searching the database
Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000478
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000478: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000478: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[4,0],[2]]
=> [[1,1,2,2]]
=> [2,2]
=> [2]
=> 1
[[3,1],[2]]
=> [[1,1,2],[2]]
=> [2,2]
=> [2]
=> 1
[[2,2],[2]]
=> [[1,1],[2,2]]
=> [2,2]
=> [2]
=> 1
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [1,1,1]
=> [1,1]
=> 0
[[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> 0
[[5,0],[2]]
=> [[1,1,2,2,2]]
=> [3,2]
=> [2]
=> 1
[[5,0],[3]]
=> [[1,1,1,2,2]]
=> [3,2]
=> [2]
=> 1
[[4,1],[2]]
=> [[1,1,2,2],[2]]
=> [3,2]
=> [2]
=> 1
[[4,1],[3]]
=> [[1,1,1,2],[2]]
=> [3,2]
=> [2]
=> 1
[[3,2],[2]]
=> [[1,1,2],[2,2]]
=> [3,2]
=> [2]
=> 1
[[3,2],[3]]
=> [[1,1,1],[2,2]]
=> [3,2]
=> [2]
=> 1
[[4,0,0],[2,0],[0]]
=> [[2,2,3,3]]
=> [2,2]
=> [2]
=> 1
[[4,0,0],[2,0],[1]]
=> [[1,2,3,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0],[2,0],[2]]
=> [[1,1,3,3]]
=> [2,2]
=> [2]
=> 1
[[4,0,0],[3,0],[1]]
=> [[1,2,2,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0],[3,0],[2]]
=> [[1,1,2,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0],[4,0],[2]]
=> [[1,1,2,2]]
=> [2,2]
=> [2]
=> 1
[[3,1,0],[1,1],[1]]
=> [[1,3,3],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0],[2,0],[0]]
=> [[2,2,3],[3]]
=> [2,2]
=> [2]
=> 1
[[3,1,0],[2,0],[1]]
=> [[1,2,3],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0],[2,0],[2]]
=> [[1,1,3],[3]]
=> [2,2]
=> [2]
=> 1
[[3,1,0],[2,1],[1]]
=> [[1,2,3],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0],[2,1],[2]]
=> [[1,1,3],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0],[3,0],[1]]
=> [[1,2,2],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0],[3,0],[2]]
=> [[1,1,2],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0],[3,1],[2]]
=> [[1,1,2],[2]]
=> [2,2]
=> [2]
=> 1
[[2,2,0],[2,0],[0]]
=> [[2,2],[3,3]]
=> [2,2]
=> [2]
=> 1
[[2,2,0],[2,0],[1]]
=> [[1,2],[3,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[2,2,0],[2,0],[2]]
=> [[1,1],[3,3]]
=> [2,2]
=> [2]
=> 1
[[2,2,0],[2,1],[1]]
=> [[1,2],[2,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[2,2,0],[2,1],[2]]
=> [[1,1],[2,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[2,2,0],[2,2],[2]]
=> [[1,1],[2,2]]
=> [2,2]
=> [2]
=> 1
[[2,1,1],[1,1],[1]]
=> [[1,3],[2],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[2,1,1],[2,1],[1]]
=> [[1,2],[2],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[2,1,1],[2,1],[2]]
=> [[1,1],[2],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4]]
=> [1,1,1]
=> [1,1]
=> 0
[[3,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4]]
=> [1,1,1]
=> [1,1]
=> 0
[[3,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4]]
=> [1,1,1]
=> [1,1]
=> 0
[[3,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4],[3]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,4],[3]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,4],[2]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0,0],[2,0,0],[1,0],[0]]
=> [[2,3],[4]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0,0],[2,0,0],[1,0],[1]]
=> [[1,3],[4]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0,0],[2,0,0],[2,0],[1]]
=> [[1,2],[4]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [1,1,1]
=> [1,1]
=> 0
[[1,1,1,0],[1,1,0],[1,0],[0]]
=> [[2],[3],[4]]
=> [1,1,1]
=> [1,1]
=> 0
Description
Another weight of a partition according to Alladi.
According to Theorem 3.4 (Alladi 2012) in [1]
$$
\sum_{\pi\in GG_1(r)} w_1(\pi)
$$
equals the number of partitions of $r$ whose odd parts are all distinct. $GG_1(r)$ is the set of partitions of $r$ where consecutive entries differ by at least $2$, and consecutive even entries differ by at least $4$.
Matching statistic: St001624
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001624: Lattices ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 25%
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001624: Lattices ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 25%
Values
[[4,0],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 1 + 2
[[3,1],[2]]
=> [[1,1,2],[2]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[2,2],[2]]
=> [[1,1],[2,2]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[5,0],[2]]
=> [[1,1,2,2,2]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[5,0],[3]]
=> [[1,1,1,2,2]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[4,1],[2]]
=> [[1,1,2,2],[2]]
=> [3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 2
[[4,1],[3]]
=> [[1,1,1,2],[2]]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[3,2],[2]]
=> [[1,1,2],[2,2]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 1 + 2
[[3,2],[3]]
=> [[1,1,1],[2,2]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 1 + 2
[[4,0,0],[2,0],[0]]
=> [[2,2,3,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 1 + 2
[[4,0,0],[2,0],[1]]
=> [[1,2,3,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 0 + 2
[[4,0,0],[2,0],[2]]
=> [[1,1,3,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 1 + 2
[[4,0,0],[3,0],[1]]
=> [[1,2,2,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 0 + 2
[[4,0,0],[3,0],[2]]
=> [[1,1,2,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 0 + 2
[[4,0,0],[4,0],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 1 + 2
[[3,1,0],[1,1],[1]]
=> [[1,3,3],[2]]
=> [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 0 + 2
[[3,1,0],[2,0],[0]]
=> [[2,2,3],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[3,1,0],[2,0],[1]]
=> [[1,2,3],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
[[3,1,0],[2,0],[2]]
=> [[1,1,3],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[3,1,0],[2,1],[1]]
=> [[1,2,3],[2]]
=> [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 0 + 2
[[3,1,0],[2,1],[2]]
=> [[1,1,3],[2]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
[[3,1,0],[3,0],[1]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 0 + 2
[[3,1,0],[3,0],[2]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 0 + 2
[[3,1,0],[3,1],[2]]
=> [[1,1,2],[2]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[2,2,0],[2,0],[0]]
=> [[2,2],[3,3]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[2,2,0],[2,0],[1]]
=> [[1,2],[3,3]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 0 + 2
[[2,2,0],[2,0],[2]]
=> [[1,1],[3,3]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[2,2,0],[2,1],[1]]
=> [[1,2],[2,3]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[2,2,0],[2,1],[2]]
=> [[1,1],[2,3]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 0 + 2
[[2,2,0],[2,2],[2]]
=> [[1,1],[2,2]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[2,1,1],[1,1],[1]]
=> [[1,3],[2],[3]]
=> [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 0 + 2
[[2,1,1],[2,1],[1]]
=> [[1,2],[2],[3]]
=> [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
[[2,1,1],[2,1],[2]]
=> [[1,1],[2],[3]]
=> [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 0 + 2
[[3,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[2,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,4],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,4],[2]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[2,0,0],[1,0],[0]]
=> [[2,3],[4]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[2,0,0],[1,0],[1]]
=> [[1,3],[4]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[2,0,0],[2,0],[1]]
=> [[1,2],[4]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[1,1,1,0],[1,1,0],[1,0],[0]]
=> [[2],[3],[4]]
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[1,1,1,0],[1,1,0],[1,0],[1]]
=> [[1],[3],[4]]
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[1,1,1,0],[1,1,0],[1,1],[1]]
=> [[1],[2],[4]]
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[1,1,1,0],[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[6,0],[2]]
=> [[1,1,2,2,2,2]]
=> [1,2,3,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 1 + 2
[[6,0],[3]]
=> [[1,1,1,2,2,2]]
=> [1,2,3,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 2 + 2
[[6,0],[4]]
=> [[1,1,1,1,2,2]]
=> [1,2,3,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 1 + 2
[[5,1],[2]]
=> [[1,1,2,2,2],[2]]
=> [3,1,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ? = 1 + 2
[[5,1],[3]]
=> [[1,1,1,2,2],[2]]
=> [4,1,2,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,13),(4,10),(5,11),(5,12),(6,9),(6,13),(8,10),(9,7),(10,9),(11,8),(12,8),(13,7)],14)
=> ? = 2 + 2
[[5,1],[4]]
=> [[1,1,1,1,2],[2]]
=> [5,1,2,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,13),(3,12),(4,7),(5,12),(5,14),(6,13),(6,14),(8,11),(9,8),(10,8),(11,7),(12,9),(13,10),(14,9),(14,10)],15)
=> ? = 1 + 2
[[4,2],[2]]
=> [[1,1,2,2],[2,2]]
=> [3,4,1,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(6,10),(7,12),(8,11),(9,11),(10,12),(11,10)],13)
=> ? = 1 + 2
[[4,2],[3]]
=> [[1,1,1,2],[2,2]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 2 + 2
[[4,2],[4]]
=> [[1,1,1,1],[2,2]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 1 + 2
[[3,3],[3]]
=> [[1,1,1],[2,2,2]]
=> [4,5,6,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,13),(6,10),(6,11),(8,7),(9,7),(10,8),(11,8),(12,9),(13,9)],14)
=> ? = 2 + 2
[[5,0,0],[2,0],[0]]
=> [[2,2,3,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[5,0,0],[2,0],[1]]
=> [[1,2,3,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 0 + 2
[[5,0,0],[2,0],[2]]
=> [[1,1,3,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[5,0,0],[3,0],[0]]
=> [[2,2,2,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[5,0,0],[3,0],[1]]
=> [[1,2,2,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 0 + 2
[[5,0,0],[3,0],[2]]
=> [[1,1,2,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 0 + 2
[[5,0,0],[3,0],[3]]
=> [[1,1,1,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[5,0,0],[4,0],[1]]
=> [[1,2,2,2,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 0 + 2
[[2,2,1],[2,1],[1]]
=> [[1,2],[2,3],[3]]
=> [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[2,2,0,0],[2,1,0],[1,0],[0]]
=> [[2,3],[3,4]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[2,2,0,0],[2,1,0],[1,0],[1]]
=> [[1,3],[3,4]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[2,2,0,0],[2,1,0],[1,1],[1]]
=> [[1,3],[2,4]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[2,2,0,0],[2,1,0],[2,1],[1]]
=> [[1,2],[2,4]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[2,2,0,0],[2,2,0],[2,1],[1]]
=> [[1,2],[2,3]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[3,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,0,0],[0,0],[0]]
=> [[3,5],[4]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,0,0],[1,0],[0]]
=> [[2,5],[4]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,0,0],[1,0],[1]]
=> [[1,5],[4]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,5],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,5],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,5],[2]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
Description
The breadth of a lattice.
The '''breadth''' of a lattice is the least integer $b$ such that any join $x_1\vee x_2\vee\cdots\vee x_n$, with $n > b$, can be expressed as a join over a proper subset of $\{x_1,x_2,\ldots,x_n\}$.
Matching statistic: St001630
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001630: Lattices ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 25%
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001630: Lattices ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 25%
Values
[[4,0],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 1 + 2
[[3,1],[2]]
=> [[1,1,2],[2]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[2,2],[2]]
=> [[1,1],[2,2]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[5,0],[2]]
=> [[1,1,2,2,2]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[5,0],[3]]
=> [[1,1,1,2,2]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[4,1],[2]]
=> [[1,1,2,2],[2]]
=> [3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 2
[[4,1],[3]]
=> [[1,1,1,2],[2]]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[3,2],[2]]
=> [[1,1,2],[2,2]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 1 + 2
[[3,2],[3]]
=> [[1,1,1],[2,2]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 1 + 2
[[4,0,0],[2,0],[0]]
=> [[2,2,3,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 1 + 2
[[4,0,0],[2,0],[1]]
=> [[1,2,3,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 0 + 2
[[4,0,0],[2,0],[2]]
=> [[1,1,3,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 1 + 2
[[4,0,0],[3,0],[1]]
=> [[1,2,2,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 0 + 2
[[4,0,0],[3,0],[2]]
=> [[1,1,2,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 0 + 2
[[4,0,0],[4,0],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 1 + 2
[[3,1,0],[1,1],[1]]
=> [[1,3,3],[2]]
=> [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 0 + 2
[[3,1,0],[2,0],[0]]
=> [[2,2,3],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[3,1,0],[2,0],[1]]
=> [[1,2,3],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
[[3,1,0],[2,0],[2]]
=> [[1,1,3],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[3,1,0],[2,1],[1]]
=> [[1,2,3],[2]]
=> [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 0 + 2
[[3,1,0],[2,1],[2]]
=> [[1,1,3],[2]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
[[3,1,0],[3,0],[1]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 0 + 2
[[3,1,0],[3,0],[2]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 0 + 2
[[3,1,0],[3,1],[2]]
=> [[1,1,2],[2]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[2,2,0],[2,0],[0]]
=> [[2,2],[3,3]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[2,2,0],[2,0],[1]]
=> [[1,2],[3,3]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 0 + 2
[[2,2,0],[2,0],[2]]
=> [[1,1],[3,3]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[2,2,0],[2,1],[1]]
=> [[1,2],[2,3]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[2,2,0],[2,1],[2]]
=> [[1,1],[2,3]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 0 + 2
[[2,2,0],[2,2],[2]]
=> [[1,1],[2,2]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[2,1,1],[1,1],[1]]
=> [[1,3],[2],[3]]
=> [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 0 + 2
[[2,1,1],[2,1],[1]]
=> [[1,2],[2],[3]]
=> [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
[[2,1,1],[2,1],[2]]
=> [[1,1],[2],[3]]
=> [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 0 + 2
[[3,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[2,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,4],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,4],[2]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[2,0,0],[1,0],[0]]
=> [[2,3],[4]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[2,0,0],[1,0],[1]]
=> [[1,3],[4]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[2,0,0],[2,0],[1]]
=> [[1,2],[4]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[1,1,1,0],[1,1,0],[1,0],[0]]
=> [[2],[3],[4]]
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[1,1,1,0],[1,1,0],[1,0],[1]]
=> [[1],[3],[4]]
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[1,1,1,0],[1,1,0],[1,1],[1]]
=> [[1],[2],[4]]
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[1,1,1,0],[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[6,0],[2]]
=> [[1,1,2,2,2,2]]
=> [1,2,3,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 1 + 2
[[6,0],[3]]
=> [[1,1,1,2,2,2]]
=> [1,2,3,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 2 + 2
[[6,0],[4]]
=> [[1,1,1,1,2,2]]
=> [1,2,3,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 1 + 2
[[5,1],[2]]
=> [[1,1,2,2,2],[2]]
=> [3,1,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ? = 1 + 2
[[5,1],[3]]
=> [[1,1,1,2,2],[2]]
=> [4,1,2,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,13),(4,10),(5,11),(5,12),(6,9),(6,13),(8,10),(9,7),(10,9),(11,8),(12,8),(13,7)],14)
=> ? = 2 + 2
[[5,1],[4]]
=> [[1,1,1,1,2],[2]]
=> [5,1,2,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,13),(3,12),(4,7),(5,12),(5,14),(6,13),(6,14),(8,11),(9,8),(10,8),(11,7),(12,9),(13,10),(14,9),(14,10)],15)
=> ? = 1 + 2
[[4,2],[2]]
=> [[1,1,2,2],[2,2]]
=> [3,4,1,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(6,10),(7,12),(8,11),(9,11),(10,12),(11,10)],13)
=> ? = 1 + 2
[[4,2],[3]]
=> [[1,1,1,2],[2,2]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 2 + 2
[[4,2],[4]]
=> [[1,1,1,1],[2,2]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 1 + 2
[[3,3],[3]]
=> [[1,1,1],[2,2,2]]
=> [4,5,6,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,13),(6,10),(6,11),(8,7),(9,7),(10,8),(11,8),(12,9),(13,9)],14)
=> ? = 2 + 2
[[5,0,0],[2,0],[0]]
=> [[2,2,3,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[5,0,0],[2,0],[1]]
=> [[1,2,3,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 0 + 2
[[5,0,0],[2,0],[2]]
=> [[1,1,3,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[5,0,0],[3,0],[0]]
=> [[2,2,2,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[5,0,0],[3,0],[1]]
=> [[1,2,2,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 0 + 2
[[5,0,0],[3,0],[2]]
=> [[1,1,2,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 0 + 2
[[5,0,0],[3,0],[3]]
=> [[1,1,1,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[5,0,0],[4,0],[1]]
=> [[1,2,2,2,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 0 + 2
[[2,2,1],[2,1],[1]]
=> [[1,2],[2,3],[3]]
=> [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[2,2,0,0],[2,1,0],[1,0],[0]]
=> [[2,3],[3,4]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[2,2,0,0],[2,1,0],[1,0],[1]]
=> [[1,3],[3,4]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[2,2,0,0],[2,1,0],[1,1],[1]]
=> [[1,3],[2,4]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[2,2,0,0],[2,1,0],[2,1],[1]]
=> [[1,2],[2,4]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[2,2,0,0],[2,2,0],[2,1],[1]]
=> [[1,2],[2,3]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[3,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,0,0],[0,0],[0]]
=> [[3,5],[4]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,0,0],[1,0],[0]]
=> [[2,5],[4]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,0,0],[1,0],[1]]
=> [[1,5],[4]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,5],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,5],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,5],[2]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St001878
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 25%
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 25%
Values
[[4,0],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 1 + 2
[[3,1],[2]]
=> [[1,1,2],[2]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[2,2],[2]]
=> [[1,1],[2,2]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[5,0],[2]]
=> [[1,1,2,2,2]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[5,0],[3]]
=> [[1,1,1,2,2]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[4,1],[2]]
=> [[1,1,2,2],[2]]
=> [3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 2
[[4,1],[3]]
=> [[1,1,1,2],[2]]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[3,2],[2]]
=> [[1,1,2],[2,2]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 1 + 2
[[3,2],[3]]
=> [[1,1,1],[2,2]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 1 + 2
[[4,0,0],[2,0],[0]]
=> [[2,2,3,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 1 + 2
[[4,0,0],[2,0],[1]]
=> [[1,2,3,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 0 + 2
[[4,0,0],[2,0],[2]]
=> [[1,1,3,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 1 + 2
[[4,0,0],[3,0],[1]]
=> [[1,2,2,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 0 + 2
[[4,0,0],[3,0],[2]]
=> [[1,1,2,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 0 + 2
[[4,0,0],[4,0],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 1 + 2
[[3,1,0],[1,1],[1]]
=> [[1,3,3],[2]]
=> [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 0 + 2
[[3,1,0],[2,0],[0]]
=> [[2,2,3],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[3,1,0],[2,0],[1]]
=> [[1,2,3],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
[[3,1,0],[2,0],[2]]
=> [[1,1,3],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[3,1,0],[2,1],[1]]
=> [[1,2,3],[2]]
=> [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 0 + 2
[[3,1,0],[2,1],[2]]
=> [[1,1,3],[2]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
[[3,1,0],[3,0],[1]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 0 + 2
[[3,1,0],[3,0],[2]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 0 + 2
[[3,1,0],[3,1],[2]]
=> [[1,1,2],[2]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[2,2,0],[2,0],[0]]
=> [[2,2],[3,3]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[2,2,0],[2,0],[1]]
=> [[1,2],[3,3]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 0 + 2
[[2,2,0],[2,0],[2]]
=> [[1,1],[3,3]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[2,2,0],[2,1],[1]]
=> [[1,2],[2,3]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[2,2,0],[2,1],[2]]
=> [[1,1],[2,3]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 0 + 2
[[2,2,0],[2,2],[2]]
=> [[1,1],[2,2]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[2,1,1],[1,1],[1]]
=> [[1,3],[2],[3]]
=> [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 0 + 2
[[2,1,1],[2,1],[1]]
=> [[1,2],[2],[3]]
=> [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
[[2,1,1],[2,1],[2]]
=> [[1,1],[2],[3]]
=> [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 0 + 2
[[3,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[2,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,4],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,4],[2]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[2,0,0],[1,0],[0]]
=> [[2,3],[4]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[2,0,0],[1,0],[1]]
=> [[1,3],[4]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[2,0,0],[2,0],[1]]
=> [[1,2],[4]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[1,1,1,0],[1,1,0],[1,0],[0]]
=> [[2],[3],[4]]
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[1,1,1,0],[1,1,0],[1,0],[1]]
=> [[1],[3],[4]]
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[1,1,1,0],[1,1,0],[1,1],[1]]
=> [[1],[2],[4]]
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[1,1,1,0],[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[6,0],[2]]
=> [[1,1,2,2,2,2]]
=> [1,2,3,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 1 + 2
[[6,0],[3]]
=> [[1,1,1,2,2,2]]
=> [1,2,3,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 2 + 2
[[6,0],[4]]
=> [[1,1,1,1,2,2]]
=> [1,2,3,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 1 + 2
[[5,1],[2]]
=> [[1,1,2,2,2],[2]]
=> [3,1,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ? = 1 + 2
[[5,1],[3]]
=> [[1,1,1,2,2],[2]]
=> [4,1,2,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,13),(4,10),(5,11),(5,12),(6,9),(6,13),(8,10),(9,7),(10,9),(11,8),(12,8),(13,7)],14)
=> ? = 2 + 2
[[5,1],[4]]
=> [[1,1,1,1,2],[2]]
=> [5,1,2,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,13),(3,12),(4,7),(5,12),(5,14),(6,13),(6,14),(8,11),(9,8),(10,8),(11,7),(12,9),(13,10),(14,9),(14,10)],15)
=> ? = 1 + 2
[[4,2],[2]]
=> [[1,1,2,2],[2,2]]
=> [3,4,1,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(6,10),(7,12),(8,11),(9,11),(10,12),(11,10)],13)
=> ? = 1 + 2
[[4,2],[3]]
=> [[1,1,1,2],[2,2]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 2 + 2
[[4,2],[4]]
=> [[1,1,1,1],[2,2]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 1 + 2
[[3,3],[3]]
=> [[1,1,1],[2,2,2]]
=> [4,5,6,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,13),(6,10),(6,11),(8,7),(9,7),(10,8),(11,8),(12,9),(13,9)],14)
=> ? = 2 + 2
[[5,0,0],[2,0],[0]]
=> [[2,2,3,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[5,0,0],[2,0],[1]]
=> [[1,2,3,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 0 + 2
[[5,0,0],[2,0],[2]]
=> [[1,1,3,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[5,0,0],[3,0],[0]]
=> [[2,2,2,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[5,0,0],[3,0],[1]]
=> [[1,2,2,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 0 + 2
[[5,0,0],[3,0],[2]]
=> [[1,1,2,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 0 + 2
[[5,0,0],[3,0],[3]]
=> [[1,1,1,3,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 1 + 2
[[5,0,0],[4,0],[1]]
=> [[1,2,2,2,3]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 0 + 2
[[2,2,1],[2,1],[1]]
=> [[1,2],[2,3],[3]]
=> [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[2,2,0,0],[2,1,0],[1,0],[0]]
=> [[2,3],[3,4]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[2,2,0,0],[2,1,0],[1,0],[1]]
=> [[1,3],[3,4]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[2,2,0,0],[2,1,0],[1,1],[1]]
=> [[1,3],[2,4]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[2,2,0,0],[2,1,0],[2,1],[1]]
=> [[1,2],[2,4]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[2,2,0,0],[2,2,0],[2,1],[1]]
=> [[1,2],[2,3]]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,5]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[3,0,0,0,0],[3,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,0,0],[0,0],[0]]
=> [[3,5],[4]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,0,0],[1,0],[0]]
=> [[2,5],[4]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,0,0],[1,0],[1]]
=> [[1,5],[4]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,5],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,5],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[1,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,5],[2]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2],[5]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[2,1,0,0,0],[2,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St001926
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001926: Signed permutations ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 25%
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001926: Signed permutations ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 25%
Values
[[4,0],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ? = 1 + 3
[[3,1],[2]]
=> [[1,1,2],[2]]
=> [3,1,2,4] => [3,1,2,4] => ? = 1 + 3
[[2,2],[2]]
=> [[1,1],[2,2]]
=> [3,4,1,2] => [3,4,1,2] => ? = 1 + 3
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => [1,2,3] => 3 = 0 + 3
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1,3] => [2,1,3] => 3 = 0 + 3
[[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [3,1,2] => [3,1,2] => 3 = 0 + 3
[[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [3,2,1] => [3,2,1] => 3 = 0 + 3
[[5,0],[2]]
=> [[1,1,2,2,2]]
=> [1,2,3,4,5] => [1,2,3,4,5] => ? = 1 + 3
[[5,0],[3]]
=> [[1,1,1,2,2]]
=> [1,2,3,4,5] => [1,2,3,4,5] => ? = 1 + 3
[[4,1],[2]]
=> [[1,1,2,2],[2]]
=> [3,1,2,4,5] => [3,1,2,4,5] => ? = 1 + 3
[[4,1],[3]]
=> [[1,1,1,2],[2]]
=> [4,1,2,3,5] => [4,1,2,3,5] => ? = 1 + 3
[[3,2],[2]]
=> [[1,1,2],[2,2]]
=> [3,4,1,2,5] => [3,4,1,2,5] => ? = 1 + 3
[[3,2],[3]]
=> [[1,1,1],[2,2]]
=> [4,5,1,2,3] => [4,5,1,2,3] => ? = 1 + 3
[[4,0,0],[2,0],[0]]
=> [[2,2,3,3]]
=> [1,2,3,4] => [1,2,3,4] => ? = 1 + 3
[[4,0,0],[2,0],[1]]
=> [[1,2,3,3]]
=> [1,2,3,4] => [1,2,3,4] => ? = 0 + 3
[[4,0,0],[2,0],[2]]
=> [[1,1,3,3]]
=> [1,2,3,4] => [1,2,3,4] => ? = 1 + 3
[[4,0,0],[3,0],[1]]
=> [[1,2,2,3]]
=> [1,2,3,4] => [1,2,3,4] => ? = 0 + 3
[[4,0,0],[3,0],[2]]
=> [[1,1,2,3]]
=> [1,2,3,4] => [1,2,3,4] => ? = 0 + 3
[[4,0,0],[4,0],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ? = 1 + 3
[[3,1,0],[1,1],[1]]
=> [[1,3,3],[2]]
=> [2,1,3,4] => [2,1,3,4] => ? = 0 + 3
[[3,1,0],[2,0],[0]]
=> [[2,2,3],[3]]
=> [3,1,2,4] => [3,1,2,4] => ? = 1 + 3
[[3,1,0],[2,0],[1]]
=> [[1,2,3],[3]]
=> [3,1,2,4] => [3,1,2,4] => ? = 0 + 3
[[3,1,0],[2,0],[2]]
=> [[1,1,3],[3]]
=> [3,1,2,4] => [3,1,2,4] => ? = 1 + 3
[[3,1,0],[2,1],[1]]
=> [[1,2,3],[2]]
=> [2,1,3,4] => [2,1,3,4] => ? = 0 + 3
[[3,1,0],[2,1],[2]]
=> [[1,1,3],[2]]
=> [3,1,2,4] => [3,1,2,4] => ? = 0 + 3
[[3,1,0],[3,0],[1]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => [4,1,2,3] => ? = 0 + 3
[[3,1,0],[3,0],[2]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => [4,1,2,3] => ? = 0 + 3
[[3,1,0],[3,1],[2]]
=> [[1,1,2],[2]]
=> [3,1,2,4] => [3,1,2,4] => ? = 1 + 3
[[2,2,0],[2,0],[0]]
=> [[2,2],[3,3]]
=> [3,4,1,2] => [3,4,1,2] => ? = 1 + 3
[[2,2,0],[2,0],[1]]
=> [[1,2],[3,3]]
=> [3,4,1,2] => [3,4,1,2] => ? = 0 + 3
[[2,2,0],[2,0],[2]]
=> [[1,1],[3,3]]
=> [3,4,1,2] => [3,4,1,2] => ? = 1 + 3
[[2,2,0],[2,1],[1]]
=> [[1,2],[2,3]]
=> [2,4,1,3] => [2,4,1,3] => ? = 0 + 3
[[2,2,0],[2,1],[2]]
=> [[1,1],[2,3]]
=> [3,4,1,2] => [3,4,1,2] => ? = 0 + 3
[[2,2,0],[2,2],[2]]
=> [[1,1],[2,2]]
=> [3,4,1,2] => [3,4,1,2] => ? = 1 + 3
[[2,1,1],[1,1],[1]]
=> [[1,3],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ? = 0 + 3
[[2,1,1],[2,1],[1]]
=> [[1,2],[2],[3]]
=> [4,2,1,3] => [4,2,1,3] => ? = 0 + 3
[[2,1,1],[2,1],[2]]
=> [[1,1],[2],[3]]
=> [4,3,1,2] => [4,3,1,2] => ? = 0 + 3
[[3,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4]]
=> [1,2,3] => [1,2,3] => 3 = 0 + 3
[[3,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4]]
=> [1,2,3] => [1,2,3] => 3 = 0 + 3
[[3,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4]]
=> [1,2,3] => [1,2,3] => 3 = 0 + 3
[[3,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => [1,2,3] => 3 = 0 + 3
[[2,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4],[3]]
=> [2,1,3] => [2,1,3] => 3 = 0 + 3
[[2,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,4],[3]]
=> [2,1,3] => [2,1,3] => 3 = 0 + 3
[[2,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,4],[2]]
=> [2,1,3] => [2,1,3] => 3 = 0 + 3
[[2,1,0,0],[2,0,0],[1,0],[0]]
=> [[2,3],[4]]
=> [3,1,2] => [3,1,2] => 3 = 0 + 3
[[2,1,0,0],[2,0,0],[1,0],[1]]
=> [[1,3],[4]]
=> [3,1,2] => [3,1,2] => 3 = 0 + 3
[[2,1,0,0],[2,0,0],[2,0],[1]]
=> [[1,2],[4]]
=> [3,1,2] => [3,1,2] => 3 = 0 + 3
[[2,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1,3] => [2,1,3] => 3 = 0 + 3
[[2,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [3,1,2] => [3,1,2] => 3 = 0 + 3
[[1,1,1,0],[1,1,0],[1,0],[0]]
=> [[2],[3],[4]]
=> [3,2,1] => [3,2,1] => 3 = 0 + 3
[[1,1,1,0],[1,1,0],[1,0],[1]]
=> [[1],[3],[4]]
=> [3,2,1] => [3,2,1] => 3 = 0 + 3
[[1,1,1,0],[1,1,0],[1,1],[1]]
=> [[1],[2],[4]]
=> [3,2,1] => [3,2,1] => 3 = 0 + 3
[[1,1,1,0],[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [3,2,1] => [3,2,1] => 3 = 0 + 3
[[6,0],[2]]
=> [[1,1,2,2,2,2]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? = 1 + 3
[[6,0],[3]]
=> [[1,1,1,2,2,2]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? = 2 + 3
[[6,0],[4]]
=> [[1,1,1,1,2,2]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? = 1 + 3
[[5,1],[2]]
=> [[1,1,2,2,2],[2]]
=> [3,1,2,4,5,6] => [3,1,2,4,5,6] => ? = 1 + 3
[[5,1],[3]]
=> [[1,1,1,2,2],[2]]
=> [4,1,2,3,5,6] => [4,1,2,3,5,6] => ? = 2 + 3
[[5,1],[4]]
=> [[1,1,1,1,2],[2]]
=> [5,1,2,3,4,6] => [5,1,2,3,4,6] => ? = 1 + 3
[[4,2],[2]]
=> [[1,1,2,2],[2,2]]
=> [3,4,1,2,5,6] => [3,4,1,2,5,6] => ? = 1 + 3
[[4,2],[3]]
=> [[1,1,1,2],[2,2]]
=> [4,5,1,2,3,6] => [4,5,1,2,3,6] => ? = 2 + 3
[[4,2],[4]]
=> [[1,1,1,1],[2,2]]
=> [5,6,1,2,3,4] => [5,6,1,2,3,4] => ? = 1 + 3
[[3,3],[3]]
=> [[1,1,1],[2,2,2]]
=> [4,5,6,1,2,3] => [4,5,6,1,2,3] => ? = 2 + 3
[[5,0,0],[2,0],[0]]
=> [[2,2,3,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => ? = 1 + 3
[[5,0,0],[2,0],[1]]
=> [[1,2,3,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => ? = 0 + 3
[[5,0,0],[2,0],[2]]
=> [[1,1,3,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => ? = 1 + 3
[[5,0,0],[3,0],[0]]
=> [[2,2,2,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => ? = 1 + 3
[[5,0,0],[3,0],[1]]
=> [[1,2,2,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => ? = 0 + 3
[[5,0,0],[3,0],[2]]
=> [[1,1,2,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => ? = 0 + 3
[[5,0,0],[3,0],[3]]
=> [[1,1,1,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => ? = 1 + 3
[[3,0,0,0,0],[2,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,5]]
=> [1,2,3] => [1,2,3] => 3 = 0 + 3
[[3,0,0,0,0],[2,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,5]]
=> [1,2,3] => [1,2,3] => 3 = 0 + 3
[[3,0,0,0,0],[2,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,5]]
=> [1,2,3] => [1,2,3] => 3 = 0 + 3
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,5]]
=> [1,2,3] => [1,2,3] => 3 = 0 + 3
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,5]]
=> [1,2,3] => [1,2,3] => 3 = 0 + 3
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,5]]
=> [1,2,3] => [1,2,3] => 3 = 0 + 3
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4]]
=> [1,2,3] => [1,2,3] => 3 = 0 + 3
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4]]
=> [1,2,3] => [1,2,3] => 3 = 0 + 3
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4]]
=> [1,2,3] => [1,2,3] => 3 = 0 + 3
[[3,0,0,0,0],[3,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => [1,2,3] => 3 = 0 + 3
[[2,1,0,0,0],[1,1,0,0],[1,0,0],[0,0],[0]]
=> [[3,5],[4]]
=> [2,1,3] => [2,1,3] => 3 = 0 + 3
[[2,1,0,0,0],[1,1,0,0],[1,0,0],[1,0],[0]]
=> [[2,5],[4]]
=> [2,1,3] => [2,1,3] => 3 = 0 + 3
[[2,1,0,0,0],[1,1,0,0],[1,0,0],[1,0],[1]]
=> [[1,5],[4]]
=> [2,1,3] => [2,1,3] => 3 = 0 + 3
[[2,1,0,0,0],[1,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,5],[3]]
=> [2,1,3] => [2,1,3] => 3 = 0 + 3
[[2,1,0,0,0],[1,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,5],[3]]
=> [2,1,3] => [2,1,3] => 3 = 0 + 3
[[2,1,0,0,0],[1,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,5],[2]]
=> [2,1,3] => [2,1,3] => 3 = 0 + 3
[[2,1,0,0,0],[2,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4],[5]]
=> [3,1,2] => [3,1,2] => 3 = 0 + 3
[[2,1,0,0,0],[2,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4],[5]]
=> [3,1,2] => [3,1,2] => 3 = 0 + 3
[[2,1,0,0,0],[2,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4],[5]]
=> [3,1,2] => [3,1,2] => 3 = 0 + 3
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3],[5]]
=> [3,1,2] => [3,1,2] => 3 = 0 + 3
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3],[5]]
=> [3,1,2] => [3,1,2] => 3 = 0 + 3
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2],[5]]
=> [3,1,2] => [3,1,2] => 3 = 0 + 3
[[2,1,0,0,0],[2,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4],[3]]
=> [2,1,3] => [2,1,3] => 3 = 0 + 3
[[2,1,0,0,0],[2,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,4],[3]]
=> [2,1,3] => [2,1,3] => 3 = 0 + 3
[[2,1,0,0,0],[2,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,4],[2]]
=> [2,1,3] => [2,1,3] => 3 = 0 + 3
[[2,1,0,0,0],[2,1,0,0],[2,0,0],[1,0],[0]]
=> [[2,3],[4]]
=> [3,1,2] => [3,1,2] => 3 = 0 + 3
[[2,1,0,0,0],[2,1,0,0],[2,0,0],[1,0],[1]]
=> [[1,3],[4]]
=> [3,1,2] => [3,1,2] => 3 = 0 + 3
[[2,1,0,0,0],[2,1,0,0],[2,0,0],[2,0],[1]]
=> [[1,2],[4]]
=> [3,1,2] => [3,1,2] => 3 = 0 + 3
[[2,1,0,0,0],[2,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1,3] => [2,1,3] => 3 = 0 + 3
[[2,1,0,0,0],[2,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [3,1,2] => [3,1,2] => 3 = 0 + 3
Description
Sparre Andersen's position of the maximum of a signed permutation.
For $\pi$ a signed permutation of length $n$, first create the tuple $x = (x_1, \dots, x_n)$, where $x_i = c_{|\pi_1|} \operatorname{sgn}(\pi_{|\pi_1|}) + \cdots + c_{|\pi_i|} \operatorname{sgn}(\pi_{|\pi_i|})$ and $(c_1, \dots ,c_n) = (1, 2, \dots, 2^{n-1})$. The actual value of the c-tuple for Andersen's statistic does not matter so long as no sums or differences of any subset of the $c_i$'s is zero. The choice of powers of $2$ is just a convenient choice.
This returns the largest position of the maximum value in the $x$-tuple. This is related to the ''discrete arcsine distribution''. The number of signed permutations with value equal to $k$ is given by $\binom{2k}{k} \binom{2n-2k}{n-k} \frac{n!}{2^n}$. This statistic is equidistributed with Sparre Andersen's `Number of Positives' statistic.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!