Your data matches 61 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001273
Mp00099: Dyck paths bounce pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00142: Dyck paths promotionDyck paths
St001273: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,1,0,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 1
Description
The projective dimension of the first term in an injective coresolution of the regular module. The algebra has the double centraliser property when 0 is returned and it is 1-Gorenstein in case a number < =1 is returned.
Matching statistic: St001174
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
St001174: Permutations ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [5,1,2,3,4] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,2,3,4,6,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,2,3,6,4,5] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,2,4,3,6,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,2,3,6,4,5] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,2,6,3,4,5] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,3,2,4,6,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,3,2,6,4,5] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,2,4,3,6,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,2,3,6,4,5] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,2,6,3,4,5] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,4,2,3,6,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,3,2,6,4,5] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,0,0,-1,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,2,6,3,4,5] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,6,2,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [2,1,3,4,6,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [2,1,3,6,4,5] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [2,1,4,3,6,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [2,1,3,6,4,5] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [2,1,6,3,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,3,2,4,6,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,3,2,6,4,5] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,2,4,3,6,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,2,3,6,4,5] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,2,6,3,4,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,4,2,3,6,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,1,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,3,2,6,4,5] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,1,0,0,-1,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,2,6,3,4,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[0,0,1,0,0,0],[1,0,-1,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,6,2,3,4,5] => 1
[]
=> [1,0]
=> [[1]]
=> [1] => ? = 1
Description
The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Mp00099: Dyck paths bounce pathDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St001257: Dyck paths ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[]
=> []
=> []
=> []
=> ? = 1 + 1
Description
The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J.
St001195: Dyck paths ⟶ ℤResult quality: 94% values known / values provided: 94%distinct values known / distinct values provided: 100%
Values
[1,0]
=> ? = 0
[1,0,1,0]
=> ? = 0
[1,1,0,0]
=> ? = 1
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> 0
[]
=> ? = 1
Description
The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000260: Graphs ⟶ ℤResult quality: 65% values known / values provided: 65%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [1,2] => [2] => ([],2)
=> ? = 0
[1,1,0,0]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [3] => ([],3)
=> ? = 0
[1,0,1,1,0,0]
=> [1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [1,2] => ([(1,2)],3)
=> ? = 0
[1,1,0,1,0,0]
=> [2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4] => ([],4)
=> ? = 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,3] => ([(2,3)],4)
=> ? = 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5] => ([],5)
=> ? = 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,4] => ([(3,4)],5)
=> ? = 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[]
=> [] => [] => ?
=> ? = 1
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00003: Alternating sign matrices rotate counterclockwiseAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
St001199: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 63%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [[1]]
=> [[1]]
=> [1,0]
=> ? = 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> ? = 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> ? = 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> ? = 0
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 0
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 0
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,1,0,-1,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[]
=> []
=> []
=> ?
=> ? = 1
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001933
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001933: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 63%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1] => [1,0]
=> []
=> ? = 0
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> []
=> ? = 0
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> [1]
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? = 0
[1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? = 0
[1,1,0,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? = 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? = 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? = 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? = 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 0
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 1
[]
=> [] => []
=> []
=> ? = 1
Description
The largest multiplicity of a part in an integer partition.
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00003: Alternating sign matrices rotate counterclockwiseAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
St001198: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 63%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [[1]]
=> [[1]]
=> [1,0]
=> ? = 0 + 1
[1,0,1,0]
=> [[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> ? = 0 + 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,1,0,-1,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[]
=> []
=> []
=> ?
=> ? = 1 + 1
Description
The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00003: Alternating sign matrices rotate counterclockwiseAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
St001200: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 63%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [[1]]
=> [[1]]
=> [1,0]
=> ? = 0 + 1
[1,0,1,0]
=> [[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> ? = 0 + 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,1,0,-1,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[]
=> []
=> []
=> ?
=> ? = 1 + 1
Description
The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00003: Alternating sign matrices rotate counterclockwiseAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
St001206: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 63%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [[1]]
=> [[1]]
=> [1,0]
=> ? = 0 + 1
[1,0,1,0]
=> [[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> ? = 0 + 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,1,0,-1,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[]
=> []
=> []
=> ?
=> ? = 1 + 1
Description
The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.
The following 51 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001498The normalised height of a Nakayama algebra with magnitude 1. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St000706The product of the factorials of the multiplicities of an integer partition. St000993The multiplicity of the largest part of an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St000929The constant term of the character polynomial of an integer partition. St000264The girth of a graph, which is not a tree. St000640The rank of the largest boolean interval in a poset. St000456The monochromatic index of a connected graph. St001545The second Elser number of a connected graph. St001621The number of atoms of a lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000606The number of occurrences of the pattern {{1},{2,3}} such that 1,3 are maximal, (2,3) are consecutive in a block. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001060The distinguishing index of a graph. St000237The number of small exceedances. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St000007The number of saliances of the permutation. St000618The number of self-evacuating tableaux of given shape. St000781The number of proper colouring schemes of a Ferrers diagram. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001175The size of a partition minus the hook length of the base cell. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001383The BG-rank of an integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St000241The number of cyclical small excedances. St000663The number of right floats of a permutation. St000711The number of big exceedences of a permutation. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001810The number of fixed points of a permutation smaller than its largest moved point. St000454The largest eigenvalue of a graph if it is integral. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St000455The second largest eigenvalue of a graph if it is integral.