Your data matches 26 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000185
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000185: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => [1,1]
=> [1]
=> []
=> 0
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2] => [2,1]
=> [1]
=> []
=> 0
[2,1,3] => [2,1]
=> [1]
=> []
=> 0
[3,2,1] => [2,1]
=> [1]
=> []
=> 0
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> []
=> 0
[1,4,2,3] => [3,1]
=> [1]
=> []
=> 0
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> []
=> 0
[2,3,1,4] => [3,1]
=> [1]
=> []
=> 0
[2,4,3,1] => [3,1]
=> [1]
=> []
=> 0
[3,1,2,4] => [3,1]
=> [1]
=> []
=> 0
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> []
=> 0
[3,4,1,2] => [2,2]
=> [2]
=> []
=> 0
[4,1,3,2] => [3,1]
=> [1]
=> []
=> 0
[4,2,1,3] => [3,1]
=> [1]
=> []
=> 0
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,2,1] => [2,2]
=> [2]
=> []
=> 0
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> 0
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> 0
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> 0
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> 0
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> 0
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> 0
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 0
Description
The weighted size of a partition. Let $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ be an integer partition. Then the weighted size of $\lambda$ is $$\sum_{i=0}^m i \cdot \lambda_i.$$ This is also the sum of the leg lengths of the cells in $\lambda$, or $$ \sum_i \binom{\lambda^{\prime}_i}{2} $$ where $\lambda^{\prime}$ is the conjugate partition of $\lambda$. This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2]. This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape $\lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m)$, obtained uniquely by placing $i-1$ in all the cells of the $i$th row of $\lambda$, see [2, eq.7.103].
Matching statistic: St000772
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00254: Permutations Inverse fireworks mapPermutations
Mp00160: Permutations graph of inversionsGraphs
St000772: Graphs ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 6%
Values
[1,2] => [1,2] => [1,2] => ([],2)
=> ? = 0 + 1
[1,2,3] => [1,2,3] => [1,2,3] => ([],3)
=> ? = 0 + 1
[1,3,2] => [1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? = 0 + 1
[2,1,3] => [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? = 0 + 1
[3,2,1] => [2,3,1] => [1,3,2] => ([(1,2)],3)
=> ? = 0 + 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? = 1 + 1
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> ? = 0 + 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? = 0 + 1
[1,3,4,2] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[1,4,3,2] => [1,3,4,2] => [1,2,4,3] => ([(2,3)],4)
=> ? = 0 + 1
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? = 0 + 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 0 + 1
[2,3,1,4] => [3,1,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[2,4,3,1] => [3,4,1,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
[3,1,2,4] => [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[3,2,1,4] => [2,3,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ? = 0 + 1
[3,2,4,1] => [2,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
[3,4,1,2] => [3,1,4,2] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 0 + 1
[4,1,3,2] => [3,4,2,1] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[4,2,1,3] => [2,4,3,1] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[4,2,3,1] => [2,3,4,1] => [1,2,4,3] => ([(2,3)],4)
=> ? = 0 + 1
[4,3,2,1] => [3,2,4,1] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 0 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? = 3 + 1
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? = 1 + 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? = 1 + 1
[1,2,4,5,3] => [1,2,5,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? = 0 + 1
[1,2,5,3,4] => [1,2,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,2,5,4,3] => [1,2,4,5,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ? = 1 + 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? = 1 + 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? = 0 + 1
[1,3,4,2,5] => [1,4,2,3,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? = 0 + 1
[1,3,4,5,2] => [1,5,2,3,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,3,5,2,4] => [1,5,4,2,3] => [1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,3,5,4,2] => [1,4,5,2,3] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? = 0 + 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,4,2,5,3] => [1,5,3,2,4] => [1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,4,3,2,5] => [1,3,4,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? = 1 + 1
[1,4,3,5,2] => [1,3,5,2,4] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? = 0 + 1
[1,4,5,2,3] => [1,4,2,5,3] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? = 0 + 1
[1,4,5,3,2] => [1,5,2,4,3] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,5,2,3,4] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,5,2,4,3] => [1,4,5,3,2] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,5,3,2,4] => [1,3,5,4,2] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,5,3,4,2] => [1,3,4,5,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ? = 1 + 1
[1,5,4,2,3] => [1,5,3,4,2] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,5,4,3,2] => [1,4,3,5,2] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? = 0 + 1
[2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? = 1 + 1
[2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? = 0 + 1
[2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? = 0 + 1
[2,1,4,5,3] => [2,1,5,3,4] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,1,5,3,4] => [2,1,5,4,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,3,5,4,1] => [4,5,1,2,3] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[2,4,3,5,1] => [3,5,1,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[2,5,1,4,3] => [4,5,3,1,2] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[2,5,3,1,4] => [3,5,4,1,2] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[2,5,4,3,1] => [4,3,5,1,2] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[3,1,5,4,2] => [4,5,2,1,3] => [3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[3,2,4,5,1] => [2,5,1,3,4] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[3,2,5,1,4] => [2,5,4,1,3] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[3,4,1,5,2] => [3,1,5,2,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[3,4,5,2,1] => [4,2,5,1,3] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[3,5,2,4,1] => [4,5,1,3,2] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[4,1,3,5,2] => [3,5,2,1,4] => [3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[4,2,5,3,1] => [2,5,1,4,3] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[4,3,2,5,1] => [3,2,5,1,4] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[4,3,5,1,2] => [4,1,5,2,3] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[4,5,3,2,1] => [3,5,1,4,2] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[5,3,1,4,2] => [4,5,2,3,1] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[5,4,3,1,2] => [3,5,2,4,1] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[2,3,4,6,5,1] => [5,6,1,2,3,4] => [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 0 + 1
[2,3,5,4,6,1] => [4,6,1,2,3,5] => [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 0 + 1
[2,3,6,1,5,4] => [5,6,4,1,2,3] => [3,6,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,3,6,4,1,5] => [4,6,5,1,2,3] => [3,6,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,3,6,4,5,1] => [4,5,6,1,2,3] => [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,3,6,5,4,1] => [5,4,6,1,2,3] => [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,4,1,6,5,3] => [5,6,3,1,2,4] => [4,6,3,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,4,3,5,6,1] => [3,6,1,2,4,5] => [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,4,3,6,1,5] => [3,6,5,1,2,4] => [3,6,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,4,3,6,5,1] => [3,5,6,1,2,4] => [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,4,5,1,6,3] => [4,1,2,6,3,5] => [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[2,4,5,6,3,1] => [5,3,6,1,2,4] => [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,4,6,3,5,1] => [5,6,1,2,4,3] => [3,6,1,2,5,4] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,5,1,4,6,3] => [4,6,3,1,2,5] => [4,6,3,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,5,3,1,6,4] => [3,6,4,1,2,5] => [2,6,4,1,3,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,5,3,4,6,1] => [3,4,6,1,2,5] => [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,5,3,6,4,1] => [3,6,1,2,5,4] => [3,6,1,2,5,4] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,5,4,3,6,1] => [4,3,6,1,2,5] => [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,5,4,6,1,3] => [5,1,2,6,3,4] => [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[2,5,6,4,3,1] => [4,6,1,2,5,3] => [3,6,1,2,5,4] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,6,1,3,5,4] => [5,6,4,3,1,2] => [2,6,5,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,6,1,4,3,5] => [4,6,5,3,1,2] => [2,6,5,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,6,1,5,4,3] => [5,4,6,3,1,2] => [3,2,6,5,1,4] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,6,3,1,4,5] => [3,6,5,4,1,2] => [2,6,5,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,6,4,1,5,3] => [5,6,3,4,1,2] => [3,6,2,5,1,4] => ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,6,4,3,1,5] => [4,3,6,5,1,2] => [3,2,6,5,1,4] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,6,4,5,3,1] => [5,3,4,6,1,2] => [4,1,3,6,2,5] => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,6,5,1,3,4] => [5,3,6,4,1,2] => [3,2,6,5,1,4] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,6,5,3,4,1] => [5,4,3,6,1,2] => [4,3,2,6,1,5] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,6,5,4,1,3] => [4,6,3,5,1,2] => [3,6,2,5,1,4] => ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00236: Permutations Clarke-Steingrimsson-Zeng inversePermutations
Mp00208: Permutations lattice of intervalsLattices
St001719: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 6%
Values
[1,2] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,3] => [1,2,3] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
[1,3,2] => [1,3,2] => [1,3,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 0 + 1
[2,1,3] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 0 + 1
[3,2,1] => [2,3,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 1 + 1
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> 1 = 0 + 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> 1 = 0 + 1
[1,3,4,2] => [1,4,2,3] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> 1 = 0 + 1
[1,4,2,3] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> 1 = 0 + 1
[1,4,3,2] => [1,3,4,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 1 = 0 + 1
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> 1 = 0 + 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> 1 = 0 + 1
[2,3,1,4] => [3,1,2,4] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> 1 = 0 + 1
[2,4,3,1] => [3,4,1,2] => [4,1,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> 1 = 0 + 1
[3,1,2,4] => [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> 1 = 0 + 1
[3,2,1,4] => [2,3,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 1 = 0 + 1
[3,2,4,1] => [2,4,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> 1 = 0 + 1
[3,4,1,2] => [3,1,4,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> 1 = 0 + 1
[4,1,3,2] => [3,4,2,1] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> 1 = 0 + 1
[4,2,1,3] => [2,4,3,1] => [3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> 1 = 0 + 1
[4,2,3,1] => [2,3,4,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 0 + 1
[4,3,2,1] => [3,2,4,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> 1 = 0 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 3 + 1
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 1 + 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 1 + 1
[1,2,4,5,3] => [1,2,5,3,4] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 1
[1,2,5,3,4] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 1
[1,2,5,4,3] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 1 + 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 1 + 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 0 + 1
[1,3,4,2,5] => [1,4,2,3,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 0 + 1
[1,3,4,5,2] => [1,5,2,3,4] => [1,5,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 0 + 1
[1,3,5,2,4] => [1,5,4,2,3] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 0 + 1
[1,3,5,4,2] => [1,4,5,2,3] => [1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 0 + 1
[1,4,2,5,3] => [1,5,3,2,4] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 0 + 1
[1,4,3,2,5] => [1,3,4,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 1 + 1
[1,4,3,5,2] => [1,3,5,2,4] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 1
[1,4,5,2,3] => [1,4,2,5,3] => [1,5,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 0 + 1
[1,4,5,3,2] => [1,5,2,4,3] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 1
[1,5,2,3,4] => [1,5,4,3,2] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 1
[1,5,2,4,3] => [1,4,5,3,2] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,9),(4,8),(5,7),(6,8),(6,9),(8,10),(9,10),(10,7)],11)
=> ? = 0 + 1
[1,5,3,2,4] => [1,3,5,4,2] => [1,4,5,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 0 + 1
[1,5,3,4,2] => [1,3,4,5,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 1 + 1
[1,5,4,2,3] => [1,5,3,4,2] => [1,3,4,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 0 + 1
[1,5,4,3,2] => [1,4,3,5,2] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 1
[2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 1 + 1
[2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = 0 + 1
[2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 0 + 1
[2,1,4,5,3] => [2,1,5,3,4] => [2,1,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 0 + 1
[2,1,5,3,4] => [2,1,5,4,3] => [2,1,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 0 + 1
[2,1,5,4,3] => [2,1,4,5,3] => [2,1,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 0 + 1
[2,3,1,4,5] => [3,1,2,4,5] => [3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 1
[2,3,1,5,4] => [3,1,2,5,4] => [3,1,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 0 + 1
[2,3,4,1,5] => [4,1,2,3,5] => [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 0 + 1
[2,3,5,4,1] => [4,5,1,2,3] => [5,1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 1
[2,4,1,3,5] => [4,3,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 0 + 1
[2,4,3,1,5] => [3,4,1,2,5] => [4,1,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 1
[2,4,3,5,1] => [3,5,1,2,4] => [5,1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,9),(4,8),(5,7),(6,8),(6,9),(8,10),(9,10),(10,7)],11)
=> ? = 0 + 1
[2,4,5,1,3] => [4,1,2,5,3] => [5,4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 0 + 1
[2,5,1,4,3] => [4,5,3,1,2] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1 = 0 + 1
[2,5,3,1,4] => [3,5,4,1,2] => [4,1,5,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 1 = 0 + 1
[2,5,3,4,1] => [3,4,5,1,2] => [5,1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 0 + 1
[2,5,4,3,1] => [4,3,5,1,2] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 0 + 1
[3,1,2,4,5] => [3,2,1,4,5] => [2,3,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 1
[3,1,2,5,4] => [3,2,1,5,4] => [2,3,1,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 0 + 1
[3,1,4,2,5] => [4,2,1,3,5] => [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 0 + 1
[3,1,5,4,2] => [4,5,2,1,3] => [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 0 + 1
[3,2,1,4,5] => [2,3,1,4,5] => [3,2,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 1 + 1
[3,2,1,5,4] => [2,3,1,5,4] => [3,2,1,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 0 + 1
[3,2,4,1,5] => [2,4,1,3,5] => [4,2,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 1
[3,2,4,5,1] => [2,5,1,3,4] => [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 0 + 1
[3,2,5,1,4] => [2,5,4,1,3] => [4,2,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 1 = 0 + 1
[3,2,5,4,1] => [2,4,5,1,3] => [5,2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 1
[3,4,1,2,5] => [3,1,4,2,5] => [4,3,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 0 + 1
[3,4,1,5,2] => [3,1,5,2,4] => [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 1
[3,4,2,1,5] => [4,1,3,2,5] => [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 1
[3,4,5,2,1] => [4,2,5,1,3] => [2,5,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 1 = 0 + 1
[3,5,1,2,4] => [3,1,5,4,2] => [4,5,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = 0 + 1
[3,5,1,4,2] => [3,1,4,5,2] => [5,4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 0 + 1
[4,1,5,2,3] => [4,2,1,5,3] => [2,5,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 1 = 0 + 1
[4,2,1,5,3] => [2,5,3,1,4] => [3,5,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 1 = 0 + 1
[4,3,2,5,1] => [3,2,5,1,4] => [2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1 = 0 + 1
[4,5,1,3,2] => [4,3,1,5,2] => [3,1,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 1 = 0 + 1
[5,1,2,4,3] => [4,5,3,2,1] => [3,5,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 0 + 1
[5,1,3,2,4] => [3,5,4,2,1] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 0 + 1
[1,3,5,2,6,4] => [1,6,4,2,3,5] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 0 + 1
[1,3,6,2,5,4] => [1,5,6,4,2,3] => [1,4,6,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 0 + 1
[1,4,2,6,3,5] => [1,6,5,3,2,4] => [1,5,3,6,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 0 + 1
[1,4,5,6,2,3] => [1,6,3,5,2,4] => [1,3,5,2,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 0 + 1
[1,4,6,3,2,5] => [1,6,5,2,4,3] => [1,5,2,4,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 0 + 1
[1,5,4,3,6,2] => [1,4,3,6,2,5] => [1,3,6,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 0 + 1
[2,3,6,1,5,4] => [5,6,4,1,2,3] => [4,1,6,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[2,4,1,5,3,6] => [5,3,1,2,4,6] => [3,1,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 0 + 1
[2,4,1,6,5,3] => [5,6,3,1,2,4] => [3,6,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[2,4,5,6,3,1] => [5,3,6,1,2,4] => [6,3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 0 + 1
[2,5,1,4,3,6] => [4,5,3,1,2,6] => [3,5,1,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 0 + 1
[2,5,1,4,6,3] => [4,6,3,1,2,5] => [3,6,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[2,5,1,6,3,4] => [5,3,1,2,6,4] => [3,1,6,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 1 = 0 + 1
Description
The number of shortest chains of small intervals from the bottom to the top in a lattice. An interval $[a, b]$ in a lattice is small if $b$ is a join of elements covering $a$.
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00236: Permutations Clarke-Steingrimsson-Zeng inversePermutations
Mp00208: Permutations lattice of intervalsLattices
St001720: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 6%
Values
[1,2] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,2,3] => [1,2,3] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,3,2] => [1,3,2] => [1,3,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[2,1,3] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,2,1] => [2,3,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 1 + 2
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> 2 = 0 + 2
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> 2 = 0 + 2
[1,3,4,2] => [1,4,2,3] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> 2 = 0 + 2
[1,4,2,3] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> 2 = 0 + 2
[1,4,3,2] => [1,3,4,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2 = 0 + 2
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> 2 = 0 + 2
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> 2 = 0 + 2
[2,3,1,4] => [3,1,2,4] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> 2 = 0 + 2
[2,4,3,1] => [3,4,1,2] => [4,1,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> 2 = 0 + 2
[3,1,2,4] => [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> 2 = 0 + 2
[3,2,1,4] => [2,3,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2 = 0 + 2
[3,2,4,1] => [2,4,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> 2 = 0 + 2
[3,4,1,2] => [3,1,4,2] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> 2 = 0 + 2
[4,1,3,2] => [3,4,2,1] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> 2 = 0 + 2
[4,2,1,3] => [2,4,3,1] => [3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> 2 = 0 + 2
[4,2,3,1] => [2,3,4,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 0 + 2
[4,3,2,1] => [3,2,4,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> 2 = 0 + 2
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 3 + 2
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 1 + 2
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 1 + 2
[1,2,4,5,3] => [1,2,5,3,4] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,5,3,4] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[1,2,5,4,3] => [1,2,4,5,3] => [1,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 1 + 2
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 1 + 2
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 0 + 2
[1,3,4,2,5] => [1,4,2,3,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 0 + 2
[1,3,4,5,2] => [1,5,2,3,4] => [1,5,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 0 + 2
[1,3,5,2,4] => [1,5,4,2,3] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 0 + 2
[1,3,5,4,2] => [1,4,5,2,3] => [1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 2
[1,4,2,3,5] => [1,4,3,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 0 + 2
[1,4,2,5,3] => [1,5,3,2,4] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 0 + 2
[1,4,3,2,5] => [1,3,4,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 1 + 2
[1,4,3,5,2] => [1,3,5,2,4] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 2
[1,4,5,2,3] => [1,4,2,5,3] => [1,5,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 0 + 2
[1,4,5,3,2] => [1,5,2,4,3] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[1,5,2,3,4] => [1,5,4,3,2] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 2
[1,5,2,4,3] => [1,4,5,3,2] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,9),(4,8),(5,7),(6,8),(6,9),(8,10),(9,10),(10,7)],11)
=> ? = 0 + 2
[1,5,3,2,4] => [1,3,5,4,2] => [1,4,5,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 0 + 2
[1,5,3,4,2] => [1,3,4,5,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 1 + 2
[1,5,4,2,3] => [1,5,3,4,2] => [1,3,4,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 0 + 2
[1,5,4,3,2] => [1,4,3,5,2] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 2
[2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 1 + 2
[2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = 0 + 2
[2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 0 + 2
[2,1,4,5,3] => [2,1,5,3,4] => [2,1,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 0 + 2
[2,1,5,3,4] => [2,1,5,4,3] => [2,1,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 0 + 2
[2,1,5,4,3] => [2,1,4,5,3] => [2,1,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 0 + 2
[2,3,1,4,5] => [3,1,2,4,5] => [3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[2,3,1,5,4] => [3,1,2,5,4] => [3,1,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 0 + 2
[2,3,4,1,5] => [4,1,2,3,5] => [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 0 + 2
[2,3,5,4,1] => [4,5,1,2,3] => [5,1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 2
[2,4,1,3,5] => [4,3,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 0 + 2
[2,4,3,1,5] => [3,4,1,2,5] => [4,1,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 2
[2,4,3,5,1] => [3,5,1,2,4] => [5,1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,9),(4,8),(5,7),(6,8),(6,9),(8,10),(9,10),(10,7)],11)
=> ? = 0 + 2
[2,4,5,1,3] => [4,1,2,5,3] => [5,4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 0 + 2
[2,5,1,4,3] => [4,5,3,1,2] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[2,5,3,1,4] => [3,5,4,1,2] => [4,1,5,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 2 = 0 + 2
[2,5,3,4,1] => [3,4,5,1,2] => [5,1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 0 + 2
[2,5,4,3,1] => [4,3,5,1,2] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 0 + 2
[3,1,2,4,5] => [3,2,1,4,5] => [2,3,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[3,1,2,5,4] => [3,2,1,5,4] => [2,3,1,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 0 + 2
[3,1,4,2,5] => [4,2,1,3,5] => [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 0 + 2
[3,1,5,4,2] => [4,5,2,1,3] => [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 0 + 2
[3,2,1,4,5] => [2,3,1,4,5] => [3,2,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 1 + 2
[3,2,1,5,4] => [2,3,1,5,4] => [3,2,1,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 0 + 2
[3,2,4,1,5] => [2,4,1,3,5] => [4,2,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 2
[3,2,4,5,1] => [2,5,1,3,4] => [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 0 + 2
[3,2,5,1,4] => [2,5,4,1,3] => [4,2,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 2 = 0 + 2
[3,2,5,4,1] => [2,4,5,1,3] => [5,2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[3,4,1,2,5] => [3,1,4,2,5] => [4,3,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 0 + 2
[3,4,1,5,2] => [3,1,5,2,4] => [5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 2
[3,4,2,1,5] => [4,1,3,2,5] => [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[3,4,5,2,1] => [4,2,5,1,3] => [2,5,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 2 = 0 + 2
[3,5,1,2,4] => [3,1,5,4,2] => [4,5,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = 0 + 2
[3,5,1,4,2] => [3,1,4,5,2] => [5,4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 0 + 2
[4,1,5,2,3] => [4,2,1,5,3] => [2,5,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 2 = 0 + 2
[4,2,1,5,3] => [2,5,3,1,4] => [3,5,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 2 = 0 + 2
[4,3,2,5,1] => [3,2,5,1,4] => [2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[4,5,1,3,2] => [4,3,1,5,2] => [3,1,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 2 = 0 + 2
[5,1,2,4,3] => [4,5,3,2,1] => [3,5,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 0 + 2
[5,1,3,2,4] => [3,5,4,2,1] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 0 + 2
[1,3,5,2,6,4] => [1,6,4,2,3,5] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 0 + 2
[1,3,6,2,5,4] => [1,5,6,4,2,3] => [1,4,6,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 0 + 2
[1,4,2,6,3,5] => [1,6,5,3,2,4] => [1,5,3,6,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 0 + 2
[1,4,5,6,2,3] => [1,6,3,5,2,4] => [1,3,5,2,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 0 + 2
[1,4,6,3,2,5] => [1,6,5,2,4,3] => [1,5,2,4,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 0 + 2
[1,5,4,3,6,2] => [1,4,3,6,2,5] => [1,3,6,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 0 + 2
[2,3,6,1,5,4] => [5,6,4,1,2,3] => [4,1,6,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 0 + 2
[2,4,1,5,3,6] => [5,3,1,2,4,6] => [3,1,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 0 + 2
[2,4,1,6,5,3] => [5,6,3,1,2,4] => [3,6,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 0 + 2
[2,4,5,6,3,1] => [5,3,6,1,2,4] => [6,3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 0 + 2
[2,5,1,4,3,6] => [4,5,3,1,2,6] => [3,5,1,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 0 + 2
[2,5,1,4,6,3] => [4,6,3,1,2,5] => [3,6,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 0 + 2
[2,5,1,6,3,4] => [5,3,1,2,6,4] => [3,1,6,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 2 = 0 + 2
Description
The minimal length of a chain of small intervals in a lattice. An interval $[a, b]$ is small if $b$ is a join of elements covering $a$.
Matching statistic: St001001
Mp00108: Permutations cycle typeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001001: Dyck paths ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 6%
Values
[1,2] => [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[1,3,2] => [2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[2,1,3] => [2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[3,2,1] => [2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0
[1,3,4,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0
[1,4,2,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0
[2,1,4,3] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[2,3,1,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0
[2,4,3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0
[3,1,2,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0
[3,2,4,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0
[3,4,1,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[4,1,3,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0
[4,2,1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0
[4,3,2,1] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1
[1,2,4,5,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1
[1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[1,3,4,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,3,4,5,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[1,3,5,2,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,4,2,5,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[1,4,3,2,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[1,4,5,3,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[1,5,2,3,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1
[1,5,4,2,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[1,5,4,3,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1
[2,1,3,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[2,1,4,5,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 0
[2,1,5,3,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 0
[2,1,5,4,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[2,3,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[2,3,1,5,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 0
[2,3,4,1,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[2,3,5,4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[2,4,1,3,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[2,4,3,5,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[2,4,5,1,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 0
[2,5,1,4,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[2,5,3,1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[2,5,4,3,1] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 0
[3,1,2,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[3,1,2,5,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 0
[3,1,4,2,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[3,1,5,4,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[3,2,1,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1
[3,2,1,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[3,2,4,5,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[3,2,5,1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[3,2,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[3,4,1,2,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[3,4,2,1,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[3,5,2,4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[4,1,2,3,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[4,1,3,5,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[4,2,1,5,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[4,2,3,1,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1
[4,2,5,3,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[4,3,1,2,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[4,5,3,2,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[5,1,2,4,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[5,1,3,2,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[5,2,1,3,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[5,2,3,4,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1
[5,2,4,1,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[5,3,1,4,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[5,4,3,1,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 6
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[1,2,3,5,6,4] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 1
[1,2,3,6,4,5] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 1
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[1,2,4,3,6,5] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 1
Description
The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001371
Mp00108: Permutations cycle typeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00093: Dyck paths to binary wordBinary words
St001371: Binary words ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 6%
Values
[1,2] => [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 0
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => 0
[1,3,2] => [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 0
[2,1,3] => [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 0
[3,2,1] => [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 0
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => ? = 1
[1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[1,3,4,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 0
[1,4,2,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 0
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[2,1,4,3] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => 0
[2,3,1,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 0
[2,4,3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 0
[3,1,2,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 0
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[3,2,4,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 0
[3,4,1,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => 0
[4,1,3,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 0
[4,2,1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 0
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[4,3,2,1] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => 0
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 101111100000 => ? = 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[1,2,4,5,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[1,2,5,3,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[1,3,4,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[1,3,4,5,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[1,3,5,2,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[1,4,2,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[1,4,2,5,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[1,4,3,2,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[1,4,5,2,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[1,4,5,3,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[1,5,2,3,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[1,5,4,2,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[1,5,4,3,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[2,1,3,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[2,1,4,3,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[2,1,4,5,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => 0
[2,1,5,3,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => 0
[2,1,5,4,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[2,3,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[2,3,1,5,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => 0
[2,3,4,1,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[2,3,5,4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[2,4,1,3,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[2,4,3,5,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[2,4,5,1,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => 0
[2,5,1,4,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[2,5,3,1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[2,5,4,3,1] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => 0
[3,1,2,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[3,1,2,5,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => 0
[3,1,4,2,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[3,1,5,4,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[3,2,1,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[3,2,1,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[3,2,4,5,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[3,2,5,1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[3,2,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[3,4,1,2,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[3,4,2,1,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[3,5,2,4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[4,1,2,3,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[4,1,3,5,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[4,2,1,5,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[4,2,3,1,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[4,2,5,3,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[4,3,1,2,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[4,5,3,2,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[5,1,2,4,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[5,1,3,2,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[5,2,1,3,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[5,2,3,4,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[5,2,4,1,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[5,3,1,4,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[5,4,3,1,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 10111111000000 => ? = 6
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 101111010000 => ? = 3
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 101111010000 => ? = 3
[1,2,3,5,6,4] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1011100100 => ? = 1
[1,2,3,6,4,5] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1011100100 => ? = 1
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 101111010000 => ? = 3
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 101111010000 => ? = 3
[1,2,4,3,6,5] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1011011000 => ? = 1
Description
The length of the longest Yamanouchi prefix of a binary word. This is the largest index $i$ such that in each of the prefixes $w_1$, $w_1w_2$, $w_1w_2\dots w_i$ the number of zeros is greater than or equal to the number of ones.
Matching statistic: St001730
Mp00108: Permutations cycle typeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00093: Dyck paths to binary wordBinary words
St001730: Binary words ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 6%
Values
[1,2] => [1,1]
=> [1,0,1,1,0,0]
=> 101100 => 0
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => 0
[1,3,2] => [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 0
[2,1,3] => [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 0
[3,2,1] => [2,1]
=> [1,0,1,0,1,0]
=> 101010 => 0
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => ? = 1
[1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[1,3,4,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 0
[1,4,2,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 0
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[2,1,4,3] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => 0
[2,3,1,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 0
[2,4,3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 0
[3,1,2,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 0
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[3,2,4,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 0
[3,4,1,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => 0
[4,1,3,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 0
[4,2,1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 0
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[4,3,2,1] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => 0
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 101111100000 => ? = 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[1,2,4,5,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[1,2,5,3,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[1,3,4,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[1,3,4,5,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[1,3,5,2,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[1,4,2,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[1,4,2,5,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[1,4,3,2,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[1,4,5,2,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[1,4,5,3,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[1,5,2,3,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[1,5,4,2,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[1,5,4,3,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[2,1,3,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[2,1,4,3,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[2,1,4,5,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => 0
[2,1,5,3,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => 0
[2,1,5,4,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[2,3,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[2,3,1,5,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => 0
[2,3,4,1,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[2,3,5,4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[2,4,1,3,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[2,4,3,5,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[2,4,5,1,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => 0
[2,5,1,4,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[2,5,3,1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[2,5,4,3,1] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => 0
[3,1,2,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[3,1,2,5,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => 0
[3,1,4,2,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[3,1,5,4,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[3,2,1,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[3,2,1,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[3,2,4,5,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[3,2,5,1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[3,2,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 0
[3,4,1,2,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[3,4,2,1,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[3,5,2,4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[4,1,2,3,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[4,1,3,5,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[4,2,1,5,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[4,2,3,1,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[4,2,5,3,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[4,3,1,2,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[4,5,3,2,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[5,1,2,4,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[5,1,3,2,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[5,2,1,3,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[5,2,3,4,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 1
[5,2,4,1,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[5,3,1,4,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[5,4,3,1,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => ? = 0
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 10111111000000 => ? = 6
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 101111010000 => ? = 3
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 101111010000 => ? = 3
[1,2,3,5,6,4] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1011100100 => ? = 1
[1,2,3,6,4,5] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1011100100 => ? = 1
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 101111010000 => ? = 3
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 101111010000 => ? = 3
[1,2,4,3,6,5] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1011011000 => ? = 1
Description
The number of times the path corresponding to a binary word crosses the base line. Interpret each $0$ as a step $(1,-1)$ and $1$ as a step $(1,1)$. Then this statistic counts the number of times the path crosses the $x$-axis.
Matching statistic: St001803
Mp00108: Permutations cycle typeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
St001803: Standard tableaux ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 6%
Values
[1,2] => [1,1]
=> [1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> 0
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> 0
[1,3,2] => [2,1]
=> [1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 0
[2,1,3] => [2,1]
=> [1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 0
[3,2,1] => [2,1]
=> [1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 0
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 1
[1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> 0
[1,3,4,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> 0
[1,4,2,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> 0
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> 0
[2,1,4,3] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> 0
[2,3,1,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> 0
[2,4,3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> 0
[3,1,2,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> 0
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> 0
[3,2,4,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> 0
[3,4,1,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> 0
[4,1,3,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> 0
[4,2,1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> 0
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> 0
[4,3,2,1] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> 0
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,3,4,5,6,7],[2,8,9,10,11,12]]
=> ? = 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[1,2,4,5,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0
[1,3,4,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 0
[1,3,4,5,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[1,3,5,2,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 0
[1,4,2,5,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[1,4,3,2,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0
[1,4,5,3,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[1,5,2,3,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[1,5,4,2,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[1,5,4,3,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[2,1,3,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0
[2,1,4,5,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> 0
[2,1,5,3,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> 0
[2,1,5,4,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0
[2,3,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 0
[2,3,1,5,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> 0
[2,3,4,1,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[2,3,5,4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[2,4,1,3,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 0
[2,4,3,5,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[2,4,5,1,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> 0
[2,5,1,4,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[2,5,3,1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 0
[2,5,4,3,1] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> 0
[3,1,2,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 0
[3,1,2,5,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> 0
[3,1,4,2,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[3,1,5,4,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[3,2,1,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[3,2,1,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 0
[3,2,4,5,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[3,2,5,1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[3,2,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 0
[3,4,1,2,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 0
[3,4,2,1,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[3,5,2,4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[4,1,2,3,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[4,1,3,5,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[4,2,1,5,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[4,2,3,1,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[4,2,5,3,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[4,3,1,2,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[4,5,3,2,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[5,1,2,4,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[5,1,3,2,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[5,2,1,3,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[5,2,3,4,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 1
[5,2,4,1,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[5,3,1,4,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[5,4,3,1,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[1,3,4,5,6,7,8],[2,9,10,11,12,13,14]]
=> ? = 6
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[1,3,4,5,6,8],[2,7,9,10,11,12]]
=> ? = 3
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[1,3,4,5,6,8],[2,7,9,10,11,12]]
=> ? = 3
[1,2,3,5,6,4] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,3,4,5,8],[2,6,7,9,10]]
=> ? = 1
[1,2,3,6,4,5] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,3,4,5,8],[2,6,7,9,10]]
=> ? = 1
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[1,3,4,5,6,8],[2,7,9,10,11,12]]
=> ? = 3
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[1,3,4,5,6,8],[2,7,9,10,11,12]]
=> ? = 3
[1,2,4,3,6,5] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[1,3,4,6,7],[2,5,8,9,10]]
=> ? = 1
Description
The maximal overlap of the cylindrical tableau associated with a tableau. A cylindrical tableau associated with a standard Young tableau $T$ is the skew row-strict tableau obtained by gluing two copies of $T$ such that the inner shape is a rectangle. The overlap, recorded in this statistic, equals $\max_C\big(2\ell(T) - \ell(C)\big)$, where $\ell$ denotes the number of rows of a tableau and the maximum is taken over all cylindrical tableaux. In particular, the statistic equals $0$, if and only if the last entry of the first row is larger than or equal to the first entry of the last row. Moreover, the statistic attains its maximal value, the number of rows of the tableau minus 1, if and only if the tableau consists of a single column.
Matching statistic: St001195
Mp00108: Permutations cycle typeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001195: Dyck paths ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 6%
Values
[1,2] => [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,3,2] => [2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,1,3] => [2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[3,2,1] => [2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,3,4,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,4,2,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[2,1,4,3] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[2,3,1,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[2,4,3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[3,1,2,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[3,2,4,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[3,4,1,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[4,1,3,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[4,2,1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[4,3,2,1] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 3 + 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,2,4,5,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,2,5,3,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,3,4,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,3,4,5,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[1,3,5,2,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,4,2,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,4,2,5,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,4,5,2,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,4,5,3,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[1,5,2,3,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,5,4,2,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[1,5,4,3,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[2,1,3,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[2,1,4,3,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[2,1,4,5,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,1,5,3,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,1,5,4,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[2,3,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[2,3,1,5,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,3,4,1,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[2,3,5,4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[2,4,1,3,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[2,4,3,5,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[2,4,5,1,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 0 + 1
[2,5,1,4,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[2,5,3,1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[2,5,4,3,1] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 0 + 1
[3,1,2,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[3,1,2,5,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 0 + 1
[3,1,4,2,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[3,1,5,4,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[3,2,1,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[3,2,1,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[3,2,4,5,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[3,2,5,1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[3,2,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[3,4,1,2,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[3,4,2,1,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[3,5,2,4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[4,1,2,3,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[4,1,3,5,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[4,2,1,5,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[4,2,5,3,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[4,3,1,2,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[4,5,3,2,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[5,1,2,4,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[5,1,3,2,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[5,2,1,3,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[5,2,4,1,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[5,3,1,4,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[5,4,3,1,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0 + 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 6 + 1
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3 + 1
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3 + 1
[1,2,3,5,6,4] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 1 + 1
[1,2,3,6,4,5] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 1 + 1
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3 + 1
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3 + 1
[1,2,4,3,6,5] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 1 + 1
Description
The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$.
Mp00108: Permutations cycle typeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00201: Dyck paths RingelPermutations
St001208: Permutations ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 6%
Values
[1,2] => [1,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 1 = 0 + 1
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 1 = 0 + 1
[1,3,2] => [2,1]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 1 = 0 + 1
[2,1,3] => [2,1]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 1 = 0 + 1
[3,2,1] => [2,1]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 1 = 0 + 1
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 + 1
[1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1 = 0 + 1
[1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1 = 0 + 1
[1,3,4,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1 = 0 + 1
[1,4,2,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1 = 0 + 1
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1 = 0 + 1
[2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1 = 0 + 1
[2,1,4,3] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 1 = 0 + 1
[2,3,1,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1 = 0 + 1
[2,4,3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1 = 0 + 1
[3,1,2,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1 = 0 + 1
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1 = 0 + 1
[3,2,4,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1 = 0 + 1
[3,4,1,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 1 = 0 + 1
[4,1,3,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1 = 0 + 1
[4,2,1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1 = 0 + 1
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1 = 0 + 1
[4,3,2,1] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 1 = 0 + 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 3 + 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 + 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 + 1
[1,2,4,5,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1 = 0 + 1
[1,2,5,3,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1 = 0 + 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 + 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 + 1
[1,3,2,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 0 + 1
[1,3,4,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1 = 0 + 1
[1,3,4,5,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[1,3,5,2,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1 = 0 + 1
[1,4,2,3,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1 = 0 + 1
[1,4,2,5,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 + 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1 = 0 + 1
[1,4,5,2,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 0 + 1
[1,4,5,3,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[1,5,2,3,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1 = 0 + 1
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1 = 0 + 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 + 1
[1,5,4,2,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[1,5,4,3,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 0 + 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 + 1
[2,1,3,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 0 + 1
[2,1,4,3,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 0 + 1
[2,1,4,5,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 1 = 0 + 1
[2,1,5,3,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 1 = 0 + 1
[2,1,5,4,3] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 0 + 1
[2,3,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1 = 0 + 1
[2,3,1,5,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 1 = 0 + 1
[2,3,4,1,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[2,3,5,4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[2,4,1,3,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1 = 0 + 1
[2,4,3,5,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[2,4,5,1,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 1 = 0 + 1
[2,5,1,4,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[2,5,3,1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1 = 0 + 1
[2,5,4,3,1] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 1 = 0 + 1
[3,1,2,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1 = 0 + 1
[3,1,2,5,4] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 1 = 0 + 1
[3,1,4,2,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[3,1,5,4,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[3,2,1,4,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 + 1
[3,2,1,5,4] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 0 + 1
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1 = 0 + 1
[3,2,4,5,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[3,2,5,1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[3,2,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1 = 0 + 1
[3,4,1,2,5] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 0 + 1
[3,4,2,1,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[3,5,2,4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[4,1,2,3,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[4,1,3,5,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[4,2,1,5,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 + 1
[4,2,5,3,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[4,3,1,2,5] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[4,5,3,2,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[5,1,2,4,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[5,1,3,2,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[5,2,1,3,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 1 + 1
[5,2,4,1,3] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[5,3,1,4,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[5,4,3,1,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ? = 0 + 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,2] => ? = 6 + 1
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3 + 1
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3 + 1
[1,2,3,5,6,4] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ? = 1 + 1
[1,2,3,6,4,5] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ? = 1 + 1
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3 + 1
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3 + 1
[1,2,4,3,6,5] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => ? = 1 + 1
Description
The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$.
The following 16 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St000256The number of parts from which one can substract 2 and still get an integer partition. St001625The Möbius invariant of a lattice. St001621The number of atoms of a lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000022The number of fixed points of a permutation. St000731The number of double exceedences of a permutation. St000181The number of connected components of the Hasse diagram for the poset. St001490The number of connected components of a skew partition. St001890The maximum magnitude of the Möbius function of a poset. St000068The number of minimal elements in a poset. St001549The number of restricted non-inversions between exceedances. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n−1}]$ by adding $c_0$ to $c_{n−1}$. St001624The breadth of a lattice.