searching the database
Your data matches 63 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000993
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 5
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[4,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[3,3,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[3,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[3,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4
[2,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 3
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 5
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 6
[6,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[5,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[5,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[4,3,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[4,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[4,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[4,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[4,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4
[3,3,2,2]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[3,3,2,1,1]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[3,3,1,1,1,1]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[3,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[3,2,2,1,1,1]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 3
[3,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4
[3,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 5
[2,2,2,2,2]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[2,2,2,2,1,1]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 1
[2,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 4
[2,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 5
[2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 6
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 7
[7,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St001232
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 33%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 33%
Values
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[2,2,2,2]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[2,2,2,1,1]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[3,2,2,2]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[3,2,2,1,1]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[2,2,2,2,1]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ? = 1 + 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 6 + 1
[6,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[5,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[5,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[4,3,1,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[4,2,2,2]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[4,2,2,1,1]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[4,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[4,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[3,3,2,2]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[3,3,2,1,1]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[3,3,1,1,1,1]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[3,2,2,2,1]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ? = 1 + 1
[3,2,2,1,1,1]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
[3,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[3,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[2,2,2,2,2]
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ? = 2 + 1
[2,2,2,2,1,1]
=> [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 1 + 1
[2,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 4 + 1
[2,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? = 5 + 1
[2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 6 + 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ? = 7 + 1
[7,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[6,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[6,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[5,3,1,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[5,2,2,2]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[5,2,2,1,1]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[5,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[5,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[4,4,1,1,1]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[4,3,2,2]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[4,3,2,1,1]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[4,3,1,1,1,1]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[4,2,2,2,1]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ? = 1 + 1
[4,2,2,1,1,1]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
[4,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[4,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[3,3,3,2]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? = 1 + 1
[3,3,3,1,1]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 2 + 1
[3,3,2,2,1]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 1 + 1
[3,3,2,1,1,1]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
[3,3,1,1,1,1,1]
=> [3,1,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 4 + 1
[3,2,2,2,2]
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ? = 2 + 1
[3,2,2,2,1,1]
=> [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 1 + 1
[3,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 4 + 1
[3,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? = 5 + 1
[3,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 6 + 1
[2,2,2,2,2,1]
=> [2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 2 + 1
[2,2,2,2,1,1,1]
=> [2,2,2,1,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[2,2,2,1,1,1,1,1]
=> [2,2,1,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 5 + 1
[2,2,1,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> ? = 6 + 1
[2,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ? = 7 + 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> ? = 8 + 1
[8,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[7,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[7,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[6,3,1,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[6,2,2,2]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[6,2,2,1,1]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[6,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[6,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,4,1,1,1]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[5,3,2,2]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[5,3,2,1,1]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[5,3,1,1,1,1]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[5,2,2,2,1]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ? = 1 + 1
[5,2,2,1,1,1]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
[5,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[4,4,2,2]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[4,4,2,1,1]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[4,4,1,1,1,1]
=> [4,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> ? = 3 + 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000021
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000021: Permutations ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000021: Permutations ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Values
[1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[2,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[2,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[3,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[3,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[2,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[6,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[5,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[5,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[4,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[4,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[4,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[4,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[4,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[3,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 1
[3,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 1
[3,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 1
[3,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[3,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[3,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[3,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[2,2,2,2,2]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2 + 1
[2,2,2,2,1,1]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 1 + 1
[2,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 4 + 1
[2,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 5 + 1
[2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => ? = 7 + 1
[7,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[6,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[6,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[5,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[5,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[5,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[5,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[5,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[4,4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 2 + 1
[4,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 1
[4,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 1
[4,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 1
[4,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[4,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[4,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[4,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[3,3,3,2]
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [7,8,4,5,6,1,2,3] => ? = 1 + 1
[3,3,3,1,1]
=> [3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => ? = 2 + 1
[3,3,2,2,1]
=> [3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [8,6,7,4,5,1,2,3] => ? = 1 + 1
[3,3,2,1,1,1]
=> [3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => ? = 3 + 1
[3,3,1,1,1,1,1]
=> [3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => ? = 4 + 1
[3,2,2,2,2]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2 + 1
[3,2,2,2,1,1]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 1 + 1
[3,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 4 + 1
[3,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 5 + 1
[3,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[2,2,2,2,2,1]
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,3,4,1,2] => ? = 2 + 1
[2,2,2,2,1,1,1]
=> [2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,3,4,1,2] => ? = 1 + 1
[2,2,2,1,1,1,1,1]
=> [2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,3,4,1,2] => ? = 5 + 1
[2,2,1,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,1,2] => ? = 6 + 1
[2,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => ? = 7 + 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> [10,9,8,7,6,5,4,3,2,1] => ? = 8 + 1
[8,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[7,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[7,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[6,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[6,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[6,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[6,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[6,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[5,4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 2 + 1
[5,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 1
[5,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 1
[5,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 1
[5,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[5,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[5,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[9,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[8,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[8,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[7,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
Description
The number of descents of a permutation.
This can be described as an occurrence of the vincular mesh pattern ([2,1], {(1,0),(1,1),(1,2)}), i.e., the middle column is shaded, see [3].
Matching statistic: St000354
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000354: Permutations ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000354: Permutations ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Values
[1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[2,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[2,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[3,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[3,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[2,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[6,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[5,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[5,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[4,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[4,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[4,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[4,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[4,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[3,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 1
[3,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 1
[3,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 1
[3,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[3,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[3,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[3,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[2,2,2,2,2]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2 + 1
[2,2,2,2,1,1]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 1 + 1
[2,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 4 + 1
[2,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 5 + 1
[2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => ? = 7 + 1
[7,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[6,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[6,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[5,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[5,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[5,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[5,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[5,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[4,4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 2 + 1
[4,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 1
[4,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 1
[4,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 1
[4,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[4,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[4,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[4,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[3,3,3,2]
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [7,8,4,5,6,1,2,3] => ? = 1 + 1
[3,3,3,1,1]
=> [3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => ? = 2 + 1
[3,3,2,2,1]
=> [3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [8,6,7,4,5,1,2,3] => ? = 1 + 1
[3,3,2,1,1,1]
=> [3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => ? = 3 + 1
[3,3,1,1,1,1,1]
=> [3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => ? = 4 + 1
[3,2,2,2,2]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2 + 1
[3,2,2,2,1,1]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 1 + 1
[3,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 4 + 1
[3,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 5 + 1
[3,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[2,2,2,2,2,1]
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,3,4,1,2] => ? = 2 + 1
[2,2,2,2,1,1,1]
=> [2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,3,4,1,2] => ? = 1 + 1
[2,2,2,1,1,1,1,1]
=> [2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,3,4,1,2] => ? = 5 + 1
[2,2,1,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,1,2] => ? = 6 + 1
[2,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => ? = 7 + 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> [10,9,8,7,6,5,4,3,2,1] => ? = 8 + 1
[8,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[7,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[7,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[6,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[6,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[6,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[6,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[6,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[5,4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 2 + 1
[5,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 1
[5,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 1
[5,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 1
[5,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[5,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[5,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[9,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[8,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[8,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[7,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
Description
The number of recoils of a permutation.
A '''recoil''', or '''inverse descent''' of a permutation $\pi$ is a value $i$ such that $i+1$ appears to the left of $i$ in $\pi_1,\pi_2,\dots,\pi_n$.
In other words, this is the number of descents of the inverse permutation. It can be also be described as the number of occurrences of the mesh pattern $([2,1], {(0,1),(1,1),(2,1)})$, i.e., the middle row is shaded.
Matching statistic: St000541
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000541: Permutations ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000541: Permutations ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Values
[1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[2,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[2,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[3,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[3,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[2,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[6,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[5,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[5,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[4,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[4,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[4,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[4,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[4,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[3,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 1
[3,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 1
[3,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 1
[3,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[3,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[3,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[3,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[2,2,2,2,2]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2 + 1
[2,2,2,2,1,1]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 1 + 1
[2,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 4 + 1
[2,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 5 + 1
[2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => ? = 7 + 1
[7,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[6,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[6,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[5,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[5,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[5,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[5,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[5,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[4,4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 2 + 1
[4,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 1
[4,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 1
[4,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 1
[4,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[4,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[4,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[4,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[3,3,3,2]
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [7,8,4,5,6,1,2,3] => ? = 1 + 1
[3,3,3,1,1]
=> [3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => ? = 2 + 1
[3,3,2,2,1]
=> [3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [8,6,7,4,5,1,2,3] => ? = 1 + 1
[3,3,2,1,1,1]
=> [3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => ? = 3 + 1
[3,3,1,1,1,1,1]
=> [3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => ? = 4 + 1
[3,2,2,2,2]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2 + 1
[3,2,2,2,1,1]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 1 + 1
[3,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 4 + 1
[3,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 5 + 1
[3,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[2,2,2,2,2,1]
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,3,4,1,2] => ? = 2 + 1
[2,2,2,2,1,1,1]
=> [2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,3,4,1,2] => ? = 1 + 1
[2,2,2,1,1,1,1,1]
=> [2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,3,4,1,2] => ? = 5 + 1
[2,2,1,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,1,2] => ? = 6 + 1
[2,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => ? = 7 + 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> [10,9,8,7,6,5,4,3,2,1] => ? = 8 + 1
[8,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[7,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[7,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[6,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[6,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[6,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[6,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[6,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[5,4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 2 + 1
[5,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 1
[5,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 1
[5,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 1
[5,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[5,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[5,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[9,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[8,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[8,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[7,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
Description
The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right.
For a permutation $\pi$ of length $n$, this is the number of indices $2 \leq j \leq n$ such that for all $1 \leq i < j$, the pair $(i,j)$ is an inversion of $\pi$.
Matching statistic: St000619
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000619: Permutations ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000619: Permutations ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Values
[1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[2,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[2,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[3,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[3,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[2,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[6,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[5,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[5,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[4,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[4,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[4,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[4,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[4,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[3,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 1
[3,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 1
[3,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 1
[3,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[3,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[3,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[3,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[2,2,2,2,2]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2 + 1
[2,2,2,2,1,1]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 1 + 1
[2,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 4 + 1
[2,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 5 + 1
[2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => ? = 7 + 1
[7,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[6,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[6,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[5,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[5,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[5,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[5,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[5,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[4,4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 2 + 1
[4,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 1
[4,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 1
[4,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 1
[4,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[4,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[4,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[4,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[3,3,3,2]
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [7,8,4,5,6,1,2,3] => ? = 1 + 1
[3,3,3,1,1]
=> [3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => ? = 2 + 1
[3,3,2,2,1]
=> [3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [8,6,7,4,5,1,2,3] => ? = 1 + 1
[3,3,2,1,1,1]
=> [3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => ? = 3 + 1
[3,3,1,1,1,1,1]
=> [3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => ? = 4 + 1
[3,2,2,2,2]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2 + 1
[3,2,2,2,1,1]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 1 + 1
[3,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 4 + 1
[3,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 5 + 1
[3,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[2,2,2,2,2,1]
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,3,4,1,2] => ? = 2 + 1
[2,2,2,2,1,1,1]
=> [2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,3,4,1,2] => ? = 1 + 1
[2,2,2,1,1,1,1,1]
=> [2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,3,4,1,2] => ? = 5 + 1
[2,2,1,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,1,2] => ? = 6 + 1
[2,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => ? = 7 + 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> [10,9,8,7,6,5,4,3,2,1] => ? = 8 + 1
[8,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[7,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[7,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[6,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[6,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[6,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[6,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[6,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[5,4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 2 + 1
[5,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 1
[5,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 1
[5,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 1
[5,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[5,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[5,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[9,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[8,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[8,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[7,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
Description
The number of cyclic descents of a permutation.
For a permutation $\pi$ of $\{1,\ldots,n\}$, this is given by the number of indices $1 \leq i \leq n$ such that $\pi(i) > \pi(i+1)$ where we set $\pi(n+1) = \pi(1)$.
Matching statistic: St000831
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000831: Permutations ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000831: Permutations ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Values
[1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 3 = 2 + 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 3 = 2 + 1
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[2,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[2,2,2,1,1]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 3 = 2 + 1
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 4 = 3 + 1
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 3 = 2 + 1
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 3 = 2 + 1
[3,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[3,2,2,1,1]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 3 = 2 + 1
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 4 = 3 + 1
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[2,2,2,2,1]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ? = 1 + 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => ? = 3 + 1
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => ? = 4 + 1
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[6,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[5,2,1,1,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 3 = 2 + 1
[5,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[4,3,1,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 3 = 2 + 1
[4,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[4,2,2,1,1]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 3 = 2 + 1
[4,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 4 = 3 + 1
[4,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[3,3,2,2]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 1 + 1
[3,3,2,1,1]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 2 + 1
[3,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => ? = 3 + 1
[3,2,2,2,1]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ? = 1 + 1
[3,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => ? = 3 + 1
[3,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => ? = 4 + 1
[3,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[2,2,2,2,2]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2 + 1
[2,2,2,2,1,1]
=> [2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> [7,5,3,8,2,6,1,4] => ? = 1 + 1
[2,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> [7,5,4,3,2,8,1,6] => ? = 4 + 1
[2,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1,8] => ? = 5 + 1
[2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => ? = 7 + 1
[7,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[6,2,1,1,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 3 = 2 + 1
[6,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[5,3,1,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 3 = 2 + 1
[5,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[5,2,2,1,1]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 3 = 2 + 1
[5,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 4 = 3 + 1
[5,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[4,4,1,1,1]
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 2 + 1
[4,3,2,2]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 1 + 1
[4,3,2,1,1]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 2 + 1
[4,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => ? = 3 + 1
[4,2,2,2,1]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ? = 1 + 1
[4,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => ? = 3 + 1
[4,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => ? = 4 + 1
[4,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[3,3,3,2]
=> [3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> [6,7,3,4,8,1,2,5] => ? = 1 + 1
[3,3,3,1,1]
=> [3,3,1,1]
=> [[1,4,5],[2,7,8],[3],[6]]
=> [6,3,2,7,8,1,4,5] => ? = 2 + 1
[3,3,2,2,1]
=> [3,2,2,1]
=> [[1,3,8],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3,8] => ? = 1 + 1
[3,3,2,1,1,1]
=> [3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5,8] => ? = 3 + 1
[3,3,1,1,1,1,1]
=> [3,1,1,1,1,1]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7,8] => ? = 4 + 1
[3,2,2,2,2]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2 + 1
[3,2,2,2,1,1]
=> [2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> [7,5,3,8,2,6,1,4] => ? = 1 + 1
[3,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> [7,5,4,3,2,8,1,6] => ? = 4 + 1
[3,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1,8] => ? = 5 + 1
[3,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[2,2,2,2,2,1]
=> [2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> [8,6,9,4,7,2,5,1,3] => ? = 2 + 1
[2,2,2,2,1,1,1]
=> [2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> [8,6,4,3,9,2,7,1,5] => ? = 1 + 1
[2,2,2,1,1,1,1,1]
=> [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [8,6,5,4,3,2,9,1,7] => ? = 5 + 1
[2,2,1,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1,9] => ? = 6 + 1
[2,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => ? = 7 + 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> [10,9,8,7,6,5,4,3,2,1] => ? = 8 + 1
[8,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[7,2,1,1,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 3 = 2 + 1
[7,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[6,3,1,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 3 = 2 + 1
[6,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[6,2,2,1,1]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 3 = 2 + 1
[6,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 4 = 3 + 1
[6,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[5,4,1,1,1]
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 2 + 1
[5,3,2,2]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 1 + 1
[5,3,2,1,1]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 2 + 1
[5,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => ? = 3 + 1
[5,2,2,2,1]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ? = 1 + 1
[5,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => ? = 3 + 1
[5,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => ? = 4 + 1
[9,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[8,2,1,1,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 3 = 2 + 1
[8,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[7,3,1,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 3 = 2 + 1
Description
The number of indices that are either descents or recoils.
This is, for a permutation $\pi$ of length $n$, this statistics counts the set
$$\{ 1 \leq i < n : \pi(i) > \pi(i+1) \text{ or } \pi^{-1}(i) > \pi^{-1}(i+1)\}.$$
Matching statistic: St001061
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St001061: Permutations ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St001061: Permutations ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Values
[1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 3 = 2 + 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 3 = 2 + 1
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[2,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[2,2,2,1,1]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 3 = 2 + 1
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 4 = 3 + 1
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 3 = 2 + 1
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 3 = 2 + 1
[3,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[3,2,2,1,1]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 3 = 2 + 1
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 4 = 3 + 1
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[2,2,2,2,1]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ? = 1 + 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => ? = 3 + 1
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => ? = 4 + 1
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[6,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[5,2,1,1,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 3 = 2 + 1
[5,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[4,3,1,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 3 = 2 + 1
[4,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[4,2,2,1,1]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 3 = 2 + 1
[4,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 4 = 3 + 1
[4,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[3,3,2,2]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 1 + 1
[3,3,2,1,1]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 2 + 1
[3,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => ? = 3 + 1
[3,2,2,2,1]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ? = 1 + 1
[3,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => ? = 3 + 1
[3,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => ? = 4 + 1
[3,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[2,2,2,2,2]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2 + 1
[2,2,2,2,1,1]
=> [2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> [7,5,3,8,2,6,1,4] => ? = 1 + 1
[2,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> [7,5,4,3,2,8,1,6] => ? = 4 + 1
[2,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1,8] => ? = 5 + 1
[2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => ? = 7 + 1
[7,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[6,2,1,1,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 3 = 2 + 1
[6,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[5,3,1,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 3 = 2 + 1
[5,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[5,2,2,1,1]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 3 = 2 + 1
[5,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 4 = 3 + 1
[5,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[4,4,1,1,1]
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 2 + 1
[4,3,2,2]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 1 + 1
[4,3,2,1,1]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 2 + 1
[4,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => ? = 3 + 1
[4,2,2,2,1]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ? = 1 + 1
[4,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => ? = 3 + 1
[4,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => ? = 4 + 1
[4,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[3,3,3,2]
=> [3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> [6,7,3,4,8,1,2,5] => ? = 1 + 1
[3,3,3,1,1]
=> [3,3,1,1]
=> [[1,4,5],[2,7,8],[3],[6]]
=> [6,3,2,7,8,1,4,5] => ? = 2 + 1
[3,3,2,2,1]
=> [3,2,2,1]
=> [[1,3,8],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3,8] => ? = 1 + 1
[3,3,2,1,1,1]
=> [3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5,8] => ? = 3 + 1
[3,3,1,1,1,1,1]
=> [3,1,1,1,1,1]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7,8] => ? = 4 + 1
[3,2,2,2,2]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2 + 1
[3,2,2,2,1,1]
=> [2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> [7,5,3,8,2,6,1,4] => ? = 1 + 1
[3,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> [7,5,4,3,2,8,1,6] => ? = 4 + 1
[3,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1,8] => ? = 5 + 1
[3,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[2,2,2,2,2,1]
=> [2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> [8,6,9,4,7,2,5,1,3] => ? = 2 + 1
[2,2,2,2,1,1,1]
=> [2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> [8,6,4,3,9,2,7,1,5] => ? = 1 + 1
[2,2,2,1,1,1,1,1]
=> [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [8,6,5,4,3,2,9,1,7] => ? = 5 + 1
[2,2,1,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1,9] => ? = 6 + 1
[2,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => ? = 7 + 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> [10,9,8,7,6,5,4,3,2,1] => ? = 8 + 1
[8,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[7,2,1,1,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 3 = 2 + 1
[7,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[6,3,1,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 3 = 2 + 1
[6,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[6,2,2,1,1]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 3 = 2 + 1
[6,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 4 = 3 + 1
[6,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[5,4,1,1,1]
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 2 + 1
[5,3,2,2]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 1 + 1
[5,3,2,1,1]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 2 + 1
[5,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => ? = 3 + 1
[5,2,2,2,1]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ? = 1 + 1
[5,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => ? = 3 + 1
[5,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => ? = 4 + 1
[9,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[8,2,1,1,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 3 = 2 + 1
[8,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[7,3,1,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 3 = 2 + 1
Description
The number of indices that are both descents and recoils of a permutation.
Matching statistic: St001489
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St001489: Permutations ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St001489: Permutations ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Values
[1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[2,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[2,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[3,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[3,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[2,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[6,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[5,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[5,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[4,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[4,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[4,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[4,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[4,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[3,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 1
[3,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 1
[3,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 1
[3,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[3,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[3,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[3,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[2,2,2,2,2]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2 + 1
[2,2,2,2,1,1]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 1 + 1
[2,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 4 + 1
[2,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 5 + 1
[2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => ? = 7 + 1
[7,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[6,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[6,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[5,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[5,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[5,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[5,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[5,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[4,4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 2 + 1
[4,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 1
[4,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 1
[4,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 1
[4,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[4,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[4,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[4,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 1
[3,3,3,2]
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [7,8,4,5,6,1,2,3] => ? = 1 + 1
[3,3,3,1,1]
=> [3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => ? = 2 + 1
[3,3,2,2,1]
=> [3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [8,6,7,4,5,1,2,3] => ? = 1 + 1
[3,3,2,1,1,1]
=> [3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => ? = 3 + 1
[3,3,1,1,1,1,1]
=> [3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => ? = 4 + 1
[3,2,2,2,2]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2 + 1
[3,2,2,2,1,1]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 1 + 1
[3,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 4 + 1
[3,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 5 + 1
[3,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 1
[2,2,2,2,2,1]
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,3,4,1,2] => ? = 2 + 1
[2,2,2,2,1,1,1]
=> [2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,3,4,1,2] => ? = 1 + 1
[2,2,2,1,1,1,1,1]
=> [2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,3,4,1,2] => ? = 5 + 1
[2,2,1,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,1,2] => ? = 6 + 1
[2,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => ? = 7 + 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> [10,9,8,7,6,5,4,3,2,1] => ? = 8 + 1
[8,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[7,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[7,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[6,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
[6,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 1 + 1
[6,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 3 = 2 + 1
[6,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 4 = 3 + 1
[6,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 5 = 4 + 1
[5,4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 2 + 1
[5,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 1
[5,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 1
[5,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 1
[5,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 1
[5,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 1
[5,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 1
[9,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 3 = 2 + 1
[8,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 3 = 2 + 1
[8,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 4 = 3 + 1
[7,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3 = 2 + 1
Description
The maximum of the number of descents and the number of inverse descents.
This is, the maximum of [[St000021]] and [[St000354]].
Matching statistic: St000325
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000325: Permutations ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000325: Permutations ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 33%
Values
[1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 4 = 2 + 2
[2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 4 = 2 + 2
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 5 = 3 + 2
[3,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 4 = 2 + 2
[2,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 4 = 2 + 2
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 5 = 3 + 2
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 6 = 4 + 2
[4,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 4 = 2 + 2
[3,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 4 = 2 + 2
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 5 = 3 + 2
[2,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 3 = 1 + 2
[2,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 4 = 2 + 2
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 5 = 3 + 2
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 6 = 4 + 2
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 2
[5,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 4 = 2 + 2
[4,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 4 = 2 + 2
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 5 = 3 + 2
[3,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 4 = 2 + 2
[3,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 3 = 1 + 2
[3,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 4 = 2 + 2
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 5 = 3 + 2
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 6 = 4 + 2
[2,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 2
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 2
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 2
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 2
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 2
[6,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 4 = 2 + 2
[5,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 4 = 2 + 2
[5,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 5 = 3 + 2
[4,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 4 = 2 + 2
[4,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 3 = 1 + 2
[4,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 4 = 2 + 2
[4,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 5 = 3 + 2
[4,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 6 = 4 + 2
[3,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 2
[3,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 2
[3,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 2
[3,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 2
[3,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 2
[3,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 2
[3,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 2
[2,2,2,2,2]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2 + 2
[2,2,2,2,1,1]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 1 + 2
[2,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 4 + 2
[2,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 5 + 2
[2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 2
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => ? = 7 + 2
[7,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 4 = 2 + 2
[6,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 4 = 2 + 2
[6,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 5 = 3 + 2
[5,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 4 = 2 + 2
[5,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 3 = 1 + 2
[5,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 4 = 2 + 2
[5,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 5 = 3 + 2
[5,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 6 = 4 + 2
[4,4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 2 + 2
[4,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 2
[4,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 2
[4,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 2
[4,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 2
[4,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 2
[4,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 2
[4,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 5 + 2
[3,3,3,2]
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [7,8,4,5,6,1,2,3] => ? = 1 + 2
[3,3,3,1,1]
=> [3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => ? = 2 + 2
[3,3,2,2,1]
=> [3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [8,6,7,4,5,1,2,3] => ? = 1 + 2
[3,3,2,1,1,1]
=> [3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => ? = 3 + 2
[3,3,1,1,1,1,1]
=> [3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => ? = 4 + 2
[3,2,2,2,2]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 2 + 2
[3,2,2,2,1,1]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 1 + 2
[3,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 4 + 2
[3,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 5 + 2
[3,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 6 + 2
[2,2,2,2,2,1]
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,3,4,1,2] => ? = 2 + 2
[2,2,2,2,1,1,1]
=> [2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,3,4,1,2] => ? = 1 + 2
[2,2,2,1,1,1,1,1]
=> [2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,3,4,1,2] => ? = 5 + 2
[2,2,1,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,1,2] => ? = 6 + 2
[2,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => ? = 7 + 2
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> [10,9,8,7,6,5,4,3,2,1] => ? = 8 + 2
[8,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 4 = 2 + 2
[7,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 4 = 2 + 2
[7,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 5 = 3 + 2
[6,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 4 = 2 + 2
[6,2,2,2]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 3 = 1 + 2
[6,2,2,1,1]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 4 = 2 + 2
[6,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 5 = 3 + 2
[6,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 6 = 4 + 2
[5,4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 2 + 2
[5,3,2,2]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 1 + 2
[5,3,2,1,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 2 + 2
[5,3,1,1,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 3 + 2
[5,2,2,2,1]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 1 + 2
[5,2,2,1,1,1]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 3 + 2
[5,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 4 + 2
[9,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 4 = 2 + 2
[8,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 4 = 2 + 2
[8,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 5 = 3 + 2
[7,3,1,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 4 = 2 + 2
Description
The width of the tree associated to a permutation.
A permutation can be mapped to a rooted tree with vertices $\{0,1,2,\ldots,n\}$ and root $0$ in the following way. Entries of the permutations are inserted one after the other, each child is larger than its parent and the children are in strict order from left to right. Details of the construction are found in [1].
The width of the tree is given by the number of leaves of this tree.
Note that, due to the construction of this tree, the width of the tree is always one more than the number of descents [[St000021]]. This also matches the number of runs in a permutation [[St000470]].
See also [[St000308]] for the height of this tree.
The following 53 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000470The number of runs in a permutation. St000542The number of left-to-right-minima of a permutation. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001490The number of connected components of a skew partition. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001557The number of inversions of the second entry of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St001520The number of strict 3-descents. St001556The number of inversions of the third entry of a permutation. St001668The number of points of the poset minus the width of the poset. St000738The first entry in the last row of a standard tableau. St000888The maximal sum of entries on a diagonal of an alternating sign matrix. St000892The maximal number of nonzero entries on a diagonal of an alternating sign matrix. St000245The number of ascents of a permutation. St000672The number of minimal elements in Bruhat order not less than the permutation. St000153The number of adjacent cycles of a permutation. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000703The number of deficiencies of a permutation. St000451The length of the longest pattern of the form k 1 2. St000074The number of special entries. St000141The maximum drop size of a permutation. St000176The total number of tiles in the Gelfand-Tsetlin pattern. St001684The reduced word complexity of a permutation. St000753The Grundy value for the game of Kayles on a binary word. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001569The maximal modular displacement of a permutation. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St000682The Grundy value of Welter's game on a binary word. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000662The staircase size of the code of a permutation. St000519The largest length of a factor maximising the subword complexity. St000922The minimal number such that all substrings of this length are unique. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001416The length of a longest palindromic factor of a binary word. St001417The length of a longest palindromic subword of a binary word. St001419The length of the longest palindromic factor beginning with a one of a binary word. St001838The number of nonempty primitive factors of a binary word. St000366The number of double descents of a permutation. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000019The cardinality of the support of a permutation. St000214The number of adjacencies of a permutation. St000054The first entry of the permutation. St000507The number of ascents of a standard tableau. St000725The smallest label of a leaf of the increasing binary tree associated to a permutation. St000883The number of longest increasing subsequences of a permutation. St000744The length of the path to the largest entry in a standard Young tableau. St000733The row containing the largest entry of a standard tableau. St000157The number of descents of a standard tableau.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!