Your data matches 54 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000533
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000533: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[3],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The minimum of the number of parts and the size of the first part of an integer partition. This is also an upper bound on the maximal number of non-attacking rooks that can be placed on the Ferrers board.
Matching statistic: St000783
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000783: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[3],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The side length of the largest staircase partition fitting into a partition. For an integer partition $(\lambda_1\geq \lambda_2\geq\dots)$ this is the largest integer $k$ such that $\lambda_i > k-i$ for $i\in\{1,\dots,k\}$. In other words, this is the length of a longest (strict) north-east chain of cells in the Ferrers diagram of the partition, using the English convention. Equivalently, this is the maximal number of non-attacking rooks that can be placed on the Ferrers diagram. This is also the maximal number of occurrences of a colour in a proper colouring of a Ferrers diagram. A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic records the largest part occurring in any of these partitions.
Matching statistic: St001432
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001432: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[3],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The order dimension of the partition. Given a partition $\lambda$, let $I(\lambda)$ be the principal order ideal in the Young lattice generated by $\lambda$. The order dimension of a partition is defined as the order dimension of the poset $I(\lambda)$.
Matching statistic: St001200
Mp00311: Plane partitions to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
St001200: Dyck paths ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 100%
Values
[[1],[1],[1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3 = 1 + 2
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 1 + 2
[[2],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 1 + 2
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 1 + 2
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 3 = 1 + 2
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3 = 1 + 2
[[2],[2],[1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 1 + 2
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3 = 1 + 2
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 1 + 2
[[3],[1],[1]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3 = 1 + 2
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3 = 1 + 2
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3 = 1 + 2
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3 = 1 + 2
[[2],[2],[2]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3 = 1 + 2
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[3],[2],[1]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3 = 1 + 2
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[2,1],[2],[1]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3 = 1 + 2
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3 = 1 + 2
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3 = 1 + 2
[[4],[1],[1]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 + 2
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 + 2
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 + 2
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 + 2
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 + 2
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 4 = 2 + 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 4 = 2 + 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 2
[[3],[2],[2]]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 1 + 2
[[3],[3],[1]]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3 = 1 + 2
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 2
[[2,1],[2],[2]]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 1 + 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 2
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 1 + 2
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3 = 1 + 2
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 2
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 1 + 2
[[1,1,1],[1,1,1],[1]]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3 = 1 + 2
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[4],[2],[1]]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1 + 2
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[3,1],[2],[1]]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1 + 2
[[3,1],[1,1],[1]]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1 + 2
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[2,2],[2],[1]]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1 + 2
[[2,2],[1,1],[1]]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1 + 2
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[2,1,1],[2],[1]]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1 + 2
[[2,1,1],[1,1],[1]]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1 + 2
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[1,1,1,1],[1,1],[1]]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1 + 2
[[5],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1 + 2
[[4,1],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1 + 2
[[3,2],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1 + 2
[[3,1,1],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1 + 2
[[2,2,1],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1 + 2
[[2,1,1,1],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1 + 2
[[1,1,1,1,1],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1 + 2
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 2 + 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 2 + 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 2 + 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 2 + 2
[[3],[3],[2]]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 1 + 2
[[2,1],[2,1],[2]]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 1 + 2
[[2,1],[2,1],[1,1]]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 1 + 2
[[1,1,1],[1,1,1],[1,1]]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 1 + 2
[[3],[3],[3]]
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3 = 1 + 2
[[2,1],[2,1],[2,1]]
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3 = 1 + 2
[[1,1,1],[1,1,1],[1,1,1]]
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3 = 1 + 2
Description
The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St000056
Mp00311: Plane partitions to partitionInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000056: Permutations ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 50%
Values
[[1],[1],[1]]
=> [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 1
[[2],[1],[1]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[[1,1],[1],[1]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[[2],[2],[1]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
[[3],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 1
[[2],[2],[2]]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
[[3],[2],[1]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[[4],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[3,1],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[2,2],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
[[3],[2],[2]]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1
[[3],[3],[1]]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ? = 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ? = 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1
[[1,1,1],[1,1,1],[1]]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ? = 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[4],[2],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[3,1],[2],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[3,1],[1,1],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[2,2],[2],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[2,2],[1,1],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[2,1,1],[2],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[2,1,1],[1,1],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[1,1,1,1],[1,1],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[5],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[4,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[3,2],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[3,1,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[2,2,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[2,1,1,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[1,1,1,1,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2
Description
The decomposition (or block) number of a permutation. For $\pi \in \mathcal{S}_n$, this is given by $$\#\big\{ 1 \leq k \leq n : \{\pi_1,\ldots,\pi_k\} = \{1,\ldots,k\} \big\}.$$ This is also known as the number of connected components [1] or the number of blocks [2] of the permutation, considering it as a direct sum. This is one plus [[St000234]].
Matching statistic: St000078
Mp00311: Plane partitions to partitionInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000078: Permutations ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 50%
Values
[[1],[1],[1]]
=> [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 1
[[2],[1],[1]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[[1,1],[1],[1]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[[2],[2],[1]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
[[3],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 1
[[2],[2],[2]]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
[[3],[2],[1]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[[4],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[3,1],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[2,2],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
[[3],[2],[2]]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1
[[3],[3],[1]]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ? = 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ? = 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1
[[1,1,1],[1,1,1],[1]]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ? = 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[4],[2],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[3,1],[2],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[3,1],[1,1],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[2,2],[2],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[2,2],[1,1],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[2,1,1],[2],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[2,1,1],[1,1],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[1,1,1,1],[1,1],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[5],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[4,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[3,2],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[3,1,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[2,2,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[2,1,1,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[1,1,1,1,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2
Description
The number of alternating sign matrices whose left key is the permutation. The left key of an alternating sign matrix was defined by Lascoux in [2] and is obtained by successively removing all the `-1`'s until what remains is a permutation matrix. This notion corresponds to the notion of left key for semistandard tableaux.
Matching statistic: St000255
Mp00311: Plane partitions to partitionInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000255: Permutations ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 50%
Values
[[1],[1],[1]]
=> [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 1
[[2],[1],[1]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[[1,1],[1],[1]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[[2],[2],[1]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
[[3],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 1
[[2],[2],[2]]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
[[3],[2],[1]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[[4],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[3,1],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[2,2],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
[[3],[2],[2]]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1
[[3],[3],[1]]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ? = 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ? = 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1
[[1,1,1],[1,1,1],[1]]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ? = 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[4],[2],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[3,1],[2],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[3,1],[1,1],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[2,2],[2],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[2,2],[1,1],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[2,1,1],[2],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[2,1,1],[1,1],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[1,1,1,1],[1,1],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[5],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[4,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[3,2],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[3,1,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[2,2,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[2,1,1,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[1,1,1,1,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2
Description
The number of reduced Kogan faces with the permutation as type. This is equivalent to finding the number of ways to represent the permutation $\pi \in S_{n+1}$ as a reduced subword of $s_n (s_{n-1} s_n) (s_{n-2} s_{n-1} s_n) \dotsm (s_1 \dotsm s_n)$, or the number of reduced pipe dreams for $\pi$.
Matching statistic: St000570
Mp00311: Plane partitions to partitionInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000570: Permutations ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 50%
Values
[[1],[1],[1]]
=> [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 1
[[2],[1],[1]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[[1,1],[1],[1]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[[2],[2],[1]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
[[3],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 1
[[2],[2],[2]]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
[[3],[2],[1]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[[4],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[3,1],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[2,2],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
[[3],[2],[2]]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1
[[3],[3],[1]]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ? = 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ? = 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1
[[1,1,1],[1,1,1],[1]]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ? = 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[4],[2],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[3,1],[2],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[3,1],[1,1],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[2,2],[2],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[2,2],[1,1],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[2,1,1],[2],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[2,1,1],[1,1],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
[[1,1,1,1],[1,1],[1]]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
[[5],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[4,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[3,2],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[3,1,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[2,2,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[2,1,1,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[1,1,1,1,1],[1],[1]]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2
Description
The Edelman-Greene number of a permutation. This is the sum of the coefficients of the expansion of the Stanley symmetric function $F_\omega$ in Schur functions. Equivalently, this is the number of semistandard tableaux whose column words - obtained by reading up columns starting with the leftmost - are reduced words for $\omega$.
Matching statistic: St000886
Mp00311: Plane partitions to partitionInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000886: Permutations ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 50%
Values
[[1],[1],[1]]
=> [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 1
[[2],[1],[1]]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => 1
[[1,1],[1],[1]]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1
[[2],[2],[1]]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> [4,2,5,1,3] => 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> [4,2,5,1,3] => 1
[[3],[1],[1]]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1
[[2],[2],[2]]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 1
[[3],[2],[1]]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => 1
[[4],[1],[1]]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 1
[[3,1],[1],[1]]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 1
[[2,2],[1],[1]]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 1
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 1
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => ? = 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => ? = 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ? = 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => ? = 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => ? = 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ? = 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => ? = 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 1
[[3],[2],[2]]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 1
[[3],[3],[1]]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [5,2,6,7,1,3,4] => ? = 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => ? = 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 1
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [5,2,6,7,1,3,4] => ? = 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => ? = 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 1
[[1,1,1],[1,1,1],[1]]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [5,2,6,7,1,3,4] => ? = 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1
[[4],[2],[1]]
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1
[[3,1],[2],[1]]
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 1
[[3,1],[1,1],[1]]
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1
[[2,2],[2],[1]]
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 1
[[2,2],[1,1],[1]]
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1
[[2,1,1],[2],[1]]
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 1
[[2,1,1],[1,1],[1]]
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1
[[1,1,1,1],[1,1],[1]]
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 1
[[5],[1],[1]]
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1
[[4,1],[1],[1]]
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1
[[3,2],[1],[1]]
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1
[[3,1,1],[1],[1]]
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1
[[2,2,1],[1],[1]]
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1
[[2,1,1,1],[1],[1]]
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1
[[1,1,1,1,1],[1],[1]]
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1,8] => ? = 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> [7,5,4,3,2,8,1,6] => ? = 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> [7,5,3,8,2,6,1,4] => ? = 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1,8] => ? = 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> [7,5,4,3,2,8,1,6] => ? = 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> [7,5,3,8,2,6,1,4] => ? = 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2
Description
The number of permutations with the same antidiagonal sums. The X-ray of a permutation $\pi$ is the vector of the sums of the antidiagonals of the permutation matrix of $\pi$, read from left to right. For example, the permutation matrix of $\pi=[3,1,2,5,4]$ is $$\left(\begin{array}{rrrrr} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right),$$ so its X-ray is $(0, 1, 1, 1, 0, 0, 0, 2, 0)$. This statistic records the number of permutations having the same X-ray as the given permutation. In [1] this is called the degeneracy of the X-ray of the permutation. By [prop.1, 1], the number of different X-rays of permutations of size $n$ equals the number of nondecreasing differences of permutations of size $n$, [2].
Matching statistic: St000908
Mp00311: Plane partitions to partitionInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
Mp00185: Skew partitions cell posetPosets
St000908: Posets ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 50%
Values
[[1],[1],[1]]
=> [1,1,1]
=> [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 1
[[1,1],[1],[1]]
=> [2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> 1
[[4],[1],[1]]
=> [4,1,1]
=> [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 1
[[3,1],[1],[1]]
=> [4,1,1]
=> [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 1
[[2,2],[1],[1]]
=> [4,1,1]
=> [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 1
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 1
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ? = 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ? = 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ? = 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ? = 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ? = 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ? = 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ? = 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 1
[[3],[2],[2]]
=> [3,2,2]
=> [[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 1
[[3],[3],[1]]
=> [3,3,1]
=> [[3,3,1],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ? = 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 1
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [[3,3,1],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ? = 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 1
[[1,1,1],[1,1,1],[1]]
=> [3,3,1]
=> [[3,3,1],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> ? = 1
[[4],[2],[1]]
=> [4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> ? = 1
[[3,1],[2],[1]]
=> [4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 1
[[3,1],[1,1],[1]]
=> [4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> ? = 1
[[2,2],[2],[1]]
=> [4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 1
[[2,2],[1,1],[1]]
=> [4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> ? = 1
[[2,1,1],[2],[1]]
=> [4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 1
[[2,1,1],[1,1],[1]]
=> [4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> ? = 1
[[1,1,1,1],[1,1],[1]]
=> [4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 1
[[5],[1],[1]]
=> [5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ? = 1
[[4,1],[1],[1]]
=> [5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ? = 1
[[3,2],[1],[1]]
=> [5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ? = 1
[[3,1,1],[1],[1]]
=> [5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ? = 1
[[2,2,1],[1],[1]]
=> [5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ? = 1
[[2,1,1,1],[1],[1]]
=> [5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ? = 1
[[1,1,1,1,1],[1],[1]]
=> [5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ? = 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1,1],[]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1],[]]
=> ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [[2,2,1,1,1,1],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ? = 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [[2,2,2,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ? = 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [[2,2,2,2],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [[2,1,1,1,1,1,1],[]]
=> ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [[2,2,1,1,1,1],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ? = 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [[2,2,2,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ? = 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [[2,2,2,2],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
Description
The length of the shortest maximal antichain in a poset.
The following 44 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000914The sum of the values of the Möbius function of a poset. St001162The minimum jump of a permutation. St001344The neighbouring number of a permutation. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St001735The number of permutations with the same set of runs. St001737The number of descents of type 2 in a permutation. St001859The number of factors of the Stanley symmetric function associated with a permutation. St000221The number of strong fixed points of a permutation. St000279The size of the preimage of the map 'cycle-as-one-line notation' from Permutations to Permutations. St000317The cycle descent number of a permutation. St000355The number of occurrences of the pattern 21-3. St000406The number of occurrences of the pattern 3241 in a permutation. St000407The number of occurrences of the pattern 2143 in a permutation. St000425The number of occurrences of the pattern 132 or of the pattern 213 in a permutation. St000485The length of the longest cycle of a permutation. St000486The number of cycles of length at least 3 of a permutation. St000516The number of stretching pairs of a permutation. St000623The number of occurrences of the pattern 52341 in a permutation. St000646The number of big ascents of a permutation. St000650The number of 3-rises of a permutation. St000663The number of right floats of a permutation. St000664The number of right ropes of a permutation. St000666The number of right tethers of a permutation. St000709The number of occurrences of 14-2-3 or 14-3-2. St000732The number of double deficiencies of a permutation. St000750The number of occurrences of the pattern 4213 in a permutation. St000751The number of occurrences of either of the pattern 2143 or 2143 in a permutation. St000799The number of occurrences of the vincular pattern |213 in a permutation. St000803The number of occurrences of the vincular pattern |132 in a permutation. St000804The number of occurrences of the vincular pattern |123 in a permutation. St001059Number of occurrences of the patterns 41352,42351,51342,52341 in a permutation. St001301The first Betti number of the order complex associated with the poset. St001381The fertility of a permutation. St001550The number of inversions between exceedances where the greater exceedance is linked. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001663The number of occurrences of the Hertzsprung pattern 132 in a permutation. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001705The number of occurrences of the pattern 2413 in a permutation. St001715The number of non-records in a permutation. St001766The number of cells which are not occupied by the same tile in all reduced pipe dreams corresponding to a permutation. St001847The number of occurrences of the pattern 1432 in a permutation. St001634The trace of the Coxeter matrix of the incidence algebra of a poset.