searching the database
Your data matches 42 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000667
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
St000667: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 2
[1,1]
=> 1
[3]
=> 3
[2,1]
=> 1
[1,1,1]
=> 1
[4]
=> 4
[3,1]
=> 1
[2,2]
=> 2
[2,1,1]
=> 1
[1,1,1,1]
=> 1
[5]
=> 5
[4,1]
=> 1
[3,2]
=> 1
[3,1,1]
=> 1
[2,2,1]
=> 1
[2,1,1,1]
=> 1
[1,1,1,1,1]
=> 1
[6]
=> 6
[5,1]
=> 1
[4,2]
=> 2
[4,1,1]
=> 1
[3,3]
=> 3
[3,2,1]
=> 1
[3,1,1,1]
=> 1
[2,2,2]
=> 2
[2,2,1,1]
=> 1
[2,1,1,1,1]
=> 1
[1,1,1,1,1,1]
=> 1
[7]
=> 7
[6,1]
=> 1
[5,2]
=> 1
[5,1,1]
=> 1
[4,3]
=> 1
[4,2,1]
=> 1
[4,1,1,1]
=> 1
[3,3,1]
=> 1
[3,2,2]
=> 1
[3,2,1,1]
=> 1
[3,1,1,1,1]
=> 1
[2,2,2,1]
=> 1
[2,2,1,1,1]
=> 1
[2,1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1]
=> 1
[7,1]
=> 1
[6,1,1]
=> 1
[5,3]
=> 1
[5,2,1]
=> 1
[5,1,1,1]
=> 1
[4,4]
=> 4
Description
The greatest common divisor of the parts of the partition.
Matching statistic: St001051
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00151: Permutations —to cycle type⟶ Set partitions
St001051: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00151: Permutations —to cycle type⟶ Set partitions
St001051: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> [[1]]
=> [1] => {{1}}
=> 1
[2]
=> [[1,2]]
=> [1,2] => {{1},{2}}
=> 2
[1,1]
=> [[1],[2]]
=> [2,1] => {{1,2}}
=> 1
[3]
=> [[1,2,3]]
=> [1,2,3] => {{1},{2},{3}}
=> 3
[2,1]
=> [[1,2],[3]]
=> [3,1,2] => {{1,2,3}}
=> 1
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => {{1,3},{2}}
=> 1
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => {{1},{2},{3},{4}}
=> 4
[3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => {{1,2,3,4}}
=> 1
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => {{1,3},{2,4}}
=> 2
[2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => {{1,2,3,4}}
=> 1
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => {{1,4},{2,3}}
=> 1
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> 5
[4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => {{1,2,3,4,5}}
=> 1
[3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => {{1,2,3,4,5}}
=> 1
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => {{1,3,5},{2,4}}
=> 1
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => {{1,2,3,4,5}}
=> 1
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => {{1,2,4,5},{3}}
=> 1
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => {{1,5},{2,4},{3}}
=> 1
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => {{1},{2},{3},{4},{5},{6}}
=> 6
[5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => {{1,2,3,4,5,6}}
=> 1
[4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => {{1,3,5},{2,4,6}}
=> 2
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => {{1,2,3,4,5,6}}
=> 1
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => {{1,4},{2,5},{3,6}}
=> 3
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => {{1,2,3,4,5,6}}
=> 1
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => {{1,3,4,6},{2,5}}
=> 1
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => {{1,5},{2,6},{3},{4}}
=> 2
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => {{1,2,5,6},{3},{4}}
=> 1
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => {{1,2,5,6},{3,4}}
=> 1
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => {{1,6},{2,5},{3,4}}
=> 1
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => {{1},{2},{3},{4},{5},{6},{7}}
=> 7
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => {{1,2,3,4,5,6,7}}
=> 1
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => {{1,2,3,4,5,6,7}}
=> 1
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => {{1,3,5,7},{2,4,6}}
=> 1
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => {{1,2,3,4,5,6,7}}
=> 1
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => {{1,4,7},{2,5},{3,6}}
=> 1
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => {{1,4,7},{2,3,5,6}}
=> 1
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => {{1,3,5,7},{2,4,6}}
=> 1
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => {{1,2,3,4,5,6,7}}
=> 1
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => {{1,3,4,5,7},{2,6}}
=> 1
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => {{1,3,5,7},{2,6},{4}}
=> 1
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => {{1,2,3,4,5,6,7}}
=> 1
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => {{1,2,6,7},{3,4,5}}
=> 1
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => {{1,2,6,7},{3,5},{4}}
=> 1
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => {{1,7},{2,6},{3,5},{4}}
=> 1
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [8,1,2,3,4,5,6,7] => {{1,2,3,4,5,6,7,8}}
=> 1
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [8,7,1,2,3,4,5,6] => {{1,2,3,4,5,6,7,8}}
=> 1
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [6,7,8,1,2,3,4,5] => {{1,2,3,4,5,6,7,8}}
=> 1
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [8,6,7,1,2,3,4,5] => {{1,2,3,4,5,6,7,8}}
=> 1
[5,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8]]
=> [8,7,6,1,2,3,4,5] => {{1,2,4,5,7,8},{3,6}}
=> 1
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => {{1,5},{2,6},{3,7},{4,8}}
=> 4
Description
The depth of the label 1 in the decreasing labelled unordered tree associated with the set partition.
The bijection between set partitions of {1,…,n} into k blocks and trees with n+1−k leaves is described in Theorem 1 of [1].
Matching statistic: St000260
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 45%●distinct values known / distinct values provided: 14%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 45%●distinct values known / distinct values provided: 14%
Values
[1]
=> 10 => [1,1] => ([(0,1)],2)
=> 1
[2]
=> 100 => [1,2] => ([(1,2)],3)
=> ? = 2
[1,1]
=> 110 => [2,1] => ([(0,2),(1,2)],3)
=> 1
[3]
=> 1000 => [1,3] => ([(2,3)],4)
=> ? = 3
[2,1]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1]
=> 1110 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4]
=> 10000 => [1,4] => ([(3,4)],5)
=> ? = 4
[3,1]
=> 10010 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,2]
=> 1100 => [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
[2,1,1]
=> 10110 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,1]
=> 11110 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5]
=> 100000 => [1,5] => ([(4,5)],6)
=> ? = 5
[4,1]
=> 100010 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[3,2]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[3,1,1]
=> 100110 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,2,1]
=> 11010 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,1,1,1]
=> 101110 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,1,1]
=> 111110 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[6]
=> 1000000 => [1,6] => ([(5,6)],7)
=> ? = 6
[5,1]
=> 1000010 => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[4,2]
=> 100100 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[4,1,1]
=> 1000110 => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[3,3]
=> 11000 => [2,3] => ([(2,4),(3,4)],5)
=> ? = 3
[3,2,1]
=> 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[3,1,1,1]
=> 1001110 => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[2,2,2]
=> 11100 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[2,2,1,1]
=> 110110 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,1,1,1,1]
=> 1011110 => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[1,1,1,1,1,1]
=> 1111110 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
[7]
=> 10000000 => [1,7] => ([(6,7)],8)
=> ? = 7
[6,1]
=> 10000010 => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[5,2]
=> 1000100 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[5,1,1]
=> 10000110 => [1,4,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[4,3]
=> 101000 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[4,2,1]
=> 1001010 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[4,1,1,1]
=> 10001110 => [1,3,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[3,3,1]
=> 110010 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[3,2,2]
=> 101100 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[3,2,1,1]
=> 1010110 => [1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[3,1,1,1,1]
=> 10011110 => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[2,2,2,1]
=> 111010 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,2,1,1,1]
=> 1101110 => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[2,1,1,1,1,1]
=> 10111110 => [1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,1,1,1,1,1]
=> 11111110 => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[7,1]
=> 100000010 => [1,6,1,1] => ([(0,7),(0,8),(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
[6,1,1]
=> 100000110 => [1,5,2,1] => ([(0,8),(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
[5,3]
=> 1001000 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[5,2,1]
=> 10001010 => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[5,1,1,1]
=> 100001110 => [1,4,3,1] => ([(0,8),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
[4,4]
=> 110000 => [2,4] => ([(3,5),(4,5)],6)
=> ? = 4
[4,3,1]
=> 1010010 => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[4,2,1,1]
=> 10010110 => [1,2,1,1,2,1] => ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[3,3,2]
=> 110100 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[3,3,1,1]
=> 1100110 => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[2,2,2,2]
=> 111100 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[1,1,1,1,1,1,1,1]
=> 111111110 => [8,1] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 1
[1,1,1,1,1,1,1,1,1,1]
=> 11111111110 => [10,1] => ([(0,10),(1,10),(2,10),(3,10),(4,10),(5,10),(6,10),(7,10),(8,10),(9,10)],11)
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,1,1]
=> 1111111111110 => ? => ?
=> ? = 1
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000755
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000755: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 36%●distinct values known / distinct values provided: 29%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000755: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 36%●distinct values known / distinct values provided: 29%
Values
[1]
=> []
=> ?
=> ?
=> ? = 1
[2]
=> []
=> ?
=> ?
=> ? = 2
[1,1]
=> [1]
=> []
=> ?
=> ? = 1
[3]
=> []
=> ?
=> ?
=> ? = 3
[2,1]
=> [1]
=> []
=> ?
=> ? = 1
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[4]
=> []
=> ?
=> ?
=> ? = 4
[3,1]
=> [1]
=> []
=> ?
=> ? = 1
[2,2]
=> [2]
=> []
=> ?
=> ? = 2
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[5]
=> []
=> ?
=> ?
=> ? = 5
[4,1]
=> [1]
=> []
=> ?
=> ? = 1
[3,2]
=> [2]
=> []
=> ?
=> ? = 1
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[6]
=> []
=> ?
=> ?
=> ? = 6
[5,1]
=> [1]
=> []
=> ?
=> ? = 1
[4,2]
=> [2]
=> []
=> ?
=> ? = 2
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[3,3]
=> [3]
=> []
=> ?
=> ? = 3
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 2
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[7]
=> []
=> ?
=> ?
=> ? = 7
[6,1]
=> [1]
=> []
=> ?
=> ? = 1
[5,2]
=> [2]
=> []
=> ?
=> ? = 1
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[4,3]
=> [3]
=> []
=> ?
=> ? = 1
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 1
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 1
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[7,1]
=> [1]
=> []
=> ?
=> ? = 1
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[5,3]
=> [3]
=> []
=> ?
=> ? = 1
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[4,4]
=> [4]
=> []
=> ?
=> ? = 4
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 1
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? = 1
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> 1
Description
The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition.
Consider the recurrence f(n)=∑p∈λf(n−p). This statistic returns the number of distinct real roots of the associated characteristic polynomial.
For example, the partition (2,1) corresponds to the recurrence f(n)=f(n−1)+f(n−2) with associated characteristic polynomial x2−x−1, which has two real roots.
Matching statistic: St001389
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001389: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 36%●distinct values known / distinct values provided: 29%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001389: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 36%●distinct values known / distinct values provided: 29%
Values
[1]
=> []
=> ?
=> ?
=> ? = 1
[2]
=> []
=> ?
=> ?
=> ? = 2
[1,1]
=> [1]
=> []
=> ?
=> ? = 1
[3]
=> []
=> ?
=> ?
=> ? = 3
[2,1]
=> [1]
=> []
=> ?
=> ? = 1
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[4]
=> []
=> ?
=> ?
=> ? = 4
[3,1]
=> [1]
=> []
=> ?
=> ? = 1
[2,2]
=> [2]
=> []
=> ?
=> ? = 2
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[5]
=> []
=> ?
=> ?
=> ? = 5
[4,1]
=> [1]
=> []
=> ?
=> ? = 1
[3,2]
=> [2]
=> []
=> ?
=> ? = 1
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[6]
=> []
=> ?
=> ?
=> ? = 6
[5,1]
=> [1]
=> []
=> ?
=> ? = 1
[4,2]
=> [2]
=> []
=> ?
=> ? = 2
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[3,3]
=> [3]
=> []
=> ?
=> ? = 3
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 2
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[7]
=> []
=> ?
=> ?
=> ? = 7
[6,1]
=> [1]
=> []
=> ?
=> ? = 1
[5,2]
=> [2]
=> []
=> ?
=> ? = 1
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[4,3]
=> [3]
=> []
=> ?
=> ? = 1
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 1
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 1
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[7,1]
=> [1]
=> []
=> ?
=> ? = 1
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[5,3]
=> [3]
=> []
=> ?
=> ? = 1
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[4,4]
=> [4]
=> []
=> ?
=> ? = 4
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 1
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? = 1
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> 1
Description
The number of partitions of the same length below the given integer partition.
For a partition λ1≥…λk>0, this number is
\det\left( \binom{\lambda_{k+1-i}}{j-i+1} \right)_{1 \le i,j \le k}.
Matching statistic: St001571
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001571: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 36%●distinct values known / distinct values provided: 29%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001571: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 36%●distinct values known / distinct values provided: 29%
Values
[1]
=> []
=> ?
=> ?
=> ? = 1
[2]
=> []
=> ?
=> ?
=> ? = 2
[1,1]
=> [1]
=> []
=> ?
=> ? = 1
[3]
=> []
=> ?
=> ?
=> ? = 3
[2,1]
=> [1]
=> []
=> ?
=> ? = 1
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[4]
=> []
=> ?
=> ?
=> ? = 4
[3,1]
=> [1]
=> []
=> ?
=> ? = 1
[2,2]
=> [2]
=> []
=> ?
=> ? = 2
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[5]
=> []
=> ?
=> ?
=> ? = 5
[4,1]
=> [1]
=> []
=> ?
=> ? = 1
[3,2]
=> [2]
=> []
=> ?
=> ? = 1
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[6]
=> []
=> ?
=> ?
=> ? = 6
[5,1]
=> [1]
=> []
=> ?
=> ? = 1
[4,2]
=> [2]
=> []
=> ?
=> ? = 2
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[3,3]
=> [3]
=> []
=> ?
=> ? = 3
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 2
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[7]
=> []
=> ?
=> ?
=> ? = 7
[6,1]
=> [1]
=> []
=> ?
=> ? = 1
[5,2]
=> [2]
=> []
=> ?
=> ? = 1
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[4,3]
=> [3]
=> []
=> ?
=> ? = 1
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 1
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 1
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[7,1]
=> [1]
=> []
=> ?
=> ? = 1
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1
[5,3]
=> [3]
=> []
=> ?
=> ? = 1
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[4,4]
=> [4]
=> []
=> ?
=> ? = 4
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 1
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? = 1
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> 1
Description
The Cartan determinant of the integer partition.
Let p=[p_1,...,p_r] be a given integer partition with highest part t. Let A=K[x]/(x^t) be the finite dimensional algebra over the field K and M the direct sum of the indecomposable A-modules of vector space dimension p_i for each i. Then the Cartan determinant of p is the Cartan determinant of the endomorphism algebra of M over A.
Explicitly, this is the determinant of the matrix \left(\min(\bar p_i, \bar p_j)\right)_{i,j}, where \bar p is the set of distinct parts of the partition.
Matching statistic: St000319
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 36%●distinct values known / distinct values provided: 29%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 36%●distinct values known / distinct values provided: 29%
Values
[1]
=> []
=> ?
=> ?
=> ? = 1 - 1
[2]
=> []
=> ?
=> ?
=> ? = 2 - 1
[1,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[3]
=> []
=> ?
=> ?
=> ? = 3 - 1
[2,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[4]
=> []
=> ?
=> ?
=> ? = 4 - 1
[3,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[2,2]
=> [2]
=> []
=> ?
=> ? = 2 - 1
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[5]
=> []
=> ?
=> ?
=> ? = 5 - 1
[4,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[3,2]
=> [2]
=> []
=> ?
=> ? = 1 - 1
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1 - 1
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[6]
=> []
=> ?
=> ?
=> ? = 6 - 1
[5,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[4,2]
=> [2]
=> []
=> ?
=> ? = 2 - 1
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[3,3]
=> [3]
=> []
=> ?
=> ? = 3 - 1
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1 - 1
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 2 - 1
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[7]
=> []
=> ?
=> ?
=> ? = 7 - 1
[6,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[5,2]
=> [2]
=> []
=> ?
=> ? = 1 - 1
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[4,3]
=> [3]
=> []
=> ?
=> ? = 1 - 1
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1 - 1
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 1 - 1
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 1 - 1
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 0 = 1 - 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[7,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[5,3]
=> [3]
=> []
=> ?
=> ? = 1 - 1
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1 - 1
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[4,4]
=> [4]
=> []
=> ?
=> ? = 4 - 1
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 1 - 1
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? = 1 - 1
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 0 = 1 - 1
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> 0 = 1 - 1
Description
The spin of an integer partition.
The Ferrers shape of an integer partition \lambda can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of \lambda with the vertical lines in the Ferrers shape.
The following example is taken from Appendix B in [1]: Let \lambda = (5,5,4,4,2,1). Removing the border strips successively yields the sequence of partitions
(5,5,4,4,2,1), (4,3,3,1), (2,2), (1), ().
The first strip (5,5,4,4,2,1) \setminus (4,3,3,1) crosses 4 times, the second strip (4,3,3,1) \setminus (2,2) crosses 3 times, the strip (2,2) \setminus (1) crosses 1 time, and the remaining strip (1) \setminus () does not cross.
This yields the spin of (5,5,4,4,2,1) to be 4+3+1 = 8.
Matching statistic: St000320
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 36%●distinct values known / distinct values provided: 29%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 36%●distinct values known / distinct values provided: 29%
Values
[1]
=> []
=> ?
=> ?
=> ? = 1 - 1
[2]
=> []
=> ?
=> ?
=> ? = 2 - 1
[1,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[3]
=> []
=> ?
=> ?
=> ? = 3 - 1
[2,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[4]
=> []
=> ?
=> ?
=> ? = 4 - 1
[3,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[2,2]
=> [2]
=> []
=> ?
=> ? = 2 - 1
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[5]
=> []
=> ?
=> ?
=> ? = 5 - 1
[4,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[3,2]
=> [2]
=> []
=> ?
=> ? = 1 - 1
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1 - 1
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[6]
=> []
=> ?
=> ?
=> ? = 6 - 1
[5,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[4,2]
=> [2]
=> []
=> ?
=> ? = 2 - 1
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[3,3]
=> [3]
=> []
=> ?
=> ? = 3 - 1
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1 - 1
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 2 - 1
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[7]
=> []
=> ?
=> ?
=> ? = 7 - 1
[6,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[5,2]
=> [2]
=> []
=> ?
=> ? = 1 - 1
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[4,3]
=> [3]
=> []
=> ?
=> ? = 1 - 1
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1 - 1
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 1 - 1
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 1 - 1
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 0 = 1 - 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[7,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[5,3]
=> [3]
=> []
=> ?
=> ? = 1 - 1
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1 - 1
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[4,4]
=> [4]
=> []
=> ?
=> ? = 4 - 1
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 1 - 1
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? = 1 - 1
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 0 = 1 - 1
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> 0 = 1 - 1
Description
The dinv adjustment of an integer partition.
The Ferrers shape of an integer partition \lambda = (\lambda_1,\ldots,\lambda_k) can be decomposed into border strips. For 0 \leq j < \lambda_1 let n_j be the length of the border strip starting at (\lambda_1-j,0).
The dinv adjustment is then defined by
\sum_{j:n_j > 0}(\lambda_1-1-j).
The following example is taken from Appendix B in [2]: Let \lambda=(5,5,4,4,2,1). Removing the border strips successively yields the sequence of partitions
(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),
and we obtain (n_0,\ldots,n_4) = (10,7,0,3,1).
The dinv adjustment is thus 4+3+1+0 = 8.
Matching statistic: St001280
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001280: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 36%●distinct values known / distinct values provided: 29%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001280: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 36%●distinct values known / distinct values provided: 29%
Values
[1]
=> []
=> ?
=> ?
=> ? = 1 - 1
[2]
=> []
=> ?
=> ?
=> ? = 2 - 1
[1,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[3]
=> []
=> ?
=> ?
=> ? = 3 - 1
[2,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[4]
=> []
=> ?
=> ?
=> ? = 4 - 1
[3,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[2,2]
=> [2]
=> []
=> ?
=> ? = 2 - 1
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[5]
=> []
=> ?
=> ?
=> ? = 5 - 1
[4,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[3,2]
=> [2]
=> []
=> ?
=> ? = 1 - 1
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1 - 1
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[6]
=> []
=> ?
=> ?
=> ? = 6 - 1
[5,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[4,2]
=> [2]
=> []
=> ?
=> ? = 2 - 1
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[3,3]
=> [3]
=> []
=> ?
=> ? = 3 - 1
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1 - 1
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 2 - 1
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[7]
=> []
=> ?
=> ?
=> ? = 7 - 1
[6,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[5,2]
=> [2]
=> []
=> ?
=> ? = 1 - 1
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[4,3]
=> [3]
=> []
=> ?
=> ? = 1 - 1
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1 - 1
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 1 - 1
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 1 - 1
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 0 = 1 - 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[7,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[5,3]
=> [3]
=> []
=> ?
=> ? = 1 - 1
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1 - 1
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[4,4]
=> [4]
=> []
=> ?
=> ? = 4 - 1
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 1 - 1
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? = 1 - 1
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 0 = 1 - 1
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> 0 = 1 - 1
Description
The number of parts of an integer partition that are at least two.
Matching statistic: St001392
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001392: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 36%●distinct values known / distinct values provided: 29%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001392: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 36%●distinct values known / distinct values provided: 29%
Values
[1]
=> []
=> ?
=> ?
=> ? = 1 - 1
[2]
=> []
=> ?
=> ?
=> ? = 2 - 1
[1,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[3]
=> []
=> ?
=> ?
=> ? = 3 - 1
[2,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[4]
=> []
=> ?
=> ?
=> ? = 4 - 1
[3,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[2,2]
=> [2]
=> []
=> ?
=> ? = 2 - 1
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[5]
=> []
=> ?
=> ?
=> ? = 5 - 1
[4,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[3,2]
=> [2]
=> []
=> ?
=> ? = 1 - 1
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1 - 1
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[6]
=> []
=> ?
=> ?
=> ? = 6 - 1
[5,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[4,2]
=> [2]
=> []
=> ?
=> ? = 2 - 1
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[3,3]
=> [3]
=> []
=> ?
=> ? = 3 - 1
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1 - 1
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 2 - 1
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[7]
=> []
=> ?
=> ?
=> ? = 7 - 1
[6,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[5,2]
=> [2]
=> []
=> ?
=> ? = 1 - 1
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[4,3]
=> [3]
=> []
=> ?
=> ? = 1 - 1
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1 - 1
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 1 - 1
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? = 1 - 1
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 0 = 1 - 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[7,1]
=> [1]
=> []
=> ?
=> ? = 1 - 1
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? = 1 - 1
[5,3]
=> [3]
=> []
=> ?
=> ? = 1 - 1
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? = 1 - 1
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[4,4]
=> [4]
=> []
=> ?
=> ? = 4 - 1
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? = 1 - 1
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? = 1 - 1
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 0 = 1 - 1
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 0 = 1 - 1
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> 0 = 1 - 1
Description
The largest nonnegative integer which is not a part and is smaller than the largest part of the partition.
The following 32 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001541The Gini index of an integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000650The number of 3-rises of a permutation. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000264The girth of a graph, which is not a tree. St000668The least common multiple of the parts of the partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000942The number of critical left to right maxima of the parking functions. St001904The length of the initial strictly increasing segment of a parking function. St001937The size of the center of a parking function. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000934The 2-degree of an integer partition. St001645The pebbling number of a connected graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000352The Elizalde-Pak rank of a permutation. St000054The first entry of the permutation. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!