Processing math: 100%

Your data matches 8 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000147
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
Description
The largest part of an integer partition.
Matching statistic: St000668
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000668: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
Description
The least common multiple of the parts of the partition.
Matching statistic: St001280
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St001280: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2,2]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2,2]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [6]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [4,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [3,2]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [4,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [3,2]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2,2]
=> 2
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2,2]
=> 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2,2]
=> 2
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2,2]
=> 2
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [7]
=> 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [6]
=> 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [5,1]
=> 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [4,2]
=> 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [3,3]
=> 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [6]
=> 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [5,1]
=> 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [4,2]
=> 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [3,3]
=> 2
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [4,1]
=> 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [3,2]
=> 2
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [3,1,1]
=> 1
Description
The number of parts of an integer partition that are at least two.
Matching statistic: St000319
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000319: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0 = 1 - 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 1 = 2 - 1
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1 = 2 - 1
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 1 = 2 - 1
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1 = 2 - 1
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 0 = 1 - 1
Description
The spin of an integer partition. The Ferrers shape of an integer partition λ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of λ with the vertical lines in the Ferrers shape. The following example is taken from Appendix B in [1]: Let λ=(5,5,4,4,2,1). Removing the border strips successively yields the sequence of partitions (5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(). The first strip (5,5,4,4,2,1)(4,3,3,1) crosses 4 times, the second strip (4,3,3,1)(2,2) crosses 3 times, the strip (2,2)(1) crosses 1 time, and the remaining strip (1)() does not cross. This yields the spin of (5,5,4,4,2,1) to be 4+3+1=8.
Matching statistic: St000320
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000320: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0 = 1 - 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 1 = 2 - 1
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1 = 2 - 1
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 1 = 2 - 1
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1 = 2 - 1
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 0 = 1 - 1
Description
The dinv adjustment of an integer partition. The Ferrers shape of an integer partition λ=(λ1,,λk) can be decomposed into border strips. For 0j<λ1 let nj be the length of the border strip starting at (λ1j,0). The dinv adjustment is then defined by j:nj>0(λ11j). The following example is taken from Appendix B in [2]: Let λ=(5,5,4,4,2,1). Removing the border strips successively yields the sequence of partitions (5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(), and we obtain (n0,,n4)=(10,7,0,3,1). The dinv adjustment is thus 4+3+1+0=8.
Matching statistic: St001918
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001918: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0 = 1 - 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0 = 1 - 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 1 = 2 - 1
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1 = 2 - 1
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 1 = 2 - 1
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1 = 2 - 1
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 0 = 1 - 1
Description
The degree of the cyclic sieving polynomial corresponding to an integer partition. Let λ be an integer partition of n and let N be the least common multiple of the parts of λ. Fix an arbitrary permutation π of cycle type λ. Then π induces a cyclic action of order N on {1,,n}. The corresponding character can be identified with the cyclic sieving polynomial Cλ(q) of this action, modulo qN1. Explicitly, it is pλ[p]qN/p, where [p]q=1++qp1 is the q-integer. This statistic records the degree of Cλ(q). Equivalently, it equals (11λ1)N, where λ1 is the largest part of λ. The statistic is undefined for the empty partition.
Matching statistic: St001556
Mp00311: Plane partitions to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St001556: Permutations ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 67%
Values
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ? = 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 1
[[2],[2],[2]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => ? = 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => ? = 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => ? = 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 1
[[3],[2],[2]]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 2
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 2
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => ? = 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 2
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,1] => ? = 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,6,1] => ? = 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => ? = 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,6,1] => ? = 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => ? = 2
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? = 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,6,1] => ? = 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 2
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 1
[[3],[3],[2]]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 2
[[2,1],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? = 1
[[2,1],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,6,1] => ? = 1
[[2,1],[2],[2],[1]]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 2
[[2,1],[1,1],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,6,1] => ? = 1
[[2,1],[1,1],[1,1],[1]]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 2
[[2,1],[2,1],[1],[1]]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 1
[[2,1],[2,1],[2]]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 2
[[2,1],[2,1],[1,1]]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 2
[[1,1,1],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? = 1
[[1,1,1],[1,1],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,6,1] => ? = 1
[[1,1,1],[1,1],[1,1],[1]]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 2
[[1,1,1],[1,1,1],[1],[1]]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 1
[[1,1,1],[1,1,1],[1,1]]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 2
[[4],[1],[1],[1],[1]]
=> [4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => ? = 1
[[4],[2],[1],[1]]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1
[[4],[2],[2]]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
[[3,1],[1],[1],[1],[1]]
=> [4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => ? = 1
[[3,1],[2],[1],[1]]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1
[[3,1],[2],[2]]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
[[3,1],[1,1],[1],[1]]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1
[[3,1],[1,1],[1,1]]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
[[2,2],[1],[1],[1],[1]]
=> [4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => ? = 1
[[2,2],[2],[1],[1]]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1
[[2,2],[2],[2]]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
[[2,2],[1,1],[1],[1]]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1
[[2,2],[1,1],[1,1]]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
[[2,1,1],[1],[1],[1],[1]]
=> [4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => ? = 1
[[2,1,1],[2],[1],[1]]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1
[[2,1,1],[2],[2]]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
[[2,1,1],[1,1],[1],[1]]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1
[[2,1,1],[1,1],[1,1]]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
[[1,1,1,1],[1],[1],[1],[1]]
=> [4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => ? = 1
[[5],[1],[1],[1]]
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => ? = 1
[[4,1],[1],[1],[1]]
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => ? = 1
[[3,2],[1],[1],[1]]
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => ? = 1
[[3,1,1],[1],[1],[1]]
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => ? = 1
[[2,2,1],[1],[1],[1]]
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => ? = 1
[[2,1,1,1],[1],[1],[1]]
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => ? = 1
[[1,1,1,1,1],[1],[1],[1]]
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => ? = 1
[[1],[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,10,1] => ? = 1
[[2],[1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,9,1] => ? = 1
[[2],[2],[1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [3,4,2,5,6,7,8,1] => ? = 1
[[2],[2],[2],[1],[1],[1]]
=> [2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,4,5,2,6,7,1] => ? = 2
[[2],[2],[2],[2],[1]]
=> [2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => ? = 2
[[1,1],[1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,9,1] => ? = 1
[[1,1],[1,1],[1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [3,4,2,5,6,7,8,1] => ? = 1
[[1,1],[1,1],[1,1],[1],[1],[1]]
=> [2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,4,5,2,6,7,1] => ? = 2
[[1,1],[1,1],[1,1],[1,1],[1]]
=> [2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => ? = 2
[[3],[1],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [4,2,3,5,6,7,8,1] => ? = 1
Description
The number of inversions of the third entry of a permutation. This is, for a permutation π of length n, #{3<knπ(3)>π(k)}. The number of inversions of the first entry is [[St000054]] and the number of inversions of the second entry is [[St001557]]. The sequence of inversions of all the entries define the [[http://www.findstat.org/Permutations#The_Lehmer_code_and_the_major_code_of_a_permutation|Lehmer code]] of a permutation.
Matching statistic: St001232
Mp00311: Plane partitions to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 67%
Values
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[[2],[2],[2]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[[3],[2],[2]]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 2 + 1
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 2 + 1
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 2 + 1
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[[3],[3],[2]]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ? = 2 + 1
[[2,1],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2,1],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2,1],[2],[2],[1]]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 2 + 1
[[2,1],[1,1],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[[2,1],[1,1],[1,1],[1]]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 2 + 1
[[4],[2],[2]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[3,1],[2],[2]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[3,1],[1,1],[1,1]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,2],[2],[2]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,2],[1,1],[1,1]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,1,1],[2],[2]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,1,1],[1,1],[1,1]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[1,1,1,1],[1,1],[1,1]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[3],[3],[3]]
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[[2,1],[2,1],[2,1]]
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[[1,1,1],[1,1,1],[1,1,1]]
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[[5],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[4,1],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[4,1],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[3,2],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[3,2],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[3,1,1],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[3,1,1],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,2,1],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,2,1],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,1,1,1],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[2,1,1,1],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[1,1,1,1,1],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[[4],[3],[3]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[[3,1],[3],[3]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[[3,1],[2,1],[2,1]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[[2,2],[2,1],[2,1]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[[2,1,1],[2,1],[2,1]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[[2,1,1],[1,1,1],[1,1,1]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[[1,1,1,1],[1,1,1],[1,1,1]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.