searching the database
Your data matches 155 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001364
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001364: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001364: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,2,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,5,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,3,2,1,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,5,3,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[5,1,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[5,2,1,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[5,2,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
Description
The number of permutations whose cube equals a fixed permutation of given cycle type.
For example, the permutation $\pi=412365$ has cycle type $(4,2)$ and $234165$ is the unique permutation whose cube is $\pi$.
Matching statistic: St000056
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000056: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000056: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Values
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 1
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 1
[1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,2,4,5,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,2,5,3,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[1,3,4,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,4,2,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,4,5,2,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,5,4,3,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[2,1,3,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,1,4,3,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,1,5,4,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,3,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,1,2,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,2,1,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[3,2,1,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,2,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,4,1,2,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[3,5,1,4,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[4,1,3,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[4,2,1,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[4,2,3,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[4,2,5,1,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[4,3,2,1,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[4,5,3,1,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[5,1,3,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[5,2,1,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[5,2,3,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,2] => ? = 9
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,5,4,3,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,6,4,5,3] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,4,3,2,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,5,3,4,2,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,6,3,4,5,2] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[2,1,3,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[3,2,1,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[4,2,3,1,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[5,2,3,4,1,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[6,2,3,4,5,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,3,4,5,6,7] => [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,9,2] => ? = 21
[1,2,3,4,5,7,6] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,4,6,5,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,4,6,7,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,4,7,5,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,4,7,6,5] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,5,4,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,5,4,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,3,5,6,4,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,5,7,6,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,6,4,5,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,6,5,4,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,6,5,7,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,6,7,4,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,3,7,4,6,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,7,5,4,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,7,5,6,4] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,7,6,5,4] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,3,5,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,4,3,5,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,3,6,5,7] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,3,7,6,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,5,3,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,4,5,6,7,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,5,7,3,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,6,3,7,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,6,5,3,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,4,6,7,5,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,7,3,5,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,7,5,6,3] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,4,7,6,3,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,5,3,4,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,5,3,6,7,4] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
Description
The decomposition (or block) number of a permutation.
For $\pi \in \mathcal{S}_n$, this is given by
$$\#\big\{ 1 \leq k \leq n : \{\pi_1,\ldots,\pi_k\} = \{1,\ldots,k\} \big\}.$$
This is also known as the number of connected components [1] or the number of blocks [2] of the permutation, considering it as a direct sum.
This is one plus [[St000234]].
Matching statistic: St000486
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000486: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000486: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Values
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 1
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 1
[1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,2,4,5,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,2,5,3,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[1,3,4,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,4,2,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,4,5,2,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,5,4,3,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[2,1,3,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,1,4,3,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,1,5,4,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,3,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,1,2,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,2,1,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[3,2,1,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,2,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,4,1,2,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[3,5,1,4,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[4,1,3,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[4,2,1,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[4,2,3,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[4,2,5,1,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[4,3,2,1,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[4,5,3,1,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[5,1,3,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[5,2,1,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[5,2,3,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,2] => ? = 9
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,5,4,3,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,6,4,5,3] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,4,3,2,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,5,3,4,2,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,6,3,4,5,2] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[2,1,3,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[3,2,1,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[4,2,3,1,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[5,2,3,4,1,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[6,2,3,4,5,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,3,4,5,6,7] => [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,9,2] => ? = 21
[1,2,3,4,5,7,6] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,4,6,5,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,4,6,7,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,4,7,5,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,4,7,6,5] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,5,4,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,5,4,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,3,5,6,4,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,5,7,6,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,6,4,5,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,6,5,4,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,6,5,7,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,6,7,4,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,3,7,4,6,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,7,5,4,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,7,5,6,4] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,7,6,5,4] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,3,5,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,4,3,5,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,3,6,5,7] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,3,7,6,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,5,3,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,4,5,6,7,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,5,7,3,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,6,3,7,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,6,5,3,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,4,6,7,5,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,7,3,5,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,7,5,6,3] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,4,7,6,3,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,5,3,4,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,5,3,6,7,4] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
Description
The number of cycles of length at least 3 of a permutation.
Matching statistic: St000694
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000694: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000694: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Values
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 1
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 1
[1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,2,4,5,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,2,5,3,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[1,3,4,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,4,2,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,4,5,2,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,5,4,3,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[2,1,3,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,1,4,3,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,1,5,4,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,3,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,1,2,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,2,1,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[3,2,1,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,2,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,4,1,2,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[3,5,1,4,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[4,1,3,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[4,2,1,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[4,2,3,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[4,2,5,1,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[4,3,2,1,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[4,5,3,1,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[5,1,3,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[5,2,1,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[5,2,3,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,2] => ? = 9
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,5,4,3,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,6,4,5,3] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,4,3,2,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,5,3,4,2,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,6,3,4,5,2] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[2,1,3,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[3,2,1,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[4,2,3,1,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[5,2,3,4,1,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[6,2,3,4,5,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,3,4,5,6,7] => [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,9,2] => ? = 21
[1,2,3,4,5,7,6] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,4,6,5,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,4,6,7,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,4,7,5,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,4,7,6,5] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,5,4,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,5,4,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,3,5,6,4,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,5,7,6,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,6,4,5,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,6,5,4,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,6,5,7,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,6,7,4,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,3,7,4,6,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,7,5,4,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,7,5,6,4] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,7,6,5,4] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,3,5,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,4,3,5,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,3,6,5,7] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,3,7,6,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,5,3,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,4,5,6,7,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,5,7,3,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,6,3,7,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,6,5,3,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,4,6,7,5,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,7,3,5,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,7,5,6,3] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,4,7,6,3,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,5,3,4,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,5,3,6,7,4] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
Description
The number of affine bounded permutations that project to a given permutation.
As affine bounded permutations are in bijection with usual permutations where fix-points come in two colors, this statistic is $2^k$ where $k$ is the number of fixed points [[St000022]].
Matching statistic: St001174
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001174: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001174: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Values
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 1
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 1
[1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,2,4,5,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,2,5,3,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[1,3,4,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,4,2,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,4,5,2,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,5,4,3,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[2,1,3,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,1,4,3,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,1,5,4,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,3,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,1,2,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,2,1,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[3,2,1,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,2,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,4,1,2,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[3,5,1,4,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[4,1,3,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[4,2,1,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[4,2,3,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[4,2,5,1,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[4,3,2,1,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[4,5,3,1,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[5,1,3,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[5,2,1,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[5,2,3,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,2] => ? = 9
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,5,4,3,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,6,4,5,3] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,4,3,2,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,5,3,4,2,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,6,3,4,5,2] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[2,1,3,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[3,2,1,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[4,2,3,1,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[5,2,3,4,1,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[6,2,3,4,5,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,3,4,5,6,7] => [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,9,2] => ? = 21
[1,2,3,4,5,7,6] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,4,6,5,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,4,6,7,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,4,7,5,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,4,7,6,5] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,5,4,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,5,4,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,3,5,6,4,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,5,7,6,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,6,4,5,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,6,5,4,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,6,5,7,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,6,7,4,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,3,7,4,6,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,7,5,4,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,7,5,6,4] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,7,6,5,4] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,3,5,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,4,3,5,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,3,6,5,7] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,3,7,6,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,5,3,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,4,5,6,7,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,5,7,3,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,6,3,7,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,6,5,3,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,4,6,7,5,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,7,3,5,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,7,5,6,3] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,4,7,6,3,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,5,3,4,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,5,3,6,7,4] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
Description
The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Matching statistic: St001195
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
St001195: Dyck paths ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
St001195: Dyck paths ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Values
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,5,4,3,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,1,5,4,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[3,1,2,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[3,2,1,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[3,2,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[4,1,3,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[4,2,1,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[4,2,3,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[4,2,5,1,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[4,3,2,1,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[4,5,3,1,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[5,1,3,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[5,2,1,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[5,2,3,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 9
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[1,2,5,4,3,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[1,2,6,4,5,3] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[1,4,3,2,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[1,5,3,4,2,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[1,6,3,4,5,2] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[2,1,3,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[3,2,1,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[4,2,3,1,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[5,2,3,4,1,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[6,2,3,4,5,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[1,2,3,4,5,6,7] => [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 21
[1,2,3,4,5,7,6] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 9
[1,2,3,4,6,5,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 9
[1,2,3,4,6,7,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3
[1,2,3,4,7,5,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3
[1,2,3,4,7,6,5] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 9
[1,2,3,5,4,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 9
[1,2,3,5,4,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,2,3,5,6,4,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3
[1,2,3,5,7,6,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3
[1,2,3,6,4,5,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3
[1,2,3,6,5,4,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 9
[1,2,3,6,5,7,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3
[1,2,3,6,7,4,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,2,3,7,4,6,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3
[1,2,3,7,5,4,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3
[1,2,3,7,5,6,4] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 9
[1,2,3,7,6,5,4] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,2,4,3,5,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 9
[1,2,4,3,5,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,2,4,3,6,5,7] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,2,4,3,7,6,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,2,4,5,3,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3
[1,2,4,5,6,7,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 1
[1,2,4,5,7,3,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 1
[1,2,4,6,3,7,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 1
[1,2,4,6,5,3,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3
[1,2,4,6,7,5,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 1
[1,2,4,7,3,5,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 1
[1,2,4,7,5,6,3] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3
[1,2,4,7,6,3,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 1
[1,2,5,3,4,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 3
[1,2,5,3,6,7,4] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 1
Description
The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$.
Matching statistic: St001208
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St001208: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St001208: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Values
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 1
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1
[1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
[1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
[2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ? = 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
[1,2,4,5,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[1,2,5,3,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
[1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[1,3,4,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[1,4,2,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[1,4,5,2,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
[1,5,4,3,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
[2,1,3,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[2,1,4,3,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[2,1,5,4,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[2,3,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[3,1,2,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[3,2,1,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
[3,2,1,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[3,2,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[3,4,1,2,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[3,5,1,4,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[4,1,3,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[4,2,1,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
[4,2,3,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[4,2,5,1,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[4,3,2,1,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[4,5,3,1,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[5,1,3,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[5,2,1,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[5,2,3,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 9
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 3
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 3
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 3
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 3
[1,2,5,4,3,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 3
[1,2,6,4,5,3] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 3
[1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 3
[1,4,3,2,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 3
[1,5,3,4,2,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 3
[1,6,3,4,5,2] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 3
[2,1,3,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 3
[3,2,1,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 3
[4,2,3,1,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 3
[5,2,3,4,1,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 3
[6,2,3,4,5,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 3
[1,2,3,4,5,6,7] => [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 21
[1,2,3,4,5,7,6] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 9
[1,2,3,4,6,5,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 9
[1,2,3,4,6,7,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 3
[1,2,3,4,7,5,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 3
[1,2,3,4,7,6,5] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 9
[1,2,3,5,4,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 9
[1,2,3,5,4,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => ? = 3
[1,2,3,5,6,4,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 3
[1,2,3,5,7,6,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 3
[1,2,3,6,4,5,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 3
[1,2,3,6,5,4,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 9
[1,2,3,6,5,7,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 3
[1,2,3,6,7,4,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => ? = 3
[1,2,3,7,4,6,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 3
[1,2,3,7,5,4,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 3
[1,2,3,7,5,6,4] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 9
[1,2,3,7,6,5,4] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => ? = 3
[1,2,4,3,5,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 9
[1,2,4,3,5,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => ? = 3
[1,2,4,3,6,5,7] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => ? = 3
[1,2,4,3,7,6,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => ? = 3
[1,2,4,5,3,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 3
[1,2,4,5,6,7,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,1,4,5] => ? = 1
[1,2,4,5,7,3,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,1,4,5] => ? = 1
[1,2,4,6,3,7,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,1,4,5] => ? = 1
[1,2,4,6,5,3,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 3
[1,2,4,6,7,5,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,1,4,5] => ? = 1
[1,2,4,7,3,5,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,1,4,5] => ? = 1
[1,2,4,7,5,6,3] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 3
[1,2,4,7,6,3,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,1,4,5] => ? = 1
[1,2,5,3,4,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 3
[1,2,5,3,6,7,4] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,1,4,5] => ? = 1
Description
The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$.
Matching statistic: St001256
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001256: Dyck paths ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001256: Dyck paths ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Values
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
[1,5,4,3,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[2,1,5,4,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[3,1,2,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[3,2,1,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[3,2,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[4,1,3,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[4,2,1,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
[4,2,3,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[4,2,5,1,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[4,3,2,1,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[4,5,3,1,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[5,1,3,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[5,2,1,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[5,2,3,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 9
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[1,2,5,4,3,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[1,2,6,4,5,3] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[1,4,3,2,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[1,5,3,4,2,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[1,6,3,4,5,2] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[2,1,3,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[3,2,1,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[4,2,3,1,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[5,2,3,4,1,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[6,2,3,4,5,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[1,2,3,4,5,6,7] => [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 21
[1,2,3,4,5,7,6] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 9
[1,2,3,4,6,5,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 9
[1,2,3,4,6,7,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 3
[1,2,3,4,7,5,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 3
[1,2,3,4,7,6,5] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 9
[1,2,3,5,4,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 9
[1,2,3,5,4,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 3
[1,2,3,5,6,4,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 3
[1,2,3,5,7,6,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 3
[1,2,3,6,4,5,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 3
[1,2,3,6,5,4,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 9
[1,2,3,6,5,7,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 3
[1,2,3,6,7,4,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 3
[1,2,3,7,4,6,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 3
[1,2,3,7,5,4,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 3
[1,2,3,7,5,6,4] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 9
[1,2,3,7,6,5,4] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 3
[1,2,4,3,5,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 9
[1,2,4,3,5,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 3
[1,2,4,3,6,5,7] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 3
[1,2,4,3,7,6,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 3
[1,2,4,5,3,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 3
[1,2,4,5,6,7,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 1
[1,2,4,5,7,3,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 1
[1,2,4,6,3,7,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 1
[1,2,4,6,5,3,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 3
[1,2,4,6,7,5,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 1
[1,2,4,7,3,5,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 1
[1,2,4,7,5,6,3] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 3
[1,2,4,7,6,3,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 1
[1,2,5,3,4,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 3
[1,2,5,3,6,7,4] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 1
Description
Number of simple reflexive modules that are 2-stable reflexive.
See Definition 3.1. in the reference for the definition of 2-stable reflexive.
Matching statistic: St001461
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001461: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001461: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Values
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 1
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 1
[1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,2,4,5,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,2,5,3,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[1,3,4,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,4,2,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,4,5,2,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,5,4,3,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[2,1,3,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,1,4,3,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,1,5,4,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[2,3,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,1,2,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,2,1,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[3,2,1,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,2,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[3,4,1,2,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[3,5,1,4,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[4,1,3,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[4,2,1,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[4,2,3,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[4,2,5,1,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[4,3,2,1,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[4,5,3,1,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[5,1,3,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[5,2,1,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[5,2,3,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,2] => ? = 9
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,5,4,3,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,6,4,5,3] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,4,3,2,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,5,3,4,2,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,6,3,4,5,2] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[2,1,3,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[3,2,1,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[4,2,3,1,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[5,2,3,4,1,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[6,2,3,4,5,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,2,3,4,5,6,7] => [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,9,2] => ? = 21
[1,2,3,4,5,7,6] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,4,6,5,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,4,6,7,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,4,7,5,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,4,7,6,5] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,5,4,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,5,4,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,3,5,6,4,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,5,7,6,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,6,4,5,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,6,5,4,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,6,5,7,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,6,7,4,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,3,7,4,6,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,7,5,4,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,3,7,5,6,4] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,3,7,6,5,4] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,3,5,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [8,1,4,5,6,7,2,3] => ? = 9
[1,2,4,3,5,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,3,6,5,7] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,3,7,6,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 3
[1,2,4,5,3,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,4,5,6,7,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,5,7,3,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,6,3,7,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,6,5,3,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,4,6,7,5,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,7,3,5,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,4,7,5,6,3] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,4,7,6,3,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
[1,2,5,3,4,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3
[1,2,5,3,6,7,4] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 1
Description
The number of topologically connected components of the chord diagram of a permutation.
The chord diagram of a permutation $\pi\in\mathfrak S_n$ is obtained by placing labels $1,\dots,n$ in cyclic order on a cycle and drawing a (straight) arc from $i$ to $\pi(i)$ for every label $i$.
This statistic records the number of topologically connected components in the chord diagram. In particular, if two arcs cross, all four labels connected by the two arcs are in the same component.
The permutation $\pi\in\mathfrak S_n$ stabilizes an interval $I=\{a,a+1,\dots,b\}$ if $\pi(I)=I$. It is stabilized-interval-free, if the only interval $\pi$ stablizes is $\{1,\dots,n\}$. Thus, this statistic is $1$ if $\pi$ is stabilized-interval-free.
Matching statistic: St001590
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
St001590: Perfect matchings ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
St001590: Perfect matchings ⟶ ℤResult quality: 10% ●values known / values provided: 43%●distinct values known / distinct values provided: 10%
Values
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> 1
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> ? = 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> 1
[1,5,4,3,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[2,1,5,4,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[3,1,2,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[3,2,1,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[3,2,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[4,1,3,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[4,2,1,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> 1
[4,2,3,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[4,2,5,1,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[4,3,2,1,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[4,5,3,1,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[5,1,3,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[5,2,1,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[5,2,3,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)]
=> ? = 9
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? = 3
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? = 3
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? = 3
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? = 3
[1,2,5,4,3,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? = 3
[1,2,6,4,5,3] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? = 3
[1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? = 3
[1,4,3,2,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? = 3
[1,5,3,4,2,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? = 3
[1,6,3,4,5,2] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? = 3
[2,1,3,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? = 3
[3,2,1,4,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? = 3
[4,2,3,1,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? = 3
[5,2,3,4,1,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? = 3
[6,2,3,4,5,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> ? = 3
[1,2,3,4,5,6,7] => [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10)]
=> ? = 21
[1,2,3,4,5,7,6] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]
=> ? = 9
[1,2,3,4,6,5,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]
=> ? = 9
[1,2,3,4,6,7,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> ? = 3
[1,2,3,4,7,5,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> ? = 3
[1,2,3,4,7,6,5] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]
=> ? = 9
[1,2,3,5,4,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]
=> ? = 9
[1,2,3,5,4,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)]
=> ? = 3
[1,2,3,5,6,4,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> ? = 3
[1,2,3,5,7,6,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> ? = 3
[1,2,3,6,4,5,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> ? = 3
[1,2,3,6,5,4,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]
=> ? = 9
[1,2,3,6,5,7,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> ? = 3
[1,2,3,6,7,4,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)]
=> ? = 3
[1,2,3,7,4,6,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> ? = 3
[1,2,3,7,5,4,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> ? = 3
[1,2,3,7,5,6,4] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]
=> ? = 9
[1,2,3,7,6,5,4] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)]
=> ? = 3
[1,2,4,3,5,6,7] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]
=> ? = 9
[1,2,4,3,5,7,6] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)]
=> ? = 3
[1,2,4,3,6,5,7] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)]
=> ? = 3
[1,2,4,3,7,6,5] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)]
=> ? = 3
[1,2,4,5,3,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> ? = 3
[1,2,4,5,6,7,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)]
=> ? = 1
[1,2,4,5,7,3,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)]
=> ? = 1
[1,2,4,6,3,7,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)]
=> ? = 1
[1,2,4,6,5,3,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> ? = 3
[1,2,4,6,7,5,3] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)]
=> ? = 1
[1,2,4,7,3,5,6] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)]
=> ? = 1
[1,2,4,7,5,6,3] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> ? = 3
[1,2,4,7,6,3,5] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)]
=> ? = 1
[1,2,5,3,4,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]
=> ? = 3
[1,2,5,3,6,7,4] => [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)]
=> ? = 1
Description
The crossing number of a perfect matching.
This is the maximal number of chords in the standard representation of a perfect matching that mutually cross.
The following 145 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001830The chord expansion number of a perfect matching. St001832The number of non-crossing perfect matchings in the chord expansion of a perfect matching. St001859The number of factors of the Stanley symmetric function associated with a permutation. St000221The number of strong fixed points of a permutation. St000279The size of the preimage of the map 'cycle-as-one-line notation' from Permutations to Permutations. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000623The number of occurrences of the pattern 52341 in a permutation. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St001381The fertility of a permutation. St001444The rank of the skew-symmetric form which is non-zero on crossing arcs of a perfect matching. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001549The number of restricted non-inversions between exceedances. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001552The number of inversions between excedances and fixed points of a permutation. St001663The number of occurrences of the Hertzsprung pattern 132 in a permutation. St001810The number of fixed points of a permutation smaller than its largest moved point. St001811The Castelnuovo-Mumford regularity of a permutation. St001837The number of occurrences of a 312 pattern in the restricted growth word of a perfect matching. St001850The number of Hecke atoms of a permutation. St001490The number of connected components of a skew partition. St000264The girth of a graph, which is not a tree. St001613The binary logarithm of the size of the center of a lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001616The number of neutral elements in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001570The minimal number of edges to add to make a graph Hamiltonian. St001060The distinguishing index of a graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000508Eigenvalues of the random-to-random operator acting on a simple module. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001371The length of the longest Yamanouchi prefix of a binary word. St001557The number of inversions of the second entry of a permutation. St001730The number of times the path corresponding to a binary word crosses the base line. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000744The length of the path to the largest entry in a standard Young tableau. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St000044The number of vertices of the unicellular map given by a perfect matching. St000017The number of inversions of a standard tableau. St001721The degree of a binary word. St000016The number of attacking pairs of a standard tableau. St001846The number of elements which do not have a complement in the lattice. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000068The number of minimal elements in a poset. St001820The size of the image of the pop stack sorting operator. St001618The cardinality of the Frattini sublattice of a lattice. St001845The number of join irreducibles minus the rank of a lattice. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St000879The number of long braid edges in the graph of braid moves of a permutation. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000667The greatest common divisor of the parts of the partition. St000993The multiplicity of the largest part of an integer partition. St000478Another weight of a partition according to Alladi. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000713The dimension of the irreducible representation of Sp(4) labelled by an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000929The constant term of the character polynomial of an integer partition. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St001568The smallest positive integer that does not appear twice in the partition. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001555The order of a signed permutation. St001884The number of borders of a binary word. St000295The length of the border of a binary word. St000454The largest eigenvalue of a graph if it is integral. St000455The second largest eigenvalue of a graph if it is integral. St000181The number of connected components of the Hasse diagram for the poset. St001890The maximum magnitude of the Möbius function of a poset. St001625The Möbius invariant of a lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001621The number of atoms of a lattice. St001623The number of doubly irreducible elements of a lattice. St001624The breadth of a lattice. St001626The number of maximal proper sublattices of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St001754The number of tolerances of a finite lattice. St001895The oddness of a signed permutation. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000781The number of proper colouring schemes of a Ferrers diagram. St001128The exponens consonantiae of a partition. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001587Half of the largest even part of an integer partition. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000474Dyson's crank of a partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000668The least common multiple of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000770The major index of an integer partition when read from bottom to top. St000937The number of positive values of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000997The even-odd crank of an integer partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001383The BG-rank of an integer partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001571The Cartan determinant of the integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St000046The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St001866The nesting alignments of a signed permutation. St001870The number of positive entries followed by a negative entry in a signed permutation. St001964The interval resolution global dimension of a poset. St000256The number of parts from which one can substract 2 and still get an integer partition. St001617The dimension of the space of valuations of a lattice. St001889The size of the connectivity set of a signed permutation. St001851The number of Hecke atoms of a signed permutation. St000627The exponent of a binary word. St000878The number of ones minus the number of zeros of a binary word.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!