Identifier
-
Mp00099:
Dyck paths
—bounce path⟶
Dyck paths
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001257: Dyck paths ⟶ ℤ
Values
[1,0] => [1,0] => [1,0] => [1,0] => 1
[1,0,1,0] => [1,0,1,0] => [1,0,1,0] => [1,1,0,0] => 1
[1,1,0,0] => [1,1,0,0] => [1,1,0,0] => [1,0,1,0] => 2
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 1
[1,0,1,1,0,0] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => [1,1,0,1,0,0] => 2
[1,1,0,0,1,0] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => 1
[1,1,0,1,0,0] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => [1,1,0,1,0,0] => 2
[1,1,1,0,0,0] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 2
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => 2
[1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 1
[1,0,1,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => 2
[1,0,1,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => 2
[1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => 1
[1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => 2
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 1
[1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => 2
[1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => 2
[1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0] => 2
[1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => 2
[1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => 2
[1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 2
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 2
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 1
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 2
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 2
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => 1
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => 2
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 1
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => 2
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 2
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => 2
[1,0,1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => 2
[1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 2
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 2
[1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 2
[1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => 1
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 2
[1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 2
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => 1
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => 2
[1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => 1
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => 2
[1,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 2
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => 2
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => 2
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 2
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 2
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 2
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => 2
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => 1
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => 2
[1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 2
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => 2
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => 2
[1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 2
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 2
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => 2
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => 2
[1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 2
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 2
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 2
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 1
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 2
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 1
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 2
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 2
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 1
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0] => 2
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 1
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0] => 2
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 2
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => 2
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0] => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 2
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 2
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 1
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => 2
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => 1
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => 2
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => 2
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 1
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0] => 2
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => 1
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0] => 2
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => 2
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => 2
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0] => 2
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => 2
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 2
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => 2
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => 2
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => 1
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => 2
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => 2
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => 2
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => 2
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 2
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J.
Map
bounce path
Description
Sends a Dyck path D of length 2n to its bounce path.
This path is formed by starting at the endpoint (n,n) of D and travelling west until encountering the first vertical step of D, then south until hitting the diagonal, then west again to hit D, etc. until the point (0,0) is reached.
This map is the first part of the zeta map Mp00030zeta map.
This path is formed by starting at the endpoint (n,n) of D and travelling west until encountering the first vertical step of D, then south until hitting the diagonal, then west again to hit D, etc. until the point (0,0) is reached.
This map is the first part of the zeta map Mp00030zeta map.
Map
Cori-Le Borgne involution
Description
The Cori-Le Borgne involution on Dyck paths.
Append an additional down step to the Dyck path and consider its (literal) reversal. The image of the involution is then the unique rotation of this word which is a Dyck word followed by an additional down step. Alternatively, it is the composite ζ∘rev∘ζ(−1), where ζ is Mp00030zeta map.
Append an additional down step to the Dyck path and consider its (literal) reversal. The image of the involution is then the unique rotation of this word which is a Dyck word followed by an additional down step. Alternatively, it is the composite ζ∘rev∘ζ(−1), where ζ is Mp00030zeta map.
Map
Lalanne-Kreweras involution
Description
The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!