,4] => ? = 0
[2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => ? = 1
[2,3,1,4,5] => [3,1,2,4,5] => [3,1,2,4,5] => [3,1,2,4,5] => ? = 0
[2,3,1,5,4] => [3,1,2,5,4] => [3,1,2,5,4] => [3,1,2,5,4] => ? = 0
[2,3,5,1,4] => [4,1,2,5,3] => [3,1,2,5,4] => [3,1,2,5,4] => ? = 0
[2,4,3,1,5] => [4,1,3,2,5] => [4,1,3,2,5] => [4,1,3,2,5] => ? = 0
[2,4,3,5,1] => [5,1,3,2,4] => [5,1,3,2,4] => [5,1,3,2,4] => ? = 0
[2,4,5,3,1] => [5,1,4,2,3] => [5,1,4,2,3] => [5,1,4,2,3] => ? = 0
[2,5,1,3,4] => [3,1,4,5,2] => [2,1,3,5,4] => [2,1,3,5,4] => ? = 0
[2,5,1,4,3] => [3,1,5,4,2] => [2,1,5,4,3] => [2,1,5,4,3] => ? = 1
[2,5,3,1,4] => [4,1,3,5,2] => [3,1,2,5,4] => [3,1,2,5,4] => ? = 0
[2,5,4,3,1] => [5,1,4,3,2] => [5,1,4,3,2] => [5,1,4,3,2] => ? = 0
[3,1,2,4,5] => [2,3,1,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 0
[3,1,2,5,4] => [2,3,1,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[3,1,5,2,4] => [2,4,1,5,3] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[3,2,1,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => ? = 0
[3,2,1,5,4] => [3,2,1,5,4] => [3,2,1,5,4] => [3,2,1,5,4] => ? = 0
[3,2,4,1,5] => [4,2,1,3,5] => [4,2,1,3,5] => [4,2,1,3,5] => ? = 0
[3,2,4,5,1] => [5,2,1,3,4] => [5,2,1,3,4] => [5,2,1,3,4] => ? = 0
[3,2,5,1,4] => [4,2,1,5,3] => [3,2,1,5,4] => [3,2,1,5,4] => ? = 0
[3,2,5,4,1] => [5,2,1,4,3] => [5,2,1,4,3] => [5,2,1,4,3] => ? = 0
[3,4,1,2,5] => [3,4,1,2,5] => [2,4,1,3,5] => [2,4,1,3,5] => ? = 1
[3,4,1,5,2] => [3,5,1,2,4] => [3,5,1,2,4] => [3,5,1,2,4] => ? = 1
[3,4,5,1,2] => [4,5,1,2,3] => [3,5,1,2,4] => [3,5,1,2,4] => ? = 1
[3,5,1,2,4] => [3,4,1,5,2] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[3,5,2,1,4] => [4,3,1,5,2] => [3,2,1,5,4] => [3,2,1,5,4] => ? = 0
[3,5,2,4,1] => [5,3,1,4,2] => [5,2,1,4,3] => [5,2,1,4,3] => ? = 0
[3,5,4,1,2] => [4,5,1,3,2] => [2,5,1,4,3] => [2,5,1,4,3] => ? = 1
[4,1,3,2,5] => [2,4,3,1,5] => [1,4,3,2,5] => [1,4,3,2,5] => 0
[4,1,3,5,2] => [2,5,3,1,4] => [1,5,3,2,4] => [1,5,3,2,4] => 0
[4,1,5,3,2] => [2,5,4,1,3] => [2,5,4,1,3] => [2,5,4,1,3] => ? = 0
[4,2,1,3,5] => [3,2,4,1,5] => [2,1,4,3,5] => [2,1,4,3,5] => ? = 0
[4,2,1,5,3] => [3,2,5,1,4] => [3,2,5,1,4] => [3,2,5,1,4] => ? = 0
[4,2,3,1,5] => [4,2,3,1,5] => [4,1,3,2,5] => [4,1,3,2,5] => ? = 0
[4,2,3,5,1] => [5,2,3,1,4] => [5,1,3,2,4] => [5,1,3,2,4] => ? = 0
[4,2,5,1,3] => [4,2,5,1,3] => [3,2,5,1,4] => [3,2,5,1,4] => ? = 0
[4,2,5,3,1] => [5,2,4,1,3] => [5,2,4,1,3] => [5,2,4,1,3] => ? = 0
[4,3,2,1,5] => [4,3,2,1,5] => [4,3,2,1,5] => [4,3,2,1,5] => ? = 1
[4,3,2,5,1] => [5,3,2,1,4] => [5,3,2,1,4] => [5,3,2,1,4] => ? = 1
[4,3,5,2,1] => [5,4,2,1,3] => [5,4,2,1,3] => [5,4,2,1,3] => ? = 1
[4,5,1,3,2] => [3,5,4,1,2] => [2,5,4,1,3] => [2,5,4,1,3] => ? = 0
[4,5,2,1,3] => [4,3,5,1,2] => [3,2,5,1,4] => [3,2,5,1,4] => ? = 0
[4,5,2,3,1] => [5,3,4,1,2] => [5,2,4,1,3] => [5,2,4,1,3] => ? = 0
[4,5,3,2,1] => [5,4,3,1,2] => [5,4,3,1,2] => [5,4,3,1,2] => ? = 1
[5,1,2,3,4] => [2,3,4,5,1] => [1,2,3,5,4] => [1,2,3,5,4] => 0
[5,2,1,3,4] => [3,2,4,5,1] => [2,1,3,5,4] => [2,1,3,5,4] => ? = 0
[5,2,1,4,3] => [3,2,5,4,1] => [2,1,5,4,3] => [2,1,5,4,3] => ? = 1
[5,2,3,1,4] => [4,2,3,5,1] => [3,1,2,5,4] => [3,1,2,5,4] => ? = 0
[5,2,4,3,1] => [5,2,4,3,1] => [5,1,4,3,2] => [5,1,4,3,2] => ? = 0
[5,3,2,1,4] => [4,3,2,5,1] => [3,2,1,5,4] => [3,2,1,5,4] => ? = 0
[5,3,2,4,1] => [5,3,2,4,1] => [5,2,1,4,3] => [5,2,1,4,3] => ? = 0
[5,3,4,1,2] => [4,5,2,3,1] => [2,5,1,4,3] => [2,5,1,4,3] => ? = 1
[5,4,2,1,3] => [4,3,5,2,1] => [2,1,5,4,3] => [2,1,5,4,3] => ? = 0
Description
The number of occurrences of the signed pattern 1-2 in a signed permutation.
This is the number of pairs 1\leq i < j\leq n such that 0 < \pi(i) < -\pi(j).
Matching statistic: St001870
(load all 237 compositions to match this statistic)
(load all 237 compositions to match this statistic)
Mp00066: Permutations —inverse⟶ Permutations
Mp00254: Permutations —Inverse fireworks map⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001870: Signed permutations ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 7%
Mp00254: Permutations —Inverse fireworks map⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001870: Signed permutations ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 7%
Values
[1,2,3] => [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => [1,3,2] => [1,3,2] => 0
[3,1,2] => [2,3,1] => [1,3,2] => [1,3,2] => 0
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 0
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 0
[1,3,4,2] => [1,4,2,3] => [1,4,2,3] => [1,4,2,3] => 0
[1,4,2,3] => [1,3,4,2] => [1,2,4,3] => [1,2,4,3] => 0
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 0
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 0
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 0
[2,4,1,3] => [3,1,4,2] => [2,1,4,3] => [2,1,4,3] => 0
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 0
[3,2,4,1] => [4,2,1,3] => [4,2,1,3] => [4,2,1,3] => 0
[3,4,2,1] => [4,3,1,2] => [4,3,1,2] => [4,3,1,2] => 0
[4,1,2,3] => [2,3,4,1] => [1,2,4,3] => [1,2,4,3] => 0
[4,1,3,2] => [2,4,3,1] => [1,4,3,2] => [1,4,3,2] => 0
[4,2,1,3] => [3,2,4,1] => [2,1,4,3] => [2,1,4,3] => 0
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 0
[1,2,4,5,3] => [1,2,5,3,4] => [1,2,5,3,4] => [1,2,5,3,4] => 0
[1,2,5,3,4] => [1,2,4,5,3] => [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 0
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 0
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,3,4,2,5] => [1,4,2,3,5] => [1,4,2,3,5] => [1,4,2,3,5] => 0
[1,3,4,5,2] => [1,5,2,3,4] => [1,5,2,3,4] => [1,5,2,3,4] => 0
[1,3,5,2,4] => [1,4,2,5,3] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,3,5,4,2] => [1,5,2,4,3] => [1,5,2,4,3] => [1,5,2,4,3] => 0
[1,4,2,3,5] => [1,3,4,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => 0
[1,4,2,5,3] => [1,3,5,2,4] => [1,3,5,2,4] => [1,3,5,2,4] => 0
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 0
[1,4,3,5,2] => [1,5,3,2,4] => [1,5,3,2,4] => [1,5,3,2,4] => 0
[1,4,5,2,3] => [1,4,5,2,3] => [1,3,5,2,4] => [1,3,5,2,4] => 0
[1,4,5,3,2] => [1,5,4,2,3] => [1,5,4,2,3] => [1,5,4,2,3] => 0
[1,5,2,3,4] => [1,3,4,5,2] => [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,5,2,4,3] => [1,3,5,4,2] => [1,2,5,4,3] => [1,2,5,4,3] => 0
[1,5,3,2,4] => [1,4,3,5,2] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,5,3,4,2] => [1,5,3,4,2] => [1,5,2,4,3] => [1,5,2,4,3] => 0
[1,5,4,2,3] => [1,4,5,3,2] => [1,2,5,4,3] => [1,2,5,4,3] => 0
[1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => 0
[2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ? = 0
[2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => ? = 0
[2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => ? = 1
[2,1,4,5,3] => [2,1,5,3,4] => [2,1,5,3,4] => [2,1,5,3,4] => ? = 1
[2,1,5,3,4] => [2,1,4,5,3] => [2,1,3,5,4] => [2,1,3,5,4] => ? = 0
[2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => ? = 1
[2,3,1,4,5] => [3,1,2,4,5] => [3,1,2,4,5] => [3,1,2,4,5] => ? = 0
[2,3,1,5,4] => [3,1,2,5,4] => [3,1,2,5,4] => [3,1,2,5,4] => ? = 0
[2,3,5,1,4] => [4,1,2,5,3] => [3,1,2,5,4] => [3,1,2,5,4] => ? = 0
[2,4,3,1,5] => [4,1,3,2,5] => [4,1,3,2,5] => [4,1,3,2,5] => ? = 0
[2,4,3,5,1] => [5,1,3,2,4] => [5,1,3,2,4] => [5,1,3,2,4] => ? = 0
[2,4,5,3,1] => [5,1,4,2,3] => [5,1,4,2,3] => [5,1,4,2,3] => ? = 0
[2,5,1,3,4] => [3,1,4,5,2] => [2,1,3,5,4] => [2,1,3,5,4] => ? = 0
[2,5,1,4,3] => [3,1,5,4,2] => [2,1,5,4,3] => [2,1,5,4,3] => ? = 1
[2,5,3,1,4] => [4,1,3,5,2] => [3,1,2,5,4] => [3,1,2,5,4] => ? = 0
[2,5,4,3,1] => [5,1,4,3,2] => [5,1,4,3,2] => [5,1,4,3,2] => ? = 0
[3,1,2,4,5] => [2,3,1,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 0
[3,1,2,5,4] => [2,3,1,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[3,1,5,2,4] => [2,4,1,5,3] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[3,2,1,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => ? = 0
[3,2,1,5,4] => [3,2,1,5,4] => [3,2,1,5,4] => [3,2,1,5,4] => ? = 0
[3,2,4,1,5] => [4,2,1,3,5] => [4,2,1,3,5] => [4,2,1,3,5] => ? = 0
[3,2,4,5,1] => [5,2,1,3,4] => [5,2,1,3,4] => [5,2,1,3,4] => ? = 0
[3,2,5,1,4] => [4,2,1,5,3] => [3,2,1,5,4] => [3,2,1,5,4] => ? = 0
[3,2,5,4,1] => [5,2,1,4,3] => [5,2,1,4,3] => [5,2,1,4,3] => ? = 0
[3,4,1,2,5] => [3,4,1,2,5] => [2,4,1,3,5] => [2,4,1,3,5] => ? = 1
[3,4,1,5,2] => [3,5,1,2,4] => [3,5,1,2,4] => [3,5,1,2,4] => ? = 1
[3,4,5,1,2] => [4,5,1,2,3] => [3,5,1,2,4] => [3,5,1,2,4] => ? = 1
[3,5,1,2,4] => [3,4,1,5,2] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[3,5,2,1,4] => [4,3,1,5,2] => [3,2,1,5,4] => [3,2,1,5,4] => ? = 0
[3,5,2,4,1] => [5,3,1,4,2] => [5,2,1,4,3] => [5,2,1,4,3] => ? = 0
[3,5,4,1,2] => [4,5,1,3,2] => [2,5,1,4,3] => [2,5,1,4,3] => ? = 1
[4,1,3,2,5] => [2,4,3,1,5] => [1,4,3,2,5] => [1,4,3,2,5] => 0
[4,1,3,5,2] => [2,5,3,1,4] => [1,5,3,2,4] => [1,5,3,2,4] => 0
[4,1,5,3,2] => [2,5,4,1,3] => [2,5,4,1,3] => [2,5,4,1,3] => ? = 0
[4,2,1,3,5] => [3,2,4,1,5] => [2,1,4,3,5] => [2,1,4,3,5] => ? = 0
[4,2,1,5,3] => [3,2,5,1,4] => [3,2,5,1,4] => [3,2,5,1,4] => ? = 0
[4,2,3,1,5] => [4,2,3,1,5] => [4,1,3,2,5] => [4,1,3,2,5] => ? = 0
[4,2,3,5,1] => [5,2,3,1,4] => [5,1,3,2,4] => [5,1,3,2,4] => ? = 0
[4,2,5,1,3] => [4,2,5,1,3] => [3,2,5,1,4] => [3,2,5,1,4] => ? = 0
[4,2,5,3,1] => [5,2,4,1,3] => [5,2,4,1,3] => [5,2,4,1,3] => ? = 0
[4,3,2,1,5] => [4,3,2,1,5] => [4,3,2,1,5] => [4,3,2,1,5] => ? = 1
[4,3,2,5,1] => [5,3,2,1,4] => [5,3,2,1,4] => [5,3,2,1,4] => ? = 1
[4,3,5,2,1] => [5,4,2,1,3] => [5,4,2,1,3] => [5,4,2,1,3] => ? = 1
[4,5,1,3,2] => [3,5,4,1,2] => [2,5,4,1,3] => [2,5,4,1,3] => ? = 0
[4,5,2,1,3] => [4,3,5,1,2] => [3,2,5,1,4] => [3,2,5,1,4] => ? = 0
[4,5,2,3,1] => [5,3,4,1,2] => [5,2,4,1,3] => [5,2,4,1,3] => ? = 0
[4,5,3,2,1] => [5,4,3,1,2] => [5,4,3,1,2] => [5,4,3,1,2] => ? = 1
[5,1,2,3,4] => [2,3,4,5,1] => [1,2,3,5,4] => [1,2,3,5,4] => 0
[5,2,1,3,4] => [3,2,4,5,1] => [2,1,3,5,4] => [2,1,3,5,4] => ? = 0
[5,2,1,4,3] => [3,2,5,4,1] => [2,1,5,4,3] => [2,1,5,4,3] => ? = 1
[5,2,3,1,4] => [4,2,3,5,1] => [3,1,2,5,4] => [3,1,2,5,4] => ? = 0
[5,2,4,3,1] => [5,2,4,3,1] => [5,1,4,3,2] => [5,1,4,3,2] => ? = 0
[5,3,2,1,4] => [4,3,2,5,1] => [3,2,1,5,4] => [3,2,1,5,4] => ? = 0
[5,3,2,4,1] => [5,3,2,4,1] => [5,2,1,4,3] => [5,2,1,4,3] => ? = 0
[5,3,4,1,2] => [4,5,2,3,1] => [2,5,1,4,3] => [2,5,1,4,3] => ? = 1
[5,4,2,1,3] => [4,3,5,2,1] => [2,1,5,4,3] => [2,1,5,4,3] => ? = 0
Description
The number of positive entries followed by a negative entry in a signed permutation.
For a signed permutation \pi\in\mathfrak H_n, this is the number of positive entries followed by a negative entry in \pi(-n),\dots,\pi(-1),\pi(1),\dots,\pi(n).
Matching statistic: St001895
(load all 229 compositions to match this statistic)
(load all 229 compositions to match this statistic)
Mp00066: Permutations —inverse⟶ Permutations
Mp00254: Permutations —Inverse fireworks map⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001895: Signed permutations ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 7%
Mp00254: Permutations —Inverse fireworks map⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001895: Signed permutations ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 7%
Values
[1,2,3] => [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => [1,3,2] => [1,3,2] => 0
[3,1,2] => [2,3,1] => [1,3,2] => [1,3,2] => 0
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 0
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 0
[1,3,4,2] => [1,4,2,3] => [1,4,2,3] => [1,4,2,3] => 0
[1,4,2,3] => [1,3,4,2] => [1,2,4,3] => [1,2,4,3] => 0
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 0
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 0
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 0
[2,4,1,3] => [3,1,4,2] => [2,1,4,3] => [2,1,4,3] => 0
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 0
[3,2,4,1] => [4,2,1,3] => [4,2,1,3] => [4,2,1,3] => 0
[3,4,2,1] => [4,3,1,2] => [4,3,1,2] => [4,3,1,2] => 0
[4,1,2,3] => [2,3,4,1] => [1,2,4,3] => [1,2,4,3] => 0
[4,1,3,2] => [2,4,3,1] => [1,4,3,2] => [1,4,3,2] => 0
[4,2,1,3] => [3,2,4,1] => [2,1,4,3] => [2,1,4,3] => 0
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 0
[1,2,4,5,3] => [1,2,5,3,4] => [1,2,5,3,4] => [1,2,5,3,4] => 0
[1,2,5,3,4] => [1,2,4,5,3] => [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 0
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 0
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,3,4,2,5] => [1,4,2,3,5] => [1,4,2,3,5] => [1,4,2,3,5] => 0
[1,3,4,5,2] => [1,5,2,3,4] => [1,5,2,3,4] => [1,5,2,3,4] => 0
[1,3,5,2,4] => [1,4,2,5,3] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,3,5,4,2] => [1,5,2,4,3] => [1,5,2,4,3] => [1,5,2,4,3] => 0
[1,4,2,3,5] => [1,3,4,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => 0
[1,4,2,5,3] => [1,3,5,2,4] => [1,3,5,2,4] => [1,3,5,2,4] => 0
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 0
[1,4,3,5,2] => [1,5,3,2,4] => [1,5,3,2,4] => [1,5,3,2,4] => 0
[1,4,5,2,3] => [1,4,5,2,3] => [1,3,5,2,4] => [1,3,5,2,4] => 0
[1,4,5,3,2] => [1,5,4,2,3] => [1,5,4,2,3] => [1,5,4,2,3] => 0
[1,5,2,3,4] => [1,3,4,5,2] => [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,5,2,4,3] => [1,3,5,4,2] => [1,2,5,4,3] => [1,2,5,4,3] => 0
[1,5,3,2,4] => [1,4,3,5,2] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,5,3,4,2] => [1,5,3,4,2] => [1,5,2,4,3] => [1,5,2,4,3] => 0
[1,5,4,2,3] => [1,4,5,3,2] => [1,2,5,4,3] => [1,2,5,4,3] => 0
[1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => 0
[2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ? = 0
[2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => ? = 0
[2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => ? = 1
[2,1,4,5,3] => [2,1,5,3,4] => [2,1,5,3,4] => [2,1,5,3,4] => ? = 1
[2,1,5,3,4] => [2,1,4,5,3] => [2,1,3,5,4] => [2,1,3,5,4] => ? = 0
[2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => ? = 1
[2,3,1,4,5] => [3,1,2,4,5] => [3,1,2,4,5] => [3,1,2,4,5] => ? = 0
[2,3,1,5,4] => [3,1,2,5,4] => [3,1,2,5,4] => [3,1,2,5,4] => ? = 0
[2,3,5,1,4] => [4,1,2,5,3] => [3,1,2,5,4] => [3,1,2,5,4] => ? = 0
[2,4,3,1,5] => [4,1,3,2,5] => [4,1,3,2,5] => [4,1,3,2,5] => ? = 0
[2,4,3,5,1] => [5,1,3,2,4] => [5,1,3,2,4] => [5,1,3,2,4] => ? = 0
[2,4,5,3,1] => [5,1,4,2,3] => [5,1,4,2,3] => [5,1,4,2,3] => ? = 0
[2,5,1,3,4] => [3,1,4,5,2] => [2,1,3,5,4] => [2,1,3,5,4] => ? = 0
[2,5,1,4,3] => [3,1,5,4,2] => [2,1,5,4,3] => [2,1,5,4,3] => ? = 1
[2,5,3,1,4] => [4,1,3,5,2] => [3,1,2,5,4] => [3,1,2,5,4] => ? = 0
[2,5,4,3,1] => [5,1,4,3,2] => [5,1,4,3,2] => [5,1,4,3,2] => ? = 0
[3,1,2,4,5] => [2,3,1,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 0
[3,1,2,5,4] => [2,3,1,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[3,1,5,2,4] => [2,4,1,5,3] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[3,2,1,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => ? = 0
[3,2,1,5,4] => [3,2,1,5,4] => [3,2,1,5,4] => [3,2,1,5,4] => ? = 0
[3,2,4,1,5] => [4,2,1,3,5] => [4,2,1,3,5] => [4,2,1,3,5] => ? = 0
[3,2,4,5,1] => [5,2,1,3,4] => [5,2,1,3,4] => [5,2,1,3,4] => ? = 0
[3,2,5,1,4] => [4,2,1,5,3] => [3,2,1,5,4] => [3,2,1,5,4] => ? = 0
[3,2,5,4,1] => [5,2,1,4,3] => [5,2,1,4,3] => [5,2,1,4,3] => ? = 0
[3,4,1,2,5] => [3,4,1,2,5] => [2,4,1,3,5] => [2,4,1,3,5] => ? = 1
[3,4,1,5,2] => [3,5,1,2,4] => [3,5,1,2,4] => [3,5,1,2,4] => ? = 1
[3,4,5,1,2] => [4,5,1,2,3] => [3,5,1,2,4] => [3,5,1,2,4] => ? = 1
[3,5,1,2,4] => [3,4,1,5,2] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[3,5,2,1,4] => [4,3,1,5,2] => [3,2,1,5,4] => [3,2,1,5,4] => ? = 0
[3,5,2,4,1] => [5,3,1,4,2] => [5,2,1,4,3] => [5,2,1,4,3] => ? = 0
[3,5,4,1,2] => [4,5,1,3,2] => [2,5,1,4,3] => [2,5,1,4,3] => ? = 1
[4,1,3,2,5] => [2,4,3,1,5] => [1,4,3,2,5] => [1,4,3,2,5] => 0
[4,1,3,5,2] => [2,5,3,1,4] => [1,5,3,2,4] => [1,5,3,2,4] => 0
[4,1,5,3,2] => [2,5,4,1,3] => [2,5,4,1,3] => [2,5,4,1,3] => ? = 0
[4,2,1,3,5] => [3,2,4,1,5] => [2,1,4,3,5] => [2,1,4,3,5] => ? = 0
[4,2,1,5,3] => [3,2,5,1,4] => [3,2,5,1,4] => [3,2,5,1,4] => ? = 0
[4,2,3,1,5] => [4,2,3,1,5] => [4,1,3,2,5] => [4,1,3,2,5] => ? = 0
[4,2,3,5,1] => [5,2,3,1,4] => [5,1,3,2,4] => [5,1,3,2,4] => ? = 0
[4,2,5,1,3] => [4,2,5,1,3] => [3,2,5,1,4] => [3,2,5,1,4] => ? = 0
[4,2,5,3,1] => [5,2,4,1,3] => [5,2,4,1,3] => [5,2,4,1,3] => ? = 0
[4,3,2,1,5] => [4,3,2,1,5] => [4,3,2,1,5] => [4,3,2,1,5] => ? = 1
[4,3,2,5,1] => [5,3,2,1,4] => [5,3,2,1,4] => [5,3,2,1,4] => ? = 1
[4,3,5,2,1] => [5,4,2,1,3] => [5,4,2,1,3] => [5,4,2,1,3] => ? = 1
[4,5,1,3,2] => [3,5,4,1,2] => [2,5,4,1,3] => [2,5,4,1,3] => ? = 0
[4,5,2,1,3] => [4,3,5,1,2] => [3,2,5,1,4] => [3,2,5,1,4] => ? = 0
[4,5,2,3,1] => [5,3,4,1,2] => [5,2,4,1,3] => [5,2,4,1,3] => ? = 0
[4,5,3,2,1] => [5,4,3,1,2] => [5,4,3,1,2] => [5,4,3,1,2] => ? = 1
[5,1,2,3,4] => [2,3,4,5,1] => [1,2,3,5,4] => [1,2,3,5,4] => 0
[5,2,1,3,4] => [3,2,4,5,1] => [2,1,3,5,4] => [2,1,3,5,4] => ? = 0
[5,2,1,4,3] => [3,2,5,4,1] => [2,1,5,4,3] => [2,1,5,4,3] => ? = 1
[5,2,3,1,4] => [4,2,3,5,1] => [3,1,2,5,4] => [3,1,2,5,4] => ? = 0
[5,2,4,3,1] => [5,2,4,3,1] => [5,1,4,3,2] => [5,1,4,3,2] => ? = 0
[5,3,2,1,4] => [4,3,2,5,1] => [3,2,1,5,4] => [3,2,1,5,4] => ? = 0
[5,3,2,4,1] => [5,3,2,4,1] => [5,2,1,4,3] => [5,2,1,4,3] => ? = 0
[5,3,4,1,2] => [4,5,2,3,1] => [2,5,1,4,3] => [2,5,1,4,3] => ? = 1
[5,4,2,1,3] => [4,3,5,2,1] => [2,1,5,4,3] => [2,1,5,4,3] => ? = 0
Description
The oddness of a signed permutation.
The direct sum of two signed permutations \sigma\in\mathfrak H_k and \tau\in\mathfrak H_m is the signed permutation in \mathfrak H_{k+m} obtained by concatenating \sigma with the result of increasing the absolute value of every entry in \tau by k.
This statistic records the number of blocks with an odd number of signs in the direct sum decomposition of a signed permutation.
Matching statistic: St001878
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 0% ●values known / values provided: 0%●distinct values known / distinct values provided: 7%
Mp00209: Permutations —pattern poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 0% ●values known / values provided: 0%●distinct values known / distinct values provided: 7%
Values
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,3,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 0 + 1
[3,1,2] => [3,2,1] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([],1)
=> ? = 0 + 1
[1,3,4,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([],1)
=> ? = 0 + 1
[1,4,2,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([],1)
=> ? = 0 + 1
[2,1,3,4] => [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,1,4,3] => [2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,1)],2)
=> ? = 0 + 1
[2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([],1)
=> ? = 0 + 1
[3,2,4,1] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([],1)
=> ? = 0 + 1
[3,4,2,1] => [4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([],1)
=> ? = 0 + 1
[4,1,2,3] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[4,1,3,2] => [3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([],1)
=> ? = 0 + 1
[4,3,2,1] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([],1)
=> ? = 0 + 1
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 0 + 1
[1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,5,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,5,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([],1)
=> ? = 0 + 1
[1,2,5,4,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,3,4,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,3,4,5,2] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,5,2,4] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 0 + 1
[1,3,5,4,2] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([],1)
=> ? = 0 + 1
[1,4,2,3,5] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 0 + 1
[1,4,2,5,3] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([],1)
=> ? = 0 + 1
[1,4,3,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,4,3,5,2] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,4,5,2,3] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,4,5,3,2] => [1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,5,2,3,4] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 0 + 1
[1,5,2,4,3] => [1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 0 + 1
[1,5,3,2,4] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,5,3,4,2] => [1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,5,4,2,3] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([],1)
=> ? = 0 + 1
[1,5,4,3,2] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([],1)
=> ? = 0 + 1
[2,1,3,4,5] => [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 0 + 1
[2,1,3,5,4] => [2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,1)],2)
=> ? = 0 + 1
[2,1,4,3,5] => [2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,1)],2)
=> ? = 1 + 1
[2,1,4,5,3] => [2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 1 + 1
[2,1,5,3,4] => [2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([],1)
=> ? = 0 + 1
[2,1,5,4,3] => [2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 1 + 1
[2,3,1,4,5] => [3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,1,5,4] => [3,1,2,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 0 + 1
[2,3,5,1,4] => [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([],1)
=> ? = 0 + 1
[2,4,3,1,5] => [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([],1)
=> ? = 0 + 1
[2,4,3,5,1] => [3,5,1,2,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([],1)
=> ? = 0 + 1
[2,4,5,3,1] => [5,1,2,4,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 0 + 1
[2,5,1,3,4] => [5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 0 + 1
[2,5,1,4,3] => [4,5,3,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,1)],2)
=> ? = 1 + 1
[2,5,3,1,4] => [3,5,4,1,2] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 0 + 1
[2,5,4,3,1] => [4,3,5,1,2] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 0 + 1
[3,1,2,4,5] => [3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([],1)
=> ? = 0 + 1
[3,1,2,5,4] => [3,2,1,5,4] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([],1)
=> ? = 0 + 1
[3,1,5,2,4] => [5,4,2,1,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,2,1,4,5] => [2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,2,1,5,4] => [2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 0 + 1
[3,2,4,1,5] => [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,1)],2)
=> ? = 0 + 1
[3,2,4,5,1] => [2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([],1)
=> ? = 0 + 1
[3,2,5,1,4] => [2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([],1)
=> ? = 0 + 1
[3,2,5,4,1] => [2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([],1)
=> ? = 0 + 1
[3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,1)],2)
=> ? = 1 + 1
[3,4,1,5,2] => [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(0,1)],2)
=> ? = 1 + 1
[3,4,5,1,2] => [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,1)],2)
=> ? = 1 + 1
[3,5,1,2,4] => [3,1,5,4,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([],1)
=> ? = 0 + 1
[3,5,2,1,4] => [5,4,1,3,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,5,2,4,1] => [4,5,1,3,2] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 0 + 1
[3,5,4,1,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ([],1)
=> ? = 1 + 1
[4,1,3,2,5] => [3,4,2,1,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 0 + 1
[4,2,3,1,5] => [2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[4,5,2,3,1] => [5,1,4,3,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[5,1,2,3,4] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[5,1,2,4,3] => [4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 0 + 1
[5,1,3,2,4] => [3,5,4,2,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[5,1,4,2,3] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[5,1,4,3,2] => [4,3,5,2,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[5,2,1,3,4] => [2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[5,3,1,2,4] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[5,4,1,3,2] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[5,4,2,1,3] => [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[5,4,2,3,1] => [4,3,2,5,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,6,4,5] => [1,2,3,6,5,4] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,6,3,4,5] => [1,2,6,5,4,3] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1,6,3,4,5] => [2,1,6,5,4,3] => ([(0,4),(0,5),(1,7),(2,9),(2,11),(3,2),(3,10),(4,3),(4,6),(5,1),(5,6),(6,7),(6,10),(7,11),(9,8),(10,9),(10,11),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,4,6,1,5] => [6,5,1,2,3,4] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,6,1,4,5] => [6,5,4,1,2,3] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,2,4,5,6] => [3,2,1,4,5,6] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[4,1,2,3,5,6] => [4,3,2,1,5,6] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[4,1,2,3,6,5] => [4,3,2,1,6,5] => ([(0,4),(0,5),(1,7),(2,9),(2,11),(3,2),(3,10),(4,3),(4,6),(5,1),(5,6),(6,7),(6,10),(7,11),(9,8),(10,9),(10,11),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[6,1,2,3,4,5] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[6,1,2,4,5,3] => [4,5,6,3,2,1] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[6,1,3,4,5,2] => [3,4,5,6,2,1] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St000068
(load all 22 compositions to match this statistic)
(load all 22 compositions to match this statistic)
Mp00126: Permutations —cactus evacuation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000068: Posets ⟶ ℤResult quality: 0% ●values known / values provided: 0%●distinct values known / distinct values provided: 7%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000068: Posets ⟶ ℤResult quality: 0% ●values known / values provided: 0%●distinct values known / distinct values provided: 7%
Values
[1,2,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,3,2] => [3,1,2] => [3,2,1] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[3,1,2] => [1,3,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,3] => [4,1,2,3] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[1,3,4,2] => [3,1,2,4] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,4,2,3] => [1,4,2,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,4,3,2] => [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[2,1,3,4] => [2,3,4,1] => [4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1 = 0 + 1
[2,4,1,3] => [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[3,2,1,4] => [3,4,2,1] => [4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[3,2,4,1] => [3,2,4,1] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 0 + 1
[3,4,2,1] => [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[4,1,2,3] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[4,1,3,2] => [4,1,3,2] => [3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[4,2,1,3] => [2,4,3,1] => [3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1 = 0 + 1
[4,3,2,1] => [4,3,2,1] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,5,4] => [5,1,2,3,4] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,3,5] => [1,4,2,3,5] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[1,2,4,5,3] => [4,1,2,3,5] => [4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[1,2,5,3,4] => [1,5,2,3,4] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[1,2,5,4,3] => [5,4,1,2,3] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 0 + 1
[1,3,2,4,5] => [1,3,4,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[1,3,2,5,4] => [3,1,5,2,4] => [5,4,2,1,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,3,4,2,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,3,4,5,2] => [3,1,2,4,5] => [3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 1 = 0 + 1
[1,3,5,2,4] => [3,5,1,2,4] => [3,1,5,4,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 0 + 1
[1,3,5,4,2] => [5,3,1,2,4] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,4,2,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,4,2,5,3] => [4,1,5,2,3] => [4,2,1,5,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 0 + 1
[1,4,3,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[1,4,3,5,2] => [4,1,3,2,5] => [3,4,2,1,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[1,4,5,2,3] => [4,5,1,2,3] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 0 + 1
[1,4,5,3,2] => [4,3,1,2,5] => [4,2,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0 + 1
[1,5,2,3,4] => [1,2,5,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 1 = 0 + 1
[1,5,2,4,3] => [5,1,4,2,3] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,5,3,2,4] => [1,5,3,2,4] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0 + 1
[1,5,3,4,2] => [5,1,3,2,4] => [3,5,4,2,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,5,4,2,3] => [1,5,4,2,3] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0 + 1
[1,5,4,3,2] => [5,4,3,1,2] => [3,5,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 0 + 1
[2,1,3,4,5] => [2,3,4,5,1] => [5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 0 + 1
[2,1,4,3,5] => [2,4,1,5,3] => [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 1 + 1
[2,1,4,5,3] => [2,1,4,5,3] => [2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
[2,1,5,3,4] => [2,3,1,5,4] => [3,1,2,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[2,1,5,4,3] => [5,2,1,4,3] => [2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 1 + 1
[2,3,1,4,5] => [2,3,4,1,5] => [4,1,2,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[2,3,1,5,4] => [2,1,5,3,4] => [2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? = 0 + 1
[2,3,5,1,4] => [2,5,1,3,4] => [5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[2,4,3,1,5] => [2,4,3,1,5] => [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 0 + 1
[2,4,3,5,1] => [4,2,3,1,5] => [2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[2,4,5,3,1] => [4,2,1,3,5] => [2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0 + 1
[2,5,1,3,4] => [2,3,5,1,4] => [5,4,1,2,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 1 = 0 + 1
[2,5,1,4,3] => [5,2,4,1,3] => [2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1 + 1
[2,5,3,1,4] => [2,5,3,1,4] => [3,5,4,1,2] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[2,5,4,3,1] => [5,4,2,1,3] => [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[3,1,2,4,5] => [1,3,4,5,2] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,1,2,5,4] => [3,1,2,5,4] => [3,2,1,5,4] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? = 0 + 1
[3,1,5,2,4] => [1,3,2,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 0 + 1
[3,2,1,4,5] => [3,4,5,2,1] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 0 + 1
[3,2,1,5,4] => [3,2,5,4,1] => [2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 0 + 1
[3,2,4,1,5] => [3,4,2,5,1] => [5,1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0 + 1
[3,2,4,5,1] => [3,2,4,5,1] => [2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 0 + 1
[3,2,5,1,4] => [3,5,2,4,1] => [4,5,1,3,2] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[3,2,5,4,1] => [3,2,1,5,4] => [2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[3,4,1,2,5] => [3,4,5,1,2] => [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 1 + 1
[3,4,1,5,2] => [3,1,4,2,5] => [4,2,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 1 + 1
[3,4,5,1,2] => [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 1 + 1
[3,5,1,2,4] => [1,3,5,2,4] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[3,5,2,1,4] => [3,5,2,1,4] => [5,4,1,3,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[3,5,2,4,1] => [3,2,5,1,4] => [2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 0 + 1
[3,5,4,1,2] => [3,5,4,1,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ? = 1 + 1
[4,1,3,2,5] => [1,4,3,5,2] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 0 + 1
[4,1,3,5,2] => [4,1,3,5,2] => [3,5,2,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 0 + 1
[5,1,2,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[5,1,2,4,3] => [5,1,2,4,3] => [4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[5,1,3,4,2] => [5,1,3,4,2] => [3,4,5,2,1] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 1 = 0 + 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [6,1,2,3,4,5] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,2,3,5,6,4] => [5,1,2,3,4,6] => [5,4,3,2,1,6] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[1,2,3,6,4,5] => [1,6,2,3,4,5] => [1,6,5,4,3,2] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[1,2,4,5,6,3] => [4,1,2,3,5,6] => [4,3,2,1,5,6] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[1,2,6,3,4,5] => [1,2,6,3,4,5] => [1,2,6,5,4,3] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[1,3,4,5,6,2] => [3,1,2,4,5,6] => [3,2,1,4,5,6] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[1,6,2,3,4,5] => [1,2,3,6,4,5] => [1,2,3,6,5,4] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[2,1,3,4,5,6] => [2,3,4,5,6,1] => [6,1,2,3,4,5] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[2,3,4,6,1,5] => [2,6,1,3,4,5] => [6,5,4,3,1,2] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[2,3,6,1,4,5] => [2,3,6,1,4,5] => [6,5,4,1,2,3] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[2,6,1,3,4,5] => [2,3,4,6,1,5] => [6,5,1,2,3,4] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[6,1,2,3,4,5] => [1,2,3,4,6,5] => [1,2,3,4,6,5] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[6,1,2,3,5,4] => [6,1,2,3,5,4] => [5,6,4,3,2,1] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[6,1,2,4,5,3] => [6,1,2,4,5,3] => [4,5,6,3,2,1] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[6,1,3,4,5,2] => [6,1,3,4,5,2] => [3,4,5,6,2,1] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => [7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,2,3,4,5,6,8,7] => [8,1,2,3,4,5,6,7] => [8,7,6,5,4,3,2,1] => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 1 = 0 + 1
Description
The number of minimal elements in a poset.
The following 74 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001964The interval resolution global dimension of a poset. St001845The number of join irreducibles minus the rank of a lattice. St001851The number of Hecke atoms of a signed permutation. St001862The number of crossings of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001889The size of the connectivity set of a signed permutation. St001772The number of occurrences of the signed pattern 12 in a signed permutation. St001863The number of weak excedances of a signed permutation. St001864The number of excedances of a signed permutation. St001867The number of alignments of type EN of a signed permutation. St001868The number of alignments of type NE of a signed permutation. St000181The number of connected components of the Hasse diagram for the poset. St001490The number of connected components of a skew partition. St001890The maximum magnitude of the Möbius function of a poset. St000098The chromatic number of a graph. St001625The Möbius invariant of a lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St000283The size of the preimage of the map 'to graph' from Binary trees to Graphs. St000323The minimal crossing number of a graph. St000351The determinant of the adjacency matrix of a graph. St000368The Altshuler-Steinberg determinant of a graph. St000370The genus of a graph. St000379The number of Hamiltonian cycles in a graph. St000403The Szeged index minus the Wiener index of a graph. St000671The maximin edge-connectivity for choosing a subgraph. St000699The toughness times the least common multiple of 1,. St000948The chromatic discriminant of a graph. St001069The coefficient of the monomial xy of the Tutte polynomial of the graph. St001119The length of a shortest maximal path in a graph. St001271The competition number of a graph. St001281The normalized isoperimetric number of a graph. St001305The number of induced cycles on four vertices in a graph. St001307The number of induced stars on four vertices in a graph. St001309The number of four-cliques in a graph. St001310The number of induced diamond graphs in a graph. St001323The independence gap of a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001357The maximal degree of a regular spanning subgraph of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001395The number of strictly unfriendly partitions of a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001793The difference between the clique number and the chromatic number of a graph. St001794Half the number of sets of vertices in a graph which are dominating and non-blocking. St001795The binary logarithm of the evaluation of the Tutte polynomial of the graph at (x,y) equal to (-1,-1). St001796The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1). St001797The number of overfull subgraphs of a graph. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000775The multiplicity of the largest eigenvalue in a graph. St000785The number of distinct colouring schemes of a graph. St001316The domatic number of a graph. St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001496The number of graphs with the same Laplacian spectrum as the given graph. St000636The hull number of a graph. St001029The size of the core of a graph. St001109The number of proper colourings of a graph with as few colours as possible. St001111The weak 2-dynamic chromatic number of a graph. St001654The monophonic hull number of a graph. St001716The 1-improper chromatic number of a graph. St001396Number of triples of incomparable elements in a finite poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St000297The number of leading ones in a binary word. St000627The exponent of a binary word. St001430The number of positive entries in a signed permutation. St000877The depth of the binary word interpreted as a path. St000878The number of ones minus the number of zeros of a binary word. St000885The number of critical steps in the Catalan decomposition of a binary word.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!