Identifier
Values
[1] => 0
[2] => 0
[1,1] => 1
[3] => 0
[2,1] => 0
[1,1,1] => 2
[4] => 0
[3,1] => 0
[2,2] => 0
[2,1,1] => 2
[1,1,1,1] => 3
[5] => 0
[4,1] => 0
[3,2] => 0
[3,1,1] => 1
[2,2,1] => 1
[2,1,1,1] => 4
[1,1,1,1,1] => 4
[6] => 0
[5,1] => 0
[4,2] => 0
[4,1,1] => 1
[3,3] => 0
[3,2,1] => 0
[3,1,1,1] => 3
[2,2,2] => 1
[2,2,1,1] => 4
[2,1,1,1,1] => 6
[1,1,1,1,1,1] => 5
[7] => 0
[6,1] => 0
[5,2] => 0
[5,1,1] => 1
[4,3] => 0
[4,2,1] => 0
[4,1,1,1] => 2
[3,3,1] => 0
[3,2,2] => 1
[3,2,1,1] => 3
[3,1,1,1,1] => 5
[2,2,2,1] => 3
[2,2,1,1,1] => 7
[2,1,1,1,1,1] => 8
[1,1,1,1,1,1,1] => 6
[8] => 0
[7,1] => 0
[6,2] => 0
[6,1,1] => 1
[5,3] => 0
[5,2,1] => 0
[5,1,1,1] => 2
[4,4] => 0
[4,3,1] => 0
[4,2,2] => 0
[4,2,1,1] => 2
[4,1,1,1,1] => 4
[3,3,2] => 0
[3,3,1,1] => 2
[3,2,2,1] => 3
[3,2,1,1,1] => 7
[3,1,1,1,1,1] => 7
[2,2,2,2] => 2
[2,2,2,1,1] => 7
[2,2,1,1,1,1] => 10
[2,1,1,1,1,1,1] => 10
[1,1,1,1,1,1,1,1] => 7
[9] => 0
[8,1] => 0
[7,2] => 0
[7,1,1] => 1
[6,3] => 0
[6,2,1] => 0
[6,1,1,1] => 2
[5,4] => 0
[5,3,1] => 0
[5,2,2] => 0
[5,2,1,1] => 2
[5,1,1,1,1] => 3
[4,4,1] => 0
[4,3,2] => 0
[4,3,1,1] => 1
[4,2,2,1] => 2
[4,2,1,1,1] => 5
[4,1,1,1,1,1] => 6
[3,3,3] => 0
[3,3,2,1] => 1
[3,3,1,1,1] => 5
[3,2,2,2] => 3
[3,2,2,1,1] => 8
[3,2,1,1,1,1] => 11
[3,1,1,1,1,1,1] => 9
[2,2,2,2,1] => 5
[2,2,2,1,1,1] => 11
[2,2,1,1,1,1,1] => 13
[2,1,1,1,1,1,1,1] => 12
[1,1,1,1,1,1,1,1,1] => 8
[10] => 0
[9,1] => 0
[8,2] => 0
[8,1,1] => 1
[7,3] => 0
>>> Load all 1200 entries. <<<[7,2,1] => 0
[7,1,1,1] => 2
[6,4] => 0
[6,3,1] => 0
[6,2,2] => 0
[6,2,1,1] => 2
[6,1,1,1,1] => 3
[5,5] => 0
[5,4,1] => 0
[5,3,2] => 0
[5,3,1,1] => 1
[5,2,2,1] => 1
[5,2,1,1,1] => 4
[5,1,1,1,1,1] => 5
[4,4,2] => 0
[4,4,1,1] => 1
[4,3,3] => 0
[4,3,2,1] => 0
[4,3,1,1,1] => 4
[4,2,2,2] => 2
[4,2,2,1,1] => 6
[4,2,1,1,1,1] => 9
[4,1,1,1,1,1,1] => 8
[3,3,3,1] => 1
[3,3,2,2] => 2
[3,3,2,1,1] => 6
[3,3,1,1,1,1] => 8
[3,2,2,2,1] => 7
[3,2,2,1,1,1] => 14
[3,2,1,1,1,1,1] => 15
[3,1,1,1,1,1,1,1] => 11
[2,2,2,2,2] => 3
[2,2,2,2,1,1] => 10
[2,2,2,1,1,1,1] => 15
[2,2,1,1,1,1,1,1] => 16
[2,1,1,1,1,1,1,1,1] => 14
[1,1,1,1,1,1,1,1,1,1] => 9
[11] => 0
[10,1] => 0
[9,2] => 0
[9,1,1] => 1
[8,3] => 0
[8,2,1] => 0
[8,1,1,1] => 2
[7,4] => 0
[7,3,1] => 0
[7,2,2] => 0
[7,2,1,1] => 2
[7,1,1,1,1] => 3
[6,5] => 0
[6,4,1] => 0
[6,3,2] => 0
[6,3,1,1] => 1
[6,2,2,1] => 1
[6,2,1,1,1] => 4
[6,1,1,1,1,1] => 4
[5,5,1] => 0
[5,4,2] => 0
[5,4,1,1] => 1
[5,3,3] => 0
[5,3,2,1] => 0
[5,3,1,1,1] => 3
[5,2,2,2] => 2
[5,2,2,1,1] => 5
[5,2,1,1,1,1] => 7
[5,1,1,1,1,1,1] => 7
[4,4,3] => 0
[4,4,2,1] => 0
[4,4,1,1,1] => 3
[4,3,3,1] => 0
[4,3,2,2] => 2
[4,3,2,1,1] => 4
[4,3,1,1,1,1] => 8
[4,2,2,2,1] => 6
[4,2,2,1,1,1] => 11
[4,2,1,1,1,1,1] => 13
[4,1,1,1,1,1,1,1] => 10
[3,3,3,2] => 1
[3,3,3,1,1] => 4
[3,3,2,2,1] => 6
[3,3,2,1,1,1] => 12
[3,3,1,1,1,1,1] => 11
[3,2,2,2,2] => 5
[3,2,2,2,1,1] => 14
[3,2,2,1,1,1,1] => 20
[3,2,1,1,1,1,1,1] => 19
[3,1,1,1,1,1,1,1,1] => 13
[2,2,2,2,2,1] => 7
[2,2,2,2,1,1,1] => 15
[2,2,2,1,1,1,1,1] => 19
[2,2,1,1,1,1,1,1,1] => 19
[2,1,1,1,1,1,1,1,1,1] => 16
[1,1,1,1,1,1,1,1,1,1,1] => 10
[12] => 0
[11,1] => 0
[10,2] => 0
[10,1,1] => 1
[9,3] => 0
[9,2,1] => 0
[9,1,1,1] => 2
[8,4] => 0
[8,3,1] => 0
[8,2,2] => 0
[8,2,1,1] => 2
[8,1,1,1,1] => 3
[7,5] => 0
[7,4,1] => 0
[7,3,2] => 0
[7,3,1,1] => 1
[7,2,2,1] => 1
[7,2,1,1,1] => 4
[7,1,1,1,1,1] => 4
[6,6] => 0
[6,5,1] => 0
[6,4,2] => 0
[6,4,1,1] => 1
[6,3,3] => 0
[6,3,2,1] => 0
[6,3,1,1,1] => 3
[6,2,2,2] => 1
[6,2,2,1,1] => 4
[6,2,1,1,1,1] => 6
[6,1,1,1,1,1,1] => 6
[5,5,2] => 0
[5,5,1,1] => 1
[5,4,3] => 0
[5,4,2,1] => 0
[5,4,1,1,1] => 2
[5,3,3,1] => 0
[5,3,2,2] => 1
[5,3,2,1,1] => 3
[5,3,1,1,1,1] => 6
[5,2,2,2,1] => 5
[5,2,2,1,1,1] => 9
[5,2,1,1,1,1,1] => 11
[5,1,1,1,1,1,1,1] => 9
[4,4,4] => 0
[4,4,3,1] => 0
[4,4,2,2] => 0
[4,4,2,1,1] => 3
[4,4,1,1,1,1] => 6
[4,3,3,2] => 1
[4,3,3,1,1] => 3
[4,3,2,2,1] => 6
[4,3,2,1,1,1] => 11
[4,3,1,1,1,1,1] => 12
[4,2,2,2,2] => 4
[4,2,2,2,1,1] => 12
[4,2,2,1,1,1,1] => 17
[4,2,1,1,1,1,1,1] => 17
[4,1,1,1,1,1,1,1,1] => 12
[3,3,3,3] => 1
[3,3,3,2,1] => 4
[3,3,3,1,1,1] => 8
[3,3,2,2,2] => 5
[3,3,2,2,1,1] => 14
[3,3,2,1,1,1,1] => 18
[3,3,1,1,1,1,1,1] => 14
[3,2,2,2,2,1] => 11
[3,2,2,2,1,1,1] => 22
[3,2,2,1,1,1,1,1] => 26
[3,2,1,1,1,1,1,1,1] => 23
[3,1,1,1,1,1,1,1,1,1] => 15
[2,2,2,2,2,2] => 4
[2,2,2,2,2,1,1] => 13
[2,2,2,2,1,1,1,1] => 20
[2,2,2,1,1,1,1,1,1] => 23
[2,2,1,1,1,1,1,1,1,1] => 22
[2,1,1,1,1,1,1,1,1,1,1] => 18
[1,1,1,1,1,1,1,1,1,1,1,1] => 11
[13] => 0
[12,1] => 0
[11,2] => 0
[11,1,1] => 1
[10,3] => 0
[10,2,1] => 0
[10,1,1,1] => 2
[9,4] => 0
[9,3,1] => 0
[9,2,2] => 0
[9,2,1,1] => 2
[9,1,1,1,1] => 3
[8,5] => 0
[8,4,1] => 0
[8,3,2] => 0
[8,3,1,1] => 1
[8,2,2,1] => 1
[8,2,1,1,1] => 4
[8,1,1,1,1,1] => 4
[7,6] => 0
[7,5,1] => 0
[7,4,2] => 0
[7,4,1,1] => 1
[7,3,3] => 0
[7,3,2,1] => 0
[7,3,1,1,1] => 3
[7,2,2,2] => 1
[7,2,2,1,1] => 4
[7,2,1,1,1,1] => 6
[7,1,1,1,1,1,1] => 5
[6,6,1] => 0
[6,5,2] => 0
[6,5,1,1] => 1
[6,4,3] => 0
[6,4,2,1] => 0
[6,4,1,1,1] => 2
[6,3,3,1] => 0
[6,3,2,2] => 1
[6,3,2,1,1] => 3
[6,3,1,1,1,1] => 5
[6,2,2,2,1] => 4
[6,2,2,1,1,1] => 8
[6,2,1,1,1,1,1] => 9
[6,1,1,1,1,1,1,1] => 8
[5,5,3] => 0
[5,5,2,1] => 0
[5,5,1,1,1] => 2
[5,4,4] => 0
[5,4,3,1] => 0
[5,4,2,2] => 0
[5,4,2,1,1] => 2
[5,4,1,1,1,1] => 5
[5,3,3,2] => 0
[5,3,3,1,1] => 2
[5,3,2,2,1] => 4
[5,3,2,1,1,1] => 8
[5,3,1,1,1,1,1] => 10
[5,2,2,2,2] => 4
[5,2,2,2,1,1] => 11
[5,2,2,1,1,1,1] => 14
[5,2,1,1,1,1,1,1] => 15
[5,1,1,1,1,1,1,1,1] => 11
[4,4,4,1] => 0
[4,4,3,2] => 0
[4,4,3,1,1] => 2
[4,4,2,2,1] => 3
[4,4,2,1,1,1] => 8
[4,4,1,1,1,1,1] => 9
[4,3,3,3] => 1
[4,3,3,2,1] => 3
[4,3,3,1,1,1] => 8
[4,3,2,2,2] => 6
[4,3,2,2,1,1] => 14
[4,3,2,1,1,1,1] => 19
[4,3,1,1,1,1,1,1] => 16
[4,2,2,2,2,1] => 10
[4,2,2,2,1,1,1] => 19
[4,2,2,1,1,1,1,1] => 23
[4,2,1,1,1,1,1,1,1] => 21
[4,1,1,1,1,1,1,1,1,1] => 14
[3,3,3,3,1] => 3
[3,3,3,2,2] => 4
[3,3,3,2,1,1] => 11
[3,3,3,1,1,1,1] => 12
[3,3,2,2,2,1] => 12
[3,3,2,2,1,1,1] => 23
[3,3,2,1,1,1,1,1] => 24
[3,3,1,1,1,1,1,1,1] => 17
[3,2,2,2,2,2] => 7
[3,2,2,2,2,1,1] => 20
[3,2,2,2,1,1,1,1] => 30
[3,2,2,1,1,1,1,1,1] => 32
[3,2,1,1,1,1,1,1,1,1] => 27
[3,1,1,1,1,1,1,1,1,1,1] => 17
[2,2,2,2,2,2,1] => 9
[2,2,2,2,2,1,1,1] => 19
[2,2,2,2,1,1,1,1,1] => 25
[2,2,2,1,1,1,1,1,1,1] => 27
[2,2,1,1,1,1,1,1,1,1,1] => 25
[2,1,1,1,1,1,1,1,1,1,1,1] => 20
[1,1,1,1,1,1,1,1,1,1,1,1,1] => 12
[14] => 0
[13,1] => 0
[12,2] => 0
[12,1,1] => 1
[11,3] => 0
[11,2,1] => 0
[11,1,1,1] => 2
[10,4] => 0
[10,3,1] => 0
[10,2,2] => 0
[10,2,1,1] => 2
[10,1,1,1,1] => 3
[9,5] => 0
[9,4,1] => 0
[9,3,2] => 0
[9,3,1,1] => 1
[9,2,2,1] => 1
[9,2,1,1,1] => 4
[9,1,1,1,1,1] => 4
[8,6] => 0
[8,5,1] => 0
[8,4,2] => 0
[8,4,1,1] => 1
[8,3,3] => 0
[8,3,2,1] => 0
[8,3,1,1,1] => 3
[8,2,2,2] => 1
[8,2,2,1,1] => 4
[8,2,1,1,1,1] => 6
[8,1,1,1,1,1,1] => 5
[7,7] => 0
[7,6,1] => 0
[7,5,2] => 0
[7,5,1,1] => 1
[7,4,3] => 0
[7,4,2,1] => 0
[7,4,1,1,1] => 2
[7,3,3,1] => 0
[7,3,2,2] => 1
[7,3,2,1,1] => 3
[7,3,1,1,1,1] => 5
[7,2,2,2,1] => 3
[7,2,2,1,1,1] => 7
[7,2,1,1,1,1,1] => 8
[7,1,1,1,1,1,1,1] => 7
[6,6,2] => 0
[6,6,1,1] => 1
[6,5,3] => 0
[6,5,2,1] => 0
[6,5,1,1,1] => 2
[6,4,4] => 0
[6,4,3,1] => 0
[6,4,2,2] => 0
[6,4,2,1,1] => 2
[6,4,1,1,1,1] => 4
[6,3,3,2] => 0
[6,3,3,1,1] => 2
[6,3,2,2,1] => 3
[6,3,2,1,1,1] => 7
[6,3,1,1,1,1,1] => 8
[6,2,2,2,2] => 3
[6,2,2,2,1,1] => 9
[6,2,2,1,1,1,1] => 12
[6,2,1,1,1,1,1,1] => 13
[6,1,1,1,1,1,1,1,1] => 10
[5,5,4] => 0
[5,5,3,1] => 0
[5,5,2,2] => 0
[5,5,2,1,1] => 2
[5,5,1,1,1,1] => 4
[5,4,4,1] => 0
[5,4,3,2] => 0
[5,4,3,1,1] => 1
[5,4,2,2,1] => 2
[5,4,2,1,1,1] => 6
[5,4,1,1,1,1,1] => 9
[5,3,3,3] => 1
[5,3,3,2,1] => 2
[5,3,3,1,1,1] => 6
[5,3,2,2,2] => 5
[5,3,2,2,1,1] => 11
[5,3,2,1,1,1,1] => 15
[5,3,1,1,1,1,1,1] => 14
[5,2,2,2,2,1] => 9
[5,2,2,2,1,1,1] => 17
[5,2,2,1,1,1,1,1] => 20
[5,2,1,1,1,1,1,1,1] => 19
[5,1,1,1,1,1,1,1,1,1] => 13
[4,4,4,2] => 0
[4,4,4,1,1] => 2
[4,4,3,3] => 1
[4,4,3,2,1] => 1
[4,4,3,1,1,1] => 7
[4,4,2,2,2] => 3
[4,4,2,2,1,1] => 9
[4,4,2,1,1,1,1] => 14
[4,4,1,1,1,1,1,1] => 12
[4,3,3,3,1] => 3
[4,3,3,2,2] => 5
[4,3,3,2,1,1] => 11
[4,3,3,1,1,1,1] => 14
[4,3,2,2,2,1] => 14
[4,3,2,2,1,1,1] => 25
[4,3,2,1,1,1,1,1] => 27
[4,3,1,1,1,1,1,1,1] => 20
[4,2,2,2,2,2] => 6
[4,2,2,2,2,1,1] => 18
[4,2,2,2,1,1,1,1] => 27
[4,2,2,1,1,1,1,1,1] => 29
[4,2,1,1,1,1,1,1,1,1] => 25
[4,1,1,1,1,1,1,1,1,1,1] => 16
[3,3,3,3,2] => 3
[3,3,3,3,1,1] => 7
[3,3,3,2,2,1] => 11
[3,3,3,2,1,1,1] => 19
[3,3,3,1,1,1,1,1] => 16
[3,3,2,2,2,2] => 8
[3,3,2,2,2,1,1] => 23
[3,3,2,2,1,1,1,1] => 32
[3,3,2,1,1,1,1,1,1] => 30
[3,3,1,1,1,1,1,1,1,1] => 20
[3,2,2,2,2,2,1] => 15
[3,2,2,2,2,1,1,1] => 30
[3,2,2,2,1,1,1,1,1] => 38
[3,2,2,1,1,1,1,1,1,1] => 38
[3,2,1,1,1,1,1,1,1,1,1] => 31
[3,1,1,1,1,1,1,1,1,1,1,1] => 19
[2,2,2,2,2,2,2] => 5
[2,2,2,2,2,2,1,1] => 16
[2,2,2,2,2,1,1,1,1] => 25
[2,2,2,2,1,1,1,1,1,1] => 30
[2,2,2,1,1,1,1,1,1,1,1] => 31
[2,2,1,1,1,1,1,1,1,1,1,1] => 28
[2,1,1,1,1,1,1,1,1,1,1,1,1] => 22
[1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 13
[15] => 0
[14,1] => 0
[13,2] => 0
[13,1,1] => 1
[12,3] => 0
[12,2,1] => 0
[12,1,1,1] => 2
[11,4] => 0
[11,3,1] => 0
[11,2,2] => 0
[11,2,1,1] => 2
[11,1,1,1,1] => 3
[10,5] => 0
[10,4,1] => 0
[10,3,2] => 0
[10,3,1,1] => 1
[10,2,2,1] => 1
[10,2,1,1,1] => 4
[10,1,1,1,1,1] => 4
[9,6] => 0
[9,5,1] => 0
[9,4,2] => 0
[9,4,1,1] => 1
[9,3,3] => 0
[9,3,2,1] => 0
[9,3,1,1,1] => 3
[9,2,2,2] => 1
[9,2,2,1,1] => 4
[9,2,1,1,1,1] => 6
[9,1,1,1,1,1,1] => 5
[8,7] => 0
[8,6,1] => 0
[8,5,2] => 0
[8,5,1,1] => 1
[8,4,3] => 0
[8,4,2,1] => 0
[8,4,1,1,1] => 2
[8,3,3,1] => 0
[8,3,2,2] => 1
[8,3,2,1,1] => 3
[8,3,1,1,1,1] => 5
[8,2,2,2,1] => 3
[8,2,2,1,1,1] => 7
[8,2,1,1,1,1,1] => 8
[8,1,1,1,1,1,1,1] => 6
[7,7,1] => 0
[7,6,2] => 0
[7,6,1,1] => 1
[7,5,3] => 0
[7,5,2,1] => 0
[7,5,1,1,1] => 2
[7,4,4] => 0
[7,4,3,1] => 0
[7,4,2,2] => 0
[7,4,2,1,1] => 2
[7,4,1,1,1,1] => 4
[7,3,3,2] => 0
[7,3,3,1,1] => 2
[7,3,2,2,1] => 3
[7,3,2,1,1,1] => 7
[7,3,1,1,1,1,1] => 7
[7,2,2,2,2] => 3
[7,2,2,2,1,1] => 8
[7,2,2,1,1,1,1] => 11
[7,2,1,1,1,1,1,1] => 11
[7,1,1,1,1,1,1,1,1] => 9
[6,6,3] => 0
[6,6,2,1] => 0
[6,6,1,1,1] => 2
[6,5,4] => 0
[6,5,3,1] => 0
[6,5,2,2] => 0
[6,5,2,1,1] => 2
[6,5,1,1,1,1] => 3
[6,4,4,1] => 0
[6,4,3,2] => 0
[6,4,3,1,1] => 1
[6,4,2,2,1] => 2
[6,4,2,1,1,1] => 5
[6,4,1,1,1,1,1] => 7
[6,3,3,3] => 0
[6,3,3,2,1] => 1
[6,3,3,1,1,1] => 5
[6,3,2,2,2] => 4
[6,3,2,2,1,1] => 9
[6,3,2,1,1,1,1] => 12
[6,3,1,1,1,1,1,1] => 12
[6,2,2,2,2,1] => 8
[6,2,2,2,1,1,1] => 15
[6,2,2,1,1,1,1,1] => 17
[6,2,1,1,1,1,1,1,1] => 17
[6,1,1,1,1,1,1,1,1,1] => 12
[5,5,5] => 0
[5,5,4,1] => 0
[5,5,3,2] => 0
[5,5,3,1,1] => 1
[5,5,2,2,1] => 1
[5,5,2,1,1,1] => 5
[5,5,1,1,1,1,1] => 7
[5,4,4,2] => 0
[5,4,4,1,1] => 1
[5,4,3,3] => 0
[5,4,3,2,1] => 0
[5,4,3,1,1,1] => 5
[5,4,2,2,2] => 4
[5,4,2,2,1,1] => 8
[5,4,2,1,1,1,1] => 13
[5,4,1,1,1,1,1,1] => 13
[5,3,3,3,1] => 3
[5,3,3,2,2] => 3
[5,3,3,2,1,1] => 8
[5,3,3,1,1,1,1] => 11
[5,3,2,2,2,1] => 12
[5,3,2,2,1,1,1] => 20
[5,3,2,1,1,1,1,1] => 23
[5,3,1,1,1,1,1,1,1] => 18
[5,2,2,2,2,2] => 6
[5,2,2,2,2,1,1] => 17
[5,2,2,2,1,1,1,1] => 24
[5,2,2,1,1,1,1,1,1] => 26
[5,2,1,1,1,1,1,1,1,1] => 23
[5,1,1,1,1,1,1,1,1,1,1] => 15
[4,4,4,3] => 0
[4,4,4,2,1] => 1
[4,4,4,1,1,1] => 5
[4,4,3,3,1] => 2
[4,4,3,2,2] => 3
[4,4,3,2,1,1] => 8
[4,4,3,1,1,1,1] => 13
[4,4,2,2,2,1] => 9
[4,4,2,2,1,1,1] => 17
[4,4,2,1,1,1,1,1] => 20
[4,4,1,1,1,1,1,1,1] => 15
[4,3,3,3,2] => 4
[4,3,3,3,1,1] => 8
[4,3,3,2,2,1] => 13
[4,3,3,2,1,1,1] => 22
[4,3,3,1,1,1,1,1] => 20
[4,3,2,2,2,2] => 10
[4,3,2,2,2,1,1] => 26
[4,3,2,2,1,1,1,1] => 37
[4,3,2,1,1,1,1,1,1] => 35
[4,3,1,1,1,1,1,1,1,1] => 24
[4,2,2,2,2,2,1] => 14
[4,2,2,2,2,1,1,1] => 27
[4,2,2,2,1,1,1,1,1] => 35
[4,2,2,1,1,1,1,1,1,1] => 35
[4,2,1,1,1,1,1,1,1,1,1] => 29
[4,1,1,1,1,1,1,1,1,1,1,1] => 18
[3,3,3,3,3] => 2
[3,3,3,3,2,1] => 8
[3,3,3,3,1,1,1] => 12
[3,3,3,2,2,2] => 8
[3,3,3,2,2,1,1] => 22
[3,3,3,2,1,1,1,1] => 27
[3,3,3,1,1,1,1,1,1] => 20
[3,3,2,2,2,2,1] => 18
[3,3,2,2,2,1,1,1] => 35
[3,3,2,2,1,1,1,1,1] => 41
[3,3,2,1,1,1,1,1,1,1] => 36
[3,3,1,1,1,1,1,1,1,1,1] => 23
[3,2,2,2,2,2,2] => 9
[3,2,2,2,2,2,1,1] => 26
[3,2,2,2,2,1,1,1,1] => 40
[3,2,2,2,1,1,1,1,1,1] => 46
[3,2,2,1,1,1,1,1,1,1,1] => 44
[3,2,1,1,1,1,1,1,1,1,1,1] => 35
[3,1,1,1,1,1,1,1,1,1,1,1,1] => 21
[2,2,2,2,2,2,2,1] => 11
[2,2,2,2,2,2,1,1,1] => 23
[2,2,2,2,2,1,1,1,1,1] => 31
[2,2,2,2,1,1,1,1,1,1,1] => 35
[2,2,2,1,1,1,1,1,1,1,1,1] => 35
[2,2,1,1,1,1,1,1,1,1,1,1,1] => 31
[2,1,1,1,1,1,1,1,1,1,1,1,1,1] => 24
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 14
[16] => 0
[15,1] => 0
[14,2] => 0
[14,1,1] => 1
[13,3] => 0
[13,2,1] => 0
[13,1,1,1] => 2
[12,4] => 0
[12,3,1] => 0
[12,2,2] => 0
[12,2,1,1] => 2
[12,1,1,1,1] => 3
[11,5] => 0
[11,4,1] => 0
[11,3,2] => 0
[11,3,1,1] => 1
[11,2,2,1] => 1
[11,2,1,1,1] => 4
[11,1,1,1,1,1] => 4
[10,6] => 0
[10,5,1] => 0
[10,4,2] => 0
[10,4,1,1] => 1
[10,3,3] => 0
[10,3,2,1] => 0
[10,3,1,1,1] => 3
[10,2,2,2] => 1
[10,2,2,1,1] => 4
[10,2,1,1,1,1] => 6
[10,1,1,1,1,1,1] => 5
[9,7] => 0
[9,6,1] => 0
[9,5,2] => 0
[9,5,1,1] => 1
[9,4,3] => 0
[9,4,2,1] => 0
[9,4,1,1,1] => 2
[9,3,3,1] => 0
[9,3,2,2] => 1
[9,3,2,1,1] => 3
[9,3,1,1,1,1] => 5
[9,2,2,2,1] => 3
[9,2,2,1,1,1] => 7
[9,2,1,1,1,1,1] => 8
[9,1,1,1,1,1,1,1] => 6
[8,8] => 0
[8,7,1] => 0
[8,6,2] => 0
[8,6,1,1] => 1
[8,5,3] => 0
[8,5,2,1] => 0
[8,5,1,1,1] => 2
[8,4,4] => 0
[8,4,3,1] => 0
[8,4,2,2] => 0
[8,4,2,1,1] => 2
[8,4,1,1,1,1] => 4
[8,3,3,2] => 0
[8,3,3,1,1] => 2
[8,3,2,2,1] => 3
[8,3,2,1,1,1] => 7
[8,3,1,1,1,1,1] => 7
[8,2,2,2,2] => 2
[8,2,2,2,1,1] => 7
[8,2,2,1,1,1,1] => 10
[8,2,1,1,1,1,1,1] => 10
[8,1,1,1,1,1,1,1,1] => 8
[7,7,2] => 0
[7,7,1,1] => 1
[7,6,3] => 0
[7,6,2,1] => 0
[7,6,1,1,1] => 2
[7,5,4] => 0
[7,5,3,1] => 0
[7,5,2,2] => 0
[7,5,2,1,1] => 2
[7,5,1,1,1,1] => 3
[7,4,4,1] => 0
[7,4,3,2] => 0
[7,4,3,1,1] => 1
[7,4,2,2,1] => 2
[7,4,2,1,1,1] => 5
[7,4,1,1,1,1,1] => 6
[7,3,3,3] => 0
[7,3,3,2,1] => 1
[7,3,3,1,1,1] => 5
[7,3,2,2,2] => 3
[7,3,2,2,1,1] => 8
[7,3,2,1,1,1,1] => 11
[7,3,1,1,1,1,1,1] => 10
[7,2,2,2,2,1] => 7
[7,2,2,2,1,1,1] => 13
[7,2,2,1,1,1,1,1] => 15
[7,2,1,1,1,1,1,1,1] => 15
[7,1,1,1,1,1,1,1,1,1] => 11
[6,6,4] => 0
[6,6,3,1] => 0
[6,6,2,2] => 0
[6,6,2,1,1] => 2
[6,6,1,1,1,1] => 3
[6,5,5] => 0
[6,5,4,1] => 0
[6,5,3,2] => 0
[6,5,3,1,1] => 1
[6,5,2,2,1] => 1
[6,5,2,1,1,1] => 4
[6,5,1,1,1,1,1] => 6
[6,4,4,2] => 0
[6,4,4,1,1] => 1
[6,4,3,3] => 0
[6,4,3,2,1] => 0
[6,4,3,1,1,1] => 4
[6,4,2,2,2] => 2
[6,4,2,2,1,1] => 6
[6,4,2,1,1,1,1] => 10
[6,4,1,1,1,1,1,1] => 11
[6,3,3,3,1] => 2
[6,3,3,2,2] => 3
[6,3,3,2,1,1] => 7
[6,3,3,1,1,1,1] => 9
[6,3,2,2,2,1] => 10
[6,3,2,2,1,1,1] => 17
[6,3,2,1,1,1,1,1] => 19
[6,3,1,1,1,1,1,1,1] => 16
[6,2,2,2,2,2] => 5
[6,2,2,2,2,1,1] => 15
[6,2,2,2,1,1,1,1] => 21
[6,2,2,1,1,1,1,1,1] => 23
[6,2,1,1,1,1,1,1,1,1] => 21
[6,1,1,1,1,1,1,1,1,1,1] => 14
[5,5,5,1] => 0
[5,5,4,2] => 0
[5,5,4,1,1] => 1
[5,5,3,3] => 0
[5,5,3,2,1] => 0
[5,5,3,1,1,1] => 4
[5,5,2,2,2] => 2
[5,5,2,2,1,1] => 6
[5,5,2,1,1,1,1] => 10
[5,5,1,1,1,1,1,1] => 10
[5,4,4,3] => 0
[5,4,4,2,1] => 0
[5,4,4,1,1,1] => 4
[5,4,3,3,1] => 1
[5,4,3,2,2] => 3
[5,4,3,2,1,1] => 5
[5,4,3,1,1,1,1] => 12
[5,4,2,2,2,1] => 10
[5,4,2,2,1,1,1] => 16
[5,4,2,1,1,1,1,1] => 21
[5,4,1,1,1,1,1,1,1] => 17
[5,3,3,3,2] => 3
[5,3,3,3,1,1] => 7
[5,3,3,2,2,1] => 10
[5,3,3,2,1,1,1] => 17
[5,3,3,1,1,1,1,1] => 17
[5,3,2,2,2,2] => 9
[5,3,2,2,2,1,1] => 23
[5,3,2,2,1,1,1,1] => 31
[5,3,2,1,1,1,1,1,1] => 31
[5,3,1,1,1,1,1,1,1,1] => 22
[5,2,2,2,2,2,1] => 13
[5,2,2,2,2,1,1,1] => 25
[5,2,2,2,1,1,1,1,1] => 32
[5,2,2,1,1,1,1,1,1,1] => 32
[5,2,1,1,1,1,1,1,1,1,1] => 27
[5,1,1,1,1,1,1,1,1,1,1,1] => 17
[4,4,4,4] => 0
[4,4,4,3,1] => 1
[4,4,4,2,2] => 1
[4,4,4,2,1,1] => 6
[4,4,4,1,1,1,1] => 9
[4,4,3,3,2] => 3
[4,4,3,3,1,1] => 7
[4,4,3,2,2,1] => 10
[4,4,3,2,1,1,1] => 19
[4,4,3,1,1,1,1,1] => 19
[4,4,2,2,2,2] => 6
[4,4,2,2,2,1,1] => 18
[4,4,2,2,1,1,1,1] => 26
[4,4,2,1,1,1,1,1,1] => 26
[4,4,1,1,1,1,1,1,1,1] => 18
[4,3,3,3,3] => 3
[4,3,3,3,2,1] => 10
[4,3,3,3,1,1,1] => 15
[4,3,3,2,2,2] => 11
[4,3,3,2,2,1,1] => 27
[4,3,3,2,1,1,1,1] => 34
[4,3,3,1,1,1,1,1,1] => 26
[4,3,2,2,2,2,1] => 22
[4,3,2,2,2,1,1,1] => 41
[4,3,2,2,1,1,1,1,1] => 49
[4,3,2,1,1,1,1,1,1,1] => 43
[4,3,1,1,1,1,1,1,1,1,1] => 28
[4,2,2,2,2,2,2] => 8
[4,2,2,2,2,2,1,1] => 24
[4,2,2,2,2,1,1,1,1] => 37
[4,2,2,2,1,1,1,1,1,1] => 43
[4,2,2,1,1,1,1,1,1,1,1] => 41
[4,2,1,1,1,1,1,1,1,1,1,1] => 33
[4,1,1,1,1,1,1,1,1,1,1,1,1] => 20
[3,3,3,3,3,1] => 5
[3,3,3,3,2,2] => 7
[3,3,3,3,2,1,1] => 17
[3,3,3,3,1,1,1,1] => 17
[3,3,3,2,2,2,1] => 19
[3,3,3,2,2,1,1,1] => 34
[3,3,3,2,1,1,1,1,1] => 35
[3,3,3,1,1,1,1,1,1,1] => 24
[3,3,2,2,2,2,2] => 11
[3,3,2,2,2,2,1,1] => 32
[3,3,2,2,2,1,1,1,1] => 47
[3,3,2,2,1,1,1,1,1,1] => 50
[3,3,2,1,1,1,1,1,1,1,1] => 42
[3,3,1,1,1,1,1,1,1,1,1,1] => 26
[3,2,2,2,2,2,2,1] => 19
[3,2,2,2,2,2,1,1,1] => 38
[3,2,2,2,2,1,1,1,1,1] => 50
[3,2,2,2,1,1,1,1,1,1,1] => 54
[3,2,2,1,1,1,1,1,1,1,1,1] => 50
[3,2,1,1,1,1,1,1,1,1,1,1,1] => 39
[3,1,1,1,1,1,1,1,1,1,1,1,1,1] => 23
[2,2,2,2,2,2,2,2] => 6
[2,2,2,2,2,2,2,1,1] => 19
[2,2,2,2,2,2,1,1,1,1] => 30
[2,2,2,2,2,1,1,1,1,1,1] => 37
[2,2,2,2,1,1,1,1,1,1,1,1] => 40
[2,2,2,1,1,1,1,1,1,1,1,1,1] => 39
[2,2,1,1,1,1,1,1,1,1,1,1,1,1] => 34
[2,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 26
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 15
[17] => 0
[16,1] => 0
[15,2] => 0
[15,1,1] => 1
[14,3] => 0
[14,2,1] => 0
[14,1,1,1] => 2
[13,4] => 0
[13,3,1] => 0
[13,2,2] => 0
[13,2,1,1] => 2
[13,1,1,1,1] => 3
[12,5] => 0
[12,4,1] => 0
[12,3,2] => 0
[12,3,1,1] => 1
[12,2,2,1] => 1
[12,2,1,1,1] => 4
[12,1,1,1,1,1] => 4
[11,6] => 0
[11,5,1] => 0
[11,4,2] => 0
[11,4,1,1] => 1
[11,3,3] => 0
[11,3,2,1] => 0
[11,3,1,1,1] => 3
[11,2,2,2] => 1
[11,2,2,1,1] => 4
[11,2,1,1,1,1] => 6
[11,1,1,1,1,1,1] => 5
[10,7] => 0
[10,6,1] => 0
[10,5,2] => 0
[10,5,1,1] => 1
[10,4,3] => 0
[10,4,2,1] => 0
[10,4,1,1,1] => 2
[10,3,3,1] => 0
[10,3,2,2] => 1
[10,3,2,1,1] => 3
[10,3,1,1,1,1] => 5
[10,2,2,2,1] => 3
[10,2,2,1,1,1] => 7
[10,2,1,1,1,1,1] => 8
[10,1,1,1,1,1,1,1] => 6
[9,8] => 0
[9,7,1] => 0
[9,6,2] => 0
[9,6,1,1] => 1
[9,5,3] => 0
[9,5,2,1] => 0
[9,5,1,1,1] => 2
[9,4,4] => 0
[9,4,3,1] => 0
[9,4,2,2] => 0
[9,4,2,1,1] => 2
[9,4,1,1,1,1] => 4
[9,3,3,2] => 0
[9,3,3,1,1] => 2
[9,3,2,2,1] => 3
[9,3,2,1,1,1] => 7
[9,3,1,1,1,1,1] => 7
[9,2,2,2,2] => 2
[9,2,2,2,1,1] => 7
[9,2,2,1,1,1,1] => 10
[9,2,1,1,1,1,1,1] => 10
[9,1,1,1,1,1,1,1,1] => 7
[8,8,1] => 0
[8,7,2] => 0
[8,7,1,1] => 1
[8,6,3] => 0
[8,6,2,1] => 0
[8,6,1,1,1] => 2
[8,5,4] => 0
[8,5,3,1] => 0
[8,5,2,2] => 0
[8,5,2,1,1] => 2
[8,5,1,1,1,1] => 3
[8,4,4,1] => 0
[8,4,3,2] => 0
[8,4,3,1,1] => 1
[8,4,2,2,1] => 2
[8,4,2,1,1,1] => 5
[8,4,1,1,1,1,1] => 6
[8,3,3,3] => 0
[8,3,3,2,1] => 1
[8,3,3,1,1,1] => 5
[8,3,2,2,2] => 3
[8,3,2,2,1,1] => 8
[8,3,2,1,1,1,1] => 11
[8,3,1,1,1,1,1,1] => 9
[8,2,2,2,2,1] => 6
[8,2,2,2,1,1,1] => 12
[8,2,2,1,1,1,1,1] => 14
[8,2,1,1,1,1,1,1,1] => 13
[8,1,1,1,1,1,1,1,1,1] => 10
[7,7,3] => 0
[7,7,2,1] => 0
[7,7,1,1,1] => 2
[7,6,4] => 0
[7,6,3,1] => 0
[7,6,2,2] => 0
[7,6,2,1,1] => 2
[7,6,1,1,1,1] => 3
[7,5,5] => 0
[7,5,4,1] => 0
[7,5,3,2] => 0
[7,5,3,1,1] => 1
[7,5,2,2,1] => 1
[7,5,2,1,1,1] => 4
[7,5,1,1,1,1,1] => 5
[7,4,4,2] => 0
[7,4,4,1,1] => 1
[7,4,3,3] => 0
[7,4,3,2,1] => 0
[7,4,3,1,1,1] => 4
[7,4,2,2,2] => 2
[7,4,2,2,1,1] => 6
[7,4,2,1,1,1,1] => 9
[7,4,1,1,1,1,1,1] => 9
[7,3,3,3,1] => 1
[7,3,3,2,2] => 2
[7,3,3,2,1,1] => 6
[7,3,3,1,1,1,1] => 8
[7,3,2,2,2,1] => 8
[7,3,2,2,1,1,1] => 15
[7,3,2,1,1,1,1,1] => 16
[7,3,1,1,1,1,1,1,1] => 14
[7,2,2,2,2,2] => 5
[7,2,2,2,2,1,1] => 14
[7,2,2,2,1,1,1,1] => 19
[7,2,2,1,1,1,1,1,1] => 20
[7,2,1,1,1,1,1,1,1,1] => 19
[7,1,1,1,1,1,1,1,1,1,1] => 13
[6,6,5] => 0
[6,6,4,1] => 0
[6,6,3,2] => 0
[6,6,3,1,1] => 1
[6,6,2,2,1] => 1
[6,6,2,1,1,1] => 4
[6,6,1,1,1,1,1] => 5
[6,5,5,1] => 0
[6,5,4,2] => 0
[6,5,4,1,1] => 1
[6,5,3,3] => 0
[6,5,3,2,1] => 0
[6,5,3,1,1,1] => 3
[6,5,2,2,2] => 2
[6,5,2,2,1,1] => 5
[6,5,2,1,1,1,1] => 8
[6,5,1,1,1,1,1,1] => 10
[6,4,4,3] => 0
[6,4,4,2,1] => 0
[6,4,4,1,1,1] => 3
[6,4,3,3,1] => 0
[6,4,3,2,2] => 2
[6,4,3,2,1,1] => 4
[6,4,3,1,1,1,1] => 9
[6,4,2,2,2,1] => 8
[6,4,2,2,1,1,1] => 13
[6,4,2,1,1,1,1,1] => 17
[6,4,1,1,1,1,1,1,1] => 15
[6,3,3,3,2] => 2
[6,3,3,3,1,1] => 6
[6,3,3,2,2,1] => 8
[6,3,3,2,1,1,1] => 14
[6,3,3,1,1,1,1,1] => 14
[6,3,2,2,2,2] => 8
[6,3,2,2,2,1,1] => 20
[6,3,2,2,1,1,1,1] => 26
[6,3,2,1,1,1,1,1,1] => 27
[6,3,1,1,1,1,1,1,1,1] => 20
[6,2,2,2,2,2,1] => 12
[6,2,2,2,2,1,1,1] => 23
[6,2,2,2,1,1,1,1,1] => 28
[6,2,2,1,1,1,1,1,1,1] => 29
[6,2,1,1,1,1,1,1,1,1,1] => 25
[6,1,1,1,1,1,1,1,1,1,1,1] => 16
[5,5,5,2] => 0
[5,5,5,1,1] => 1
[5,5,4,3] => 0
[5,5,4,2,1] => 0
[5,5,4,1,1,1] => 3
[5,5,3,3,1] => 0
[5,5,3,2,2] => 1
[5,5,3,2,1,1] => 4
[5,5,3,1,1,1,1] => 9
[5,5,2,2,2,1] => 6
[5,5,2,2,1,1,1] => 12
[5,5,2,1,1,1,1,1] => 16
[5,5,1,1,1,1,1,1,1] => 13
[5,4,4,4] => 0
[5,4,4,3,1] => 0
[5,4,4,2,2] => 1
[5,4,4,2,1,1] => 4
[5,4,4,1,1,1,1] => 9
[5,4,3,3,2] => 2
[5,4,3,3,1,1] => 5
[5,4,3,2,2,1] => 9
[5,4,3,2,1,1,1] => 16
[5,4,3,1,1,1,1,1] => 20
[5,4,2,2,2,2] => 8
[5,4,2,2,2,1,1] => 20
[5,4,2,2,1,1,1,1] => 27
[5,4,2,1,1,1,1,1,1] => 29
[5,4,1,1,1,1,1,1,1,1] => 21
[5,3,3,3,3] => 3
[5,3,3,3,2,1] => 9
[5,3,3,3,1,1,1] => 13
[5,3,3,2,2,2] => 9
[5,3,3,2,2,1,1] => 22
[5,3,3,2,1,1,1,1] => 28
[5,3,3,1,1,1,1,1,1] => 23
[5,3,2,2,2,2,1] => 20
[5,3,2,2,2,1,1,1] => 36
[5,3,2,2,1,1,1,1,1] => 43
[5,3,2,1,1,1,1,1,1,1] => 39
[5,3,1,1,1,1,1,1,1,1,1] => 26
[5,2,2,2,2,2,2] => 8
[5,2,2,2,2,2,1,1] => 23
[5,2,2,2,2,1,1,1,1] => 34
[5,2,2,2,1,1,1,1,1,1] => 40
[5,2,2,1,1,1,1,1,1,1,1] => 38
[5,2,1,1,1,1,1,1,1,1,1,1] => 31
[5,1,1,1,1,1,1,1,1,1,1,1,1] => 19
[4,4,4,4,1] => 1
[4,4,4,3,2] => 1
[4,4,4,3,1,1] => 5
[4,4,4,2,2,1] => 6
[4,4,4,2,1,1,1] => 13
[4,4,4,1,1,1,1,1] => 13
[4,4,3,3,3] => 3
[4,4,3,3,2,1] => 8
[4,4,3,3,1,1,1] => 15
[4,4,3,2,2,2] => 9
[4,4,3,2,2,1,1] => 23
[4,4,3,2,1,1,1,1] => 31
[4,4,3,1,1,1,1,1,1] => 25
[4,4,2,2,2,2,1] => 15
[4,4,2,2,2,1,1,1] => 29
[4,4,2,2,1,1,1,1,1] => 35
[4,4,2,1,1,1,1,1,1,1] => 32
[4,4,1,1,1,1,1,1,1,1,1] => 21
[4,3,3,3,3,1] => 7
[4,3,3,3,2,2] => 10
[4,3,3,3,2,1,1] => 22
[4,3,3,3,1,1,1,1] => 23
[4,3,3,2,2,2,1] => 25
[4,3,3,2,2,1,1,1] => 44
[4,3,3,2,1,1,1,1,1] => 46
[4,3,3,1,1,1,1,1,1,1] => 32
[4,3,2,2,2,2,2] => 14
[4,3,2,2,2,2,1,1] => 38
[4,3,2,2,2,1,1,1,1] => 57
[4,3,2,2,1,1,1,1,1,1] => 61
[4,3,2,1,1,1,1,1,1,1,1] => 51
[4,3,1,1,1,1,1,1,1,1,1,1] => 32
[4,2,2,2,2,2,2,1] => 18
[4,2,2,2,2,2,1,1,1] => 35
[4,2,2,2,2,1,1,1,1,1] => 47
[4,2,2,2,1,1,1,1,1,1,1] => 51
[4,2,2,1,1,1,1,1,1,1,1,1] => 47
[4,2,1,1,1,1,1,1,1,1,1,1,1] => 37
[4,1,1,1,1,1,1,1,1,1,1,1,1,1] => 22
[3,3,3,3,3,2] => 5
[3,3,3,3,3,1,1] => 10
[3,3,3,3,2,2,1] => 17
[3,3,3,3,2,1,1,1] => 27
[3,3,3,3,1,1,1,1,1] => 22
[3,3,3,2,2,2,2] => 12
[3,3,3,2,2,2,1,1] => 34
[3,3,3,2,2,1,1,1,1] => 46
[3,3,3,2,1,1,1,1,1,1] => 43
[3,3,3,1,1,1,1,1,1,1,1] => 28
[3,3,2,2,2,2,2,1] => 24
[3,3,2,2,2,2,1,1,1] => 47
[3,3,2,2,2,1,1,1,1,1] => 59
[3,3,2,2,1,1,1,1,1,1,1] => 59
[3,3,2,1,1,1,1,1,1,1,1,1] => 48
[3,3,1,1,1,1,1,1,1,1,1,1,1] => 29
[3,2,2,2,2,2,2,2] => 11
[3,2,2,2,2,2,2,1,1] => 32
[3,2,2,2,2,2,1,1,1,1] => 50
[3,2,2,2,2,1,1,1,1,1,1] => 60
[3,2,2,2,1,1,1,1,1,1,1,1] => 62
[3,2,2,1,1,1,1,1,1,1,1,1,1] => 56
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
1,1 2,0,1 3,0,1,1 3,2,0,0,2 5,2,0,1,1,1,1 6,2,1,2,0,1,1,1,1 9,1,4,1,1,0,0,4,0,0,2 11,3,3,2,0,3,1,0,2,1,0,2,1,1 14,5,4,2,2,1,2,1,2,2,1,1,0,0,2,2,1 18,5,4,3,4,2,2,3,1,0,2,2,1,2,1,1,1,0,0,3,1
$F_{1} = 1$
$F_{2} = 1 + q$
$F_{3} = 2 + q^{2}$
$F_{4} = 3 + q^{2} + q^{3}$
$F_{5} = 3 + 2\ q + 2\ q^{4}$
$F_{6} = 5 + 2\ q + q^{3} + q^{4} + q^{5} + q^{6}$
$F_{7} = 6 + 2\ q + q^{2} + 2\ q^{3} + q^{5} + q^{6} + q^{7} + q^{8}$
$F_{8} = 9 + q + 4\ q^{2} + q^{3} + q^{4} + 4\ q^{7} + 2\ q^{10}$
$F_{9} = 11 + 3\ q + 3\ q^{2} + 2\ q^{3} + 3\ q^{5} + q^{6} + 2\ q^{8} + q^{9} + 2\ q^{11} + q^{12} + q^{13}$
$F_{10} = 14 + 5\ q + 4\ q^{2} + 2\ q^{3} + 2\ q^{4} + q^{5} + 2\ q^{6} + q^{7} + 2\ q^{8} + 2\ q^{9} + q^{10} + q^{11} + 2\ q^{14} + 2\ q^{15} + q^{16}$
$F_{11} = 18 + 5\ q + 4\ q^{2} + 3\ q^{3} + 4\ q^{4} + 2\ q^{5} + 2\ q^{6} + 3\ q^{7} + q^{8} + 2\ q^{10} + 2\ q^{11} + q^{12} + 2\ q^{13} + q^{14} + q^{15} + q^{16} + 3\ q^{19} + q^{20}$
$F_{12} = 23 + 9\ q + 3\ q^{2} + 5\ q^{3} + 6\ q^{4} + 2\ q^{5} + 5\ q^{6} + q^{8} + 2\ q^{9} + 4\ q^{11} + 3\ q^{12} + q^{13} + 2\ q^{14} + q^{15} + 2\ q^{17} + 2\ q^{18} + q^{20} + 2\ q^{22} + 2\ q^{23} + q^{26}$
$F_{13} = 29 + 8\ q + 7\ q^{2} + 6\ q^{3} + 7\ q^{4} + 3\ q^{5} + 2\ q^{6} + q^{7} + 5\ q^{8} + 3\ q^{9} + 2\ q^{10} + 3\ q^{11} + 3\ q^{12} + 3\ q^{14} + q^{15} + q^{16} + 2\ q^{17} + 3\ q^{19} + 2\ q^{20} + q^{21} + 2\ q^{23} + q^{24} + 2\ q^{25} + 2\ q^{27} + q^{30} + q^{32}$
$F_{14} = 35 + 12\ q + 10\ q^{2} + 9\ q^{3} + 5\ q^{4} + 5\ q^{5} + 4\ q^{6} + 5\ q^{7} + 3\ q^{8} + 4\ q^{9} + q^{10} + 3\ q^{11} + 2\ q^{12} + 3\ q^{13} + 4\ q^{14} + 2\ q^{15} + 3\ q^{16} + q^{17} + q^{18} + 3\ q^{19} + 3\ q^{20} + q^{22} + q^{23} + 3\ q^{25} + 2\ q^{27} + q^{28} + q^{29} + 3\ q^{30} + 2\ q^{31} + q^{32} + 2\ q^{38}$
$F_{15} = 45 + 14\ q + 11\ q^{2} + 10\ q^{3} + 7\ q^{4} + 7\ q^{5} + 3\ q^{6} + 5\ q^{7} + 9\ q^{8} + 4\ q^{9} + q^{10} + 4\ q^{11} + 5\ q^{12} + 4\ q^{13} + 2\ q^{14} + 3\ q^{15} + 4\ q^{17} + 3\ q^{18} + 4\ q^{20} + q^{21} + 2\ q^{22} + 4\ q^{23} + 3\ q^{24} + 3\ q^{26} + 2\ q^{27} + q^{29} + 2\ q^{31} + 7\ q^{35} + q^{36} + q^{37} + q^{40} + q^{41} + q^{44} + q^{46}$
$F_{16} = 56 + 18\ q + 14\ q^{2} + 13\ q^{3} + 8\ q^{4} + 7\ q^{5} + 9\ q^{6} + 9\ q^{7} + 4\ q^{8} + 3\ q^{9} + 11\ q^{10} + 5\ q^{11} + q^{12} + 2\ q^{13} + q^{14} + 5\ q^{15} + 2\ q^{16} + 7\ q^{17} + 2\ q^{18} + 6\ q^{19} + q^{20} + 3\ q^{21} + 2\ q^{22} + 3\ q^{23} + 2\ q^{24} + q^{25} + 5\ q^{26} + 2\ q^{27} + q^{28} + q^{30} + 2\ q^{31} + 3\ q^{32} + q^{33} + 3\ q^{34} + q^{35} + 2\ q^{37} + q^{38} + 2\ q^{39} + q^{40} + 2\ q^{41} + q^{42} + 2\ q^{43} + q^{47} + q^{49} + 3\ q^{50} + q^{54}$
Description
The number of subpartitions of an integer partition that do not dominate the conjugate subpartition.
In particular, partitions with statistic $0$ are wide partitions.
In particular, partitions with statistic $0$ are wide partitions.
References
[1] Chow, T. Y., Fan, C. K., Goemans, M. X., Vondrak, J. Wide partitions, Latin tableaux, and Rota's basis conjecture MathSciNet:2001618
Code
def statistic(la):
c = 0
for mu in Subsets(la, submultiset=True):
mu = Partition(mu)
if not mu.dominates(mu.conjugate()):
c += 1
return c
Created
Apr 23, 2021 at 09:54 by Martin Rubey
Updated
Apr 23, 2021 at 09:54 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!