Processing math: 100%

Your data matches 4 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000708
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000708: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 4
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 4
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
Description
The product of the parts of an integer partition.
Matching statistic: St000933
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000933: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 4
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 4
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
Description
The number of multipartitions of sizes given by an integer partition. This is, for λ=(λ1,,λn), this is the number of n-tuples (λ(1),,λ(n)) of partitions λ(i) such that λ(i)λi.
Matching statistic: St001556
Mp00311: Plane partitions to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St001556: Permutations ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 40%
Values
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ? = 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 1
[[2],[2],[2]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => ? = 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => ? = 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 1
[[3],[2],[2]]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 2
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 2
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 2
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,1] => ? = 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,6,1] => ? = 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => ? = 4
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,6,1] => ? = 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => ? = 4
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? = 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,6,1] => ? = 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 2
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 1
[[3],[3],[2]]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 2
[[2,1],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? = 1
[[2,1],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,6,1] => ? = 1
[[2,1],[2],[2],[1]]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 2
[[2,1],[1,1],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,6,1] => ? = 1
[[2,1],[1,1],[1,1],[1]]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 2
[[2,1],[2,1],[1],[1]]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 1
[[2,1],[2,1],[2]]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 2
[[2,1],[2,1],[1,1]]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 2
[[1,1,1],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? = 1
[[1,1,1],[1,1],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,6,1] => ? = 1
[[1,1,1],[1,1],[1,1],[1]]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 2
[[1,1,1],[1,1,1],[1],[1]]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 1
[[1,1,1],[1,1,1],[1,1]]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 2
[[4],[1],[1],[1],[1]]
=> [4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => ? = 1
[[4],[2],[1],[1]]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1
[[4],[2],[2]]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
[[3,1],[1],[1],[1],[1]]
=> [4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => ? = 1
[[3,1],[2],[1],[1]]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1
[[3,1],[2],[2]]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
[[3,1],[1,1],[1],[1]]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1
[[3,1],[1,1],[1,1]]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
[[2,2],[1],[1],[1],[1]]
=> [4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => ? = 1
[[2,2],[2],[1],[1]]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1
[[2,2],[2],[2]]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
[[2,2],[1,1],[1],[1]]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1
[[2,2],[1,1],[1,1]]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
[[2,1,1],[1],[1],[1],[1]]
=> [4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => ? = 1
[[2,1,1],[2],[1],[1]]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1
[[2,1,1],[2],[2]]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
[[2,1,1],[1,1],[1],[1]]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1
[[2,1,1],[1,1],[1,1]]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
[[1,1,1,1],[1],[1],[1],[1]]
=> [4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => ? = 1
[[5],[1],[1],[1]]
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => ? = 1
[[4,1],[1],[1],[1]]
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => ? = 1
[[3,2],[1],[1],[1]]
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => ? = 1
[[3,1,1],[1],[1],[1]]
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => ? = 1
[[2,2,1],[1],[1],[1]]
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => ? = 1
[[2,1,1,1],[1],[1],[1]]
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => ? = 1
[[1,1,1,1,1],[1],[1],[1]]
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => ? = 1
[[1],[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,10,1] => ? = 1
[[2],[1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,9,1] => ? = 1
[[2],[2],[1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [3,4,2,5,6,7,8,1] => ? = 1
[[2],[2],[2],[1],[1],[1]]
=> [2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,4,5,2,6,7,1] => ? = 2
[[2],[2],[2],[2],[1]]
=> [2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => ? = 4
[[1,1],[1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,9,1] => ? = 1
[[1,1],[1,1],[1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [3,4,2,5,6,7,8,1] => ? = 1
[[1,1],[1,1],[1,1],[1],[1],[1]]
=> [2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,4,5,2,6,7,1] => ? = 2
[[1,1],[1,1],[1,1],[1,1],[1]]
=> [2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => ? = 4
[[3],[1],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [4,2,3,5,6,7,8,1] => ? = 1
Description
The number of inversions of the third entry of a permutation. This is, for a permutation π of length n, #{3<knπ(3)>π(k)}. The number of inversions of the first entry is [[St000054]] and the number of inversions of the second entry is [[St001557]]. The sequence of inversions of all the entries define the [[http://www.findstat.org/Permutations#The_Lehmer_code_and_the_major_code_of_a_permutation|Lehmer code]] of a permutation.
Matching statistic: St001232
Mp00311: Plane partitions to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 40%
Values
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[[2],[2],[2]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[[3],[2],[2]]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 2 + 1
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 4 + 1
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 2 + 1
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 4 + 1
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 2 + 1
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[[3],[3],[2]]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ? = 2 + 1
[[2,1],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2,1],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2,1],[2],[2],[1]]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 2 + 1
[[2,1],[1,1],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2,1],[1,1],[1,1],[1]]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 2 + 1
[[4],[2],[2]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[3,1],[2],[2]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[3,1],[1,1],[1,1]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,2],[2],[2]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,2],[1,1],[1,1]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,1,1],[2],[2]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,1,1],[1,1],[1,1]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[1,1,1,1],[1,1],[1,1]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[3],[3],[3]]
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[[2,1],[2,1],[2,1]]
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[[1,1,1],[1,1,1],[1,1,1]]
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[[5],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[4,1],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[4,1],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[3,2],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[3,2],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[3,1,1],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[3,1,1],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,2,1],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,2,1],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,1,1,1],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,1,1,1],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[1,1,1,1,1],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[4],[3],[3]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[[3,1],[3],[3]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[[3,1],[2,1],[2,1]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[[2,2],[2,1],[2,1]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[[2,1,1],[2,1],[2,1]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[[2,1,1],[1,1,1],[1,1,1]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[[1,1,1,1],[1,1,1],[1,1,1]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.