Your data matches 48 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00029: Dyck paths to binary tree: left tree, up step, right tree, down stepBinary trees
Mp00015: Binary trees to ordered tree: right child = right brotherOrdered trees
St000974: Ordered trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [.,.]
=> [[]]
=> 1 = 2 - 1
[1,0,1,0]
=> [[.,.],.]
=> [[[]]]
=> 2 = 3 - 1
[1,1,0,0]
=> [.,[.,.]]
=> [[],[]]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [[[.,.],.],.]
=> [[[[]]]]
=> 3 = 4 - 1
[1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> [[[]],[]]
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> [[[],[]]]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [.,[[.,.],.]]
=> [[],[[]]]
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [.,[.,[.,.]]]
=> [[],[],[]]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],.]
=> [[[[[]]]]]
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> [[[[]]],[]]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> [[[[]],[]]]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> [[[]],[[]]]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> [[[]],[],[]]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> [[[[],[]]]]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> [[[],[]],[]]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [[.,[[.,.],.]],.]
=> [[[],[[]]]]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> [[],[[[]]]]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> [[],[[]],[]]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> [[[],[],[]]]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> [[],[[],[]]]
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [.,[.,[[.,.],.]]]
=> [[],[],[[]]]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> [[],[],[],[]]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [[[[[.,.],.],.],.],.]
=> [[[[[[]]]]]]
=> 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [[[[.,.],.],.],[.,.]]
=> [[[[[]]]],[]]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [[[[.,.],.],[.,.]],.]
=> [[[[[]]],[]]]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> [[[[]]],[[]]]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [[[.,.],.],[.,[.,.]]]
=> [[[[]]],[],[]]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [[[[.,.],[.,.]],.],.]
=> [[[[[]],[]]]]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> [[[[]],[]],[]]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [[[.,.],[[.,.],.]],.]
=> [[[[]],[[]]]]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> [[[]],[[[]]]]
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> [[[]],[[]],[]]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> [[[[]],[],[]]]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> [[[]],[[],[]]]
=> 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> [[[]],[],[[]]]
=> 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [[.,.],[.,[.,[.,.]]]]
=> [[[]],[],[],[]]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [[[[.,[.,.]],.],.],.]
=> [[[[[],[]]]]]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> [[[[],[]]],[]]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [[[.,[.,.]],[.,.]],.]
=> [[[[],[]],[]]]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> [[[],[]],[[]]]
=> 0 = 1 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [[.,[.,.]],[.,[.,.]]]
=> [[[],[]],[],[]]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [[[.,[[.,.],.]],.],.]
=> [[[[],[[]]]]]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> [[[],[[]]],[]]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [[.,[[[.,.],.],.]],.]
=> [[[],[[[]]]]]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [.,[[[[.,.],.],.],.]]
=> [[],[[[[]]]]]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [.,[[[.,.],.],[.,.]]]
=> [[],[[[]]],[]]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],[.,.]]],.]
=> [[[],[[]],[]]]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> [[],[[[]],[]]]
=> 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> [[],[[]],[[]]]
=> 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [.,[[.,.],[.,[.,.]]]]
=> [[],[[]],[],[]]
=> 0 = 1 - 1
Description
The length of the trunk of an ordered tree. This is the length of the path from the root to the first vertex which has not exactly one child.
Mp00099: Dyck paths bounce pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00142: Dyck paths promotionDyck paths
St000678: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,1,0,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 1
Description
The number of up steps after the last double rise of a Dyck path.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00094: Integer compositions to binary wordBinary words
Mp00269: Binary words flag zeros to zerosBinary words
St000297: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 1 => 1 => 1 = 2 - 1
[1,0,1,0]
=> [1,1] => 11 => 11 => 2 = 3 - 1
[1,1,0,0]
=> [2] => 10 => 00 => 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,1] => 111 => 111 => 3 = 4 - 1
[1,0,1,1,0,0]
=> [1,2] => 110 => 001 => 0 = 1 - 1
[1,1,0,0,1,0]
=> [2,1] => 101 => 100 => 1 = 2 - 1
[1,1,0,1,0,0]
=> [3] => 100 => 010 => 0 = 1 - 1
[1,1,1,0,0,0]
=> [3] => 100 => 010 => 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1111 => 1111 => 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => 1110 => 0011 => 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => 1101 => 1001 => 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> [1,3] => 1100 => 0101 => 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> [1,3] => 1100 => 0101 => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => 1011 => 1100 => 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> [2,2] => 1010 => 0000 => 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [3,1] => 1001 => 1010 => 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [4] => 1000 => 0110 => 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [4] => 1000 => 0110 => 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [3,1] => 1001 => 1010 => 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [4] => 1000 => 0110 => 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [4] => 1000 => 0110 => 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [4] => 1000 => 0110 => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => 11111 => 11111 => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 11110 => 00111 => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 11101 => 10011 => 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => 11100 => 01011 => 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 11100 => 01011 => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 11011 => 11001 => 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 11010 => 00001 => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => 11001 => 10101 => 1 = 2 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => 11000 => 01101 => 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => 11000 => 01101 => 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 11001 => 10101 => 1 = 2 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => 11000 => 01101 => 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => 11000 => 01101 => 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 11000 => 01101 => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 10111 => 11100 => 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 10110 => 00100 => 0 = 1 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 10101 => 10000 => 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => 10100 => 01000 => 0 = 1 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 10100 => 01000 => 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => 10011 => 11010 => 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => 10010 => 00010 => 0 = 1 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => 10001 => 10110 => 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => 10000 => 01110 => 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => 10000 => 01110 => 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => 10001 => 10110 => 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => 10000 => 01110 => 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => 10000 => 01110 => 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => 10000 => 01110 => 0 = 1 - 1
Description
The number of leading ones in a binary word.
Mp00032: Dyck paths inverse zeta mapDyck paths
St001107: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> ? = 2 - 1
[1,0,1,0]
=> [1,1,0,0]
=> 2 = 3 - 1
[1,1,0,0]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3 = 4 - 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 3 - 1
Description
The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. In other words, this is the lowest height of a valley of a Dyck path, or its semilength in case of the unique path without valleys.
Mp00099: Dyck paths bounce pathDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St000674: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> ? = 2 - 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 3 - 1
Description
The number of hills of a Dyck path. A hill is a peak with up step starting and down step ending at height zero.
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00102: Dyck paths rise compositionInteger compositions
St000383: Integer compositions ⟶ ℤResult quality: 76% values known / values provided: 76%distinct values known / distinct values provided: 88%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> [2] => 2
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [3] => 3
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => 4
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => 2
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5] => 5
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1] => 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => 3
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,2] => 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,1] => 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => 2
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [6] => 6
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,2] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,1,1] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,3] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,1] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,2] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,1,1] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,1,2] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,1] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,1,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,1,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,4] => 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,1] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,2,2] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,3,1] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,2,1,1] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,2,1] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,2] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [5,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,1,2] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,2,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [4,1,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,1,1,1] => 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8] => ? = 8
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> [6,2] => ? = 2
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> [5,3] => ? = 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> [6,2] => ? = 2
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> [5,1,2] => ? = 2
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,1,0,0,0]
=> [4,2,2] => ? = 2
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0]
=> [4,2,1,1] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [5,3] => ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> [6,2] => ? = 2
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,1,0,0,0]
=> [5,1,2] => ? = 2
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> [4,1,3] => ? = 3
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,1,0,0,0,0]
=> [4,2,2] => ? = 2
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,1,0,0,0,0]
=> [5,1,2] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,1,0,0,0]
=> [4,1,1,2] => ? = 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,1,0,0,0]
=> [4,2,1,1] => ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [4,1,1,1,1] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,1,1,1] => ? = 1
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,1,0,0,0]
=> [4,2,2] => ? = 2
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,1,0,0]
=> [4,2,1,1] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> [5,3] => ? = 3
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [6,2] => ? = 2
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,1,0,0,0]
=> [5,1,2] => ? = 2
[1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,1,1,0,0,0,0]
=> [4,1,3] => ? = 3
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> [4,2,2] => ? = 2
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0]
=> [4,2,1,1] => ? = 1
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,1,0,0,0,0]
=> [5,1,2] => ? = 2
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,1,0,0,0]
=> [4,1,1,2] => ? = 2
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,1,0,0,0]
=> [4,2,1,1] => ? = 1
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,1,0,0]
=> [4,1,1,1,1] => ? = 1
[1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0]
=> [3,1,4] => ? = 4
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,1,0,0]
=> [3,1,2,1,1] => ? = 1
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,1,0,0]
=> [3,2,1,1,1] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,1,1,0,0,0,0,0]
=> [4,1,3] => ? = 3
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,1,0,0,0,0,0]
=> [4,2,2] => ? = 2
[1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,1,0,0]
=> [4,2,1,1] => ? = 1
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,0]
=> [5,1,2] => ? = 2
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,1,0,0,0]
=> [4,1,1,2] => ? = 2
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,1,0,0,0]
=> [4,2,1,1] => ? = 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0]
=> [4,1,1,1,1] => ? = 1
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,1,0,0]
=> [3,1,1,2,1] => ? = 1
[1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,1,0,0]
=> [3,1,2,1,1] => ? = 1
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,1,0,0]
=> [3,2,1,1,1] => ? = 1
[1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,1,0,0,0,0]
=> [4,1,1,2] => ? = 2
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,1,0,0,0,0]
=> [4,2,1,1] => ? = 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> [4,1,1,1,1] => ? = 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0]
=> [3,1,1,1,2] => ? = 2
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,1,0,0,0]
=> [3,1,1,2,1] => ? = 1
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,1,0,0,0]
=> [3,1,2,1,1] => ? = 1
Description
The last part of an integer composition.
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00064: Permutations reversePermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001199: Dyck paths ⟶ ℤResult quality: 12% values known / values provided: 68%distinct values known / distinct values provided: 12%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 2
[1,0,1,0]
=> [1,2] => [2,1] => [1,1,0,0]
=> ? = 3
[1,1,0,0]
=> [2,1] => [1,2] => [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 4
[1,0,1,1,0,0]
=> [1,3,2] => [2,3,1] => [1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [3,1,2] => [1,1,1,0,0,0]
=> ? = 2
[1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [3,1,2] => [2,1,3] => [1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 5
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? = 3
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> ? = 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? = 2
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 6
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,4,2,1] => [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,5,2,4,1] => [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 4
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,5,1,3,2] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 7
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [5,6,4,3,2,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [6,4,5,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [4,6,5,3,2,1] => [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => [5,4,6,3,2,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [6,5,3,4,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [5,6,3,4,2,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [6,3,5,4,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [3,6,5,4,2,1] => [1,1,1,0,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,3,5] => [5,3,6,4,2,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => [6,4,3,5,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,3,6,4] => [4,6,3,5,2,1] => [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,3,4] => [4,3,6,5,2,1] => [1,1,1,1,0,0,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => [5,4,3,6,2,1] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [6,5,4,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 4
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [6,4,5,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => [6,5,2,4,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => [6,2,5,4,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,3,5,2,4,6] => [6,4,2,5,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,2,3,5,6] => [6,5,3,2,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3,6] => [6,3,5,2,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,5,2,3,6] => [6,3,2,5,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,2,3,4,6] => [6,4,3,2,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => [6,5,4,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 5
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => [6,4,5,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => [6,5,3,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => [6,3,5,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,5,3,4,6] => [6,4,3,5,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => [6,5,4,1,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 4
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,6] => [6,4,5,1,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,1,5,6] => [6,5,1,4,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,1,6] => [6,1,5,4,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,5,1,4,6] => [6,4,1,5,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [2,4,1,3,5,6] => [6,5,3,1,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,1,5,3,6] => [6,3,5,1,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [2,4,5,1,3,6] => [6,3,1,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Mp00099: Dyck paths bounce pathDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000993: Integer partitions ⟶ ℤResult quality: 68% values known / values provided: 68%distinct values known / distinct values provided: 75%
Values
[1,0]
=> [1,0]
=> [1,0]
=> []
=> ? = 2
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> []
=> ? = 3
[1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1]
=> ? = 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> ? = 4
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> ? = 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? = 5
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 3
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 6
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 3
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 2
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 7
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> ? = 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> ? = 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> ? = 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> ? = 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> ? = 1
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> ? = 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> ? = 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> ? = 8
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [6,4,4]
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [6,4,4]
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [6,4,4]
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [6,3,3,3]
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [5,5,3,3]
=> ? = 2
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [6,3,3,3]
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [5,3,3,3]
=> ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [6,4,4]
=> ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [5,5,3,3]
=> ? = 2
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [6,4,4]
=> ? = 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [5,3,3,3]
=> ? = 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [6,4,4]
=> ? = 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [5,3,3,3]
=> ? = 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [5,5,3,3]
=> ? = 2
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [5,3,3,3]
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [5,3,3,3]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [5,3,3,3]
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,2,2,2]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [5,5,2,2,2]
=> ? = 2
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,2,2,2]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,2,2,2]
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [4,4,4,2,2]
=> ? = 3
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,2]
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [5,5,2,2,2]
=> ? = 2
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,2]
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,2,2,2]
=> ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [4,4,2,2,2]
=> ? = 2
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,2]
=> ? = 1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,2,2,2]
=> ? = 1
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St001933
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001933: Integer partitions ⟶ ℤResult quality: 12% values known / values provided: 68%distinct values known / distinct values provided: 12%
Values
[1,0]
=> [1] => [1,0]
=> []
=> ? = 2
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> []
=> ? = 3
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> [1]
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? = 4
[1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? = 2
[1,1,0,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? = 5
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? = 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? = 3
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? = 2
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? = 2
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 6
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 3
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 4
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 3
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 3
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 7
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 4
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,4,2,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 3
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,3,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 5
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 3
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 4
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [6,3,4,2,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 3
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [6,4,2,3,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2
Description
The largest multiplicity of a part in an integer partition.
Matching statistic: St001714
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001714: Integer partitions ⟶ ℤResult quality: 12% values known / values provided: 68%distinct values known / distinct values provided: 12%
Values
[1,0]
=> [1] => [1,0]
=> []
=> ? = 2 - 1
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> []
=> ? = 3 - 1
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> [1]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? = 4 - 1
[1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? = 2 - 1
[1,1,0,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? = 5 - 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? = 2 - 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? = 3 - 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? = 2 - 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? = 2 - 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 0 = 1 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 3 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 0 = 1 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 0 = 1 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 0 = 1 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 0 = 1 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 0 = 1 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 0 = 1 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 0 = 1 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 7 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 3 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 4 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 3 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,4,2,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 3 - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,3,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 5 - 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 3 - 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 4 - 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 3 - 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [6,3,4,2,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 3 - 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [6,4,2,3,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? = 2 - 1
Description
The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. In particular, partitions with statistic $0$ are wide partitions.
The following 38 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000022The number of fixed points of a permutation. St000733The row containing the largest entry of a standard tableau. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St000706The product of the factorials of the multiplicities of an integer partition. St000929The constant term of the character polynomial of an integer partition. St000475The number of parts equal to 1 in a partition. St001568The smallest positive integer that does not appear twice in the partition. St000895The number of ones on the main diagonal of an alternating sign matrix. St000873The aix statistic of a permutation. St000264The girth of a graph, which is not a tree. St000221The number of strong fixed points of a permutation. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St000456The monochromatic index of a connected graph. St000907The number of maximal antichains of minimal length in a poset. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St000117The number of centered tunnels of a Dyck path. St000234The number of global ascents of a permutation. St000241The number of cyclical small excedances. St000315The number of isolated vertices of a graph. St000338The number of pixed points of a permutation. St000461The rix statistic of a permutation. St001342The number of vertices in the center of a graph. St001368The number of vertices of maximal degree in a graph. St000989The number of final rises of a permutation. St000326The position of the first one in a binary word after appending a 1 at the end. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001545The second Elser number of a connected graph. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001498The normalised height of a Nakayama algebra with magnitude 1. St000654The first descent of a permutation. St000056The decomposition (or block) number of a permutation. St000335The difference of lower and upper interactions. St000990The first ascent of a permutation. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid.