Your data matches 141 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00198: Posets incomparability graphGraphs
St000093: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([],2)
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 2
([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 3
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 3
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> 3
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
Description
The cardinality of a maximal independent set of vertices of a graph. An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number or stability number $\alpha(G)$ of $G$.
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000010: Integer partitions ⟶ ℤResult quality: 69% values known / values provided: 98%distinct values known / distinct values provided: 69%
Values
([],1)
=> [1]
=> [1]
=> []
=> 0 = 1 - 1
([],2)
=> [1,1]
=> [2]
=> []
=> 0 = 1 - 1
([(0,1)],2)
=> [2]
=> [1,1]
=> [1]
=> 1 = 2 - 1
([],3)
=> [1,1,1]
=> [3]
=> []
=> 0 = 1 - 1
([(1,2)],3)
=> [2,1]
=> [2,1]
=> [1]
=> 1 = 2 - 1
([(0,1),(0,2)],3)
=> [2,1]
=> [2,1]
=> [1]
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,2),(1,2)],3)
=> [2,1]
=> [2,1]
=> [1]
=> 1 = 2 - 1
([],4)
=> [1,1,1,1]
=> [4]
=> []
=> 0 = 1 - 1
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [1]
=> 1 = 2 - 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [3,1]
=> [1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [3,1]
=> [1]
=> 1 = 2 - 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 2 = 3 - 1
([(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 2 = 3 - 1
([(1,3),(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [1]
=> 1 = 2 - 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [1]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 3 = 4 - 1
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 2 = 3 - 1
([],5)
=> [1,1,1,1,1]
=> [5]
=> []
=> 0 = 1 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 1 = 2 - 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 3 = 4 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 2 = 3 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 2 = 3 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 2 = 3 - 1
([(2,3),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> [2]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [3,2]
=> [2]
=> 1 = 2 - 1
([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> [4,3,3,3,3,2,2,1,1,1,1]
=> [3,3,3,3,2,2,1,1,1,1]
=> ? = 11 - 1
([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [5,4,4,3,3,2,2,1,1]
=> [4,4,3,3,2,2,1,1]
=> ? = 9 - 1
([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> [6,5,5,4,4,3,3,2,2,1,1]
=> [5,5,4,4,3,3,2,2,1,1]
=> ? = 11 - 1
([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> [9,7,5,5,3,1]
=> [6,5,5,4,4,2,2,1,1]
=> [5,5,4,4,2,2,1,1]
=> ? = 9 - 1
([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> [11,8,7,5,4,1]
=> [6,5,5,5,4,3,3,2,1,1,1]
=> [5,5,5,4,3,3,2,1,1,1]
=> ? = 11 - 1
([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> [9,6,4]
=> [3,3,3,3,2,2,1,1,1]
=> ?
=> ? = 9 - 1
([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> [10,6,4]
=> [3,3,3,3,2,2,1,1,1,1]
=> ?
=> ? = 10 - 1
([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> [8,6,4,2]
=> [4,4,3,3,2,2,1,1]
=> ?
=> ? = 8 - 1
([(0,1),(1,4),(1,5),(2,13),(3,12),(4,14),(5,7),(5,14),(6,10),(7,8),(7,15),(8,6),(8,17),(10,11),(11,9),(12,9),(13,3),(13,16),(14,2),(14,15),(15,13),(15,17),(16,11),(16,12),(17,10),(17,16)],18)
=> [9,6,3]
=> [3,3,3,2,2,2,1,1,1]
=> ?
=> ? = 9 - 1
([(0,1),(1,5),(1,6),(2,15),(3,14),(4,10),(5,16),(6,8),(6,16),(7,12),(8,9),(8,17),(9,7),(9,19),(11,13),(12,11),(13,10),(14,4),(14,13),(15,3),(15,18),(16,2),(16,17),(17,15),(17,19),(18,11),(18,14),(19,12),(19,18)],20)
=> [10,7,3]
=> [3,3,3,2,2,2,2,1,1,1]
=> ?
=> ? = 10 - 1
([(0,10),(1,20),(2,19),(4,18),(5,17),(6,13),(7,8),(7,17),(8,9),(8,11),(9,6),(9,15),(10,5),(10,7),(11,15),(11,18),(12,16),(12,20),(13,16),(14,19),(15,12),(15,13),(16,14),(17,4),(17,11),(18,1),(18,12),(19,3),(20,2),(20,14)],21)
=> [11,7,3]
=> [3,3,3,2,2,2,2,1,1,1,1]
=> ?
=> ? = 11 - 1
([(0,1),(1,2),(1,3),(2,4),(2,13),(3,6),(3,13),(4,15),(5,14),(6,5),(6,16),(7,10),(7,12),(8,18),(9,18),(10,17),(11,9),(11,17),(12,8),(12,17),(13,7),(13,15),(13,16),(14,8),(14,9),(15,10),(15,11),(16,11),(16,12),(16,14),(17,18)],19)
=> [8,5,4,2]
=> [4,4,3,3,2,1,1,1]
=> ?
=> ? = 8 - 1
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> [9,6,5,3]
=> [4,4,4,3,3,2,1,1,1]
=> ?
=> ? = 9 - 1
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> [10,7,5,3]
=> [4,4,4,3,3,2,2,1,1,1]
=> ?
=> ? = 10 - 1
([(0,1),(1,3),(1,4),(2,15),(3,6),(3,18),(4,5),(4,18),(5,17),(6,7),(6,19),(7,16),(8,12),(8,14),(10,21),(11,21),(12,2),(12,20),(13,11),(13,20),(14,10),(14,20),(15,9),(16,10),(16,11),(17,12),(17,13),(18,8),(18,17),(18,19),(19,13),(19,14),(19,16),(20,15),(20,21),(21,9)],22)
=> [9,6,4,3]
=> [4,4,4,3,2,2,1,1,1]
=> ?
=> ? = 9 - 1
([(0,1),(1,3),(1,4),(2,21),(3,6),(3,22),(4,5),(4,22),(5,20),(6,7),(6,23),(7,19),(8,13),(8,18),(9,14),(9,17),(10,26),(11,26),(12,27),(13,24),(14,2),(14,25),(15,13),(15,27),(16,12),(16,25),(17,8),(17,15),(17,25),(18,10),(18,24),(19,12),(19,15),(20,14),(20,16),(21,10),(21,11),(22,9),(22,20),(22,23),(23,16),(23,17),(23,19),(24,26),(25,18),(25,21),(25,27),(27,11),(27,24)],28)
=> [10,7,6,4,1]
=> [5,4,4,4,3,3,2,1,1,1]
=> ?
=> ? = 10 - 1
([(0,1),(1,4),(1,5),(2,24),(3,21),(4,7),(4,25),(5,6),(5,25),(6,23),(7,8),(7,26),(8,22),(9,16),(9,20),(10,15),(10,19),(11,29),(12,29),(14,30),(15,2),(15,28),(16,3),(16,27),(17,16),(17,30),(18,14),(18,28),(19,9),(19,17),(19,28),(20,12),(20,27),(21,13),(22,14),(22,17),(23,15),(23,18),(24,11),(24,12),(25,10),(25,23),(25,26),(26,18),(26,19),(26,22),(27,21),(27,29),(28,20),(28,24),(28,30),(29,13),(30,11),(30,27)],31)
=> [11,8,6,5,1]
=> [5,4,4,4,4,3,2,2,1,1,1]
=> ?
=> ? = 11 - 1
([(0,1),(1,4),(1,5),(2,23),(3,16),(4,7),(4,24),(5,6),(5,24),(6,22),(7,8),(7,25),(8,21),(9,13),(9,20),(10,15),(10,19),(11,28),(12,29),(13,26),(14,3),(14,28),(15,2),(15,27),(17,13),(17,29),(18,12),(18,27),(19,9),(19,17),(19,27),(20,14),(20,26),(21,12),(21,17),(22,15),(22,18),(23,11),(23,14),(24,10),(24,22),(24,25),(25,18),(25,19),(25,21),(26,28),(27,20),(27,23),(27,29),(28,16),(29,11),(29,26)],30)
=> [11,8,6,4,1]
=> [5,4,4,4,3,3,2,2,1,1,1]
=> ?
=> ? = 11 - 1
([(0,1),(1,5),(1,6),(2,24),(3,27),(4,23),(5,8),(5,28),(6,9),(6,28),(7,26),(8,7),(8,29),(9,25),(10,16),(10,22),(11,17),(11,21),(13,30),(14,33),(15,4),(15,33),(16,2),(16,32),(17,3),(17,31),(18,16),(18,30),(19,12),(20,13),(20,31),(21,10),(21,18),(21,31),(22,15),(22,32),(23,12),(24,19),(25,17),(25,20),(26,13),(26,18),(27,14),(27,15),(28,11),(28,25),(28,29),(29,20),(29,21),(29,26),(30,14),(30,32),(31,22),(31,27),(31,30),(32,24),(32,33),(33,19),(33,23)],34)
=> [12,9,7,5,1]
=> [5,4,4,4,4,3,3,2,2,1,1,1]
=> ?
=> ? = 12 - 1
([(0,2),(2,6),(2,7),(3,25),(4,28),(5,24),(6,9),(6,29),(7,10),(7,29),(8,27),(9,8),(9,30),(10,26),(11,17),(11,23),(12,18),(12,22),(13,31),(14,34),(15,1),(16,5),(16,34),(17,3),(17,33),(18,4),(18,32),(19,15),(20,17),(20,31),(21,13),(21,32),(22,11),(22,20),(22,32),(23,16),(23,33),(24,15),(25,19),(26,18),(26,21),(27,13),(27,20),(28,14),(28,16),(29,12),(29,26),(29,30),(30,21),(30,22),(30,27),(31,14),(31,33),(32,23),(32,28),(32,31),(33,25),(33,34),(34,19),(34,24)],35)
=> [13,9,7,5,1]
=> [5,4,4,4,4,3,3,2,2,1,1,1,1]
=> ?
=> ? = 13 - 1
([(0,7),(0,8),(1,10),(1,16),(2,11),(3,10),(4,12),(4,13),(5,3),(6,2),(6,16),(7,9),(8,5),(9,1),(9,6),(10,14),(11,12),(11,15),(12,17),(13,17),(14,13),(14,15),(15,17),(16,4),(16,11),(16,14)],18)
=> [8,6,4]
=> [3,3,3,3,2,2,1,1]
=> ?
=> ? = 8 - 1
([(0,8),(0,9),(1,15),(1,18),(2,13),(3,11),(3,17),(4,11),(5,12),(6,4),(7,5),(7,17),(8,10),(9,6),(10,3),(10,7),(11,14),(12,16),(12,18),(14,15),(14,16),(15,19),(16,19),(17,1),(17,12),(17,14),(18,2),(18,19),(19,13)],20)
=> [9,7,4]
=> [3,3,3,3,2,2,2,1,1]
=> ?
=> ? = 9 - 1
([(0,10),(0,12),(1,23),(2,22),(3,14),(3,24),(4,15),(5,13),(5,14),(6,18),(7,16),(7,20),(8,5),(8,23),(9,4),(9,24),(10,11),(11,3),(11,9),(12,1),(12,8),(13,22),(14,19),(15,16),(15,21),(16,25),(18,17),(19,20),(19,21),(20,18),(20,25),(21,25),(22,6),(23,2),(23,13),(24,7),(24,15),(24,19),(25,17)],26)
=> [9,7,5,4,1]
=> [5,4,4,4,3,2,2,1,1]
=> ?
=> ? = 9 - 1
([(0,2),(0,3),(1,9),(1,12),(2,1),(3,5),(3,8),(4,23),(5,24),(6,17),(7,22),(8,13),(8,24),(9,10),(9,27),(10,26),(11,16),(11,20),(12,19),(12,27),(13,18),(13,19),(15,28),(16,4),(16,28),(17,7),(18,17),(19,25),(20,22),(20,28),(21,14),(22,21),(23,14),(24,6),(24,18),(25,15),(25,20),(26,15),(26,16),(27,11),(27,25),(27,26),(28,21),(28,23)],29)
=> [10,8,6,4,1]
=> [5,4,4,4,3,3,2,2,1,1]
=> ?
=> ? = 10 - 1
([(0,2),(0,3),(1,9),(1,15),(2,1),(3,7),(3,8),(4,30),(5,31),(6,23),(7,16),(7,37),(8,10),(8,37),(9,11),(9,36),(10,34),(11,35),(12,25),(12,29),(13,19),(13,22),(14,21),(14,27),(15,26),(15,36),(16,26),(16,33),(17,39),(18,38),(19,12),(19,38),(20,6),(21,4),(21,39),(22,5),(22,38),(24,23),(25,28),(26,32),(27,25),(27,39),(28,24),(29,20),(30,24),(31,20),(32,17),(32,27),(33,18),(33,19),(34,18),(34,22),(35,17),(35,21),(36,14),(36,32),(36,35),(37,13),(37,33),(37,34),(38,29),(38,31),(39,28),(39,30)],40)
=> [11,9,7,5,5,3]
=> [6,6,6,5,5,3,3,2,2,1,1]
=> ?
=> ? = 11 - 1
([(0,9),(0,11),(1,14),(2,12),(2,13),(3,12),(3,17),(4,18),(5,15),(5,16),(6,7),(7,4),(7,13),(8,5),(8,19),(9,6),(10,2),(10,3),(10,14),(11,1),(11,10),(12,20),(13,18),(13,20),(14,8),(14,17),(15,22),(16,22),(17,19),(18,15),(18,21),(19,16),(20,21),(21,22)],23)
=> [8,6,5,3,1]
=> [5,4,4,3,3,2,1,1]
=> ?
=> ? = 8 - 1
([(0,2),(0,3),(1,8),(1,10),(2,1),(3,5),(3,7),(4,26),(5,22),(6,20),(7,12),(7,22),(8,21),(9,18),(9,19),(10,21),(10,25),(11,14),(11,15),(12,9),(12,24),(12,25),(13,27),(14,27),(15,27),(16,13),(17,14),(18,16),(19,17),(20,11),(20,17),(21,4),(21,23),(22,6),(22,24),(23,16),(23,26),(24,19),(24,20),(25,18),(25,23),(26,13),(26,15)],28)
=> [9,7,6,4,2]
=> [5,5,4,4,3,3,2,1,1]
=> ?
=> ? = 9 - 1
([(0,10),(0,12),(1,15),(2,13),(2,14),(3,16),(3,18),(4,20),(5,13),(5,17),(6,21),(7,8),(8,6),(8,14),(9,3),(9,24),(10,7),(11,2),(11,5),(11,15),(12,1),(12,11),(13,22),(14,21),(14,22),(15,9),(15,17),(16,20),(16,25),(17,24),(18,25),(20,19),(21,18),(21,23),(22,23),(23,25),(24,4),(24,16),(25,19)],26)
=> [9,7,5,4,1]
=> [5,4,4,4,3,2,2,1,1]
=> ?
=> ? = 9 - 1
([(0,11),(0,13),(1,19),(2,20),(3,26),(4,17),(4,22),(5,16),(6,14),(6,21),(7,14),(7,15),(8,9),(9,1),(9,15),(10,4),(10,25),(11,8),(12,6),(12,7),(12,16),(13,5),(13,12),(14,23),(15,19),(15,23),(16,10),(16,21),(17,26),(17,27),(18,20),(19,22),(19,24),(21,25),(22,27),(23,24),(24,27),(25,3),(25,17),(26,2),(26,18),(27,18)],28)
=> [10,8,5,4,1]
=> [5,4,4,4,3,2,2,2,1,1]
=> ?
=> ? = 10 - 1
([(0,2),(0,3),(1,9),(1,12),(2,1),(3,5),(3,8),(4,28),(5,24),(6,22),(7,17),(8,13),(8,24),(9,23),(10,15),(10,16),(11,20),(11,21),(12,23),(12,27),(13,11),(13,26),(13,27),(14,29),(15,29),(16,7),(16,29),(18,16),(19,14),(20,19),(21,18),(22,10),(22,18),(23,4),(23,25),(24,6),(24,26),(25,19),(25,28),(26,21),(26,22),(27,20),(27,25),(28,14),(28,15),(29,17)],30)
=> [10,8,6,4,2]
=> [5,5,4,4,3,3,2,2,1,1]
=> ?
=> ? = 10 - 1
([(0,1),(0,2),(1,10),(1,12),(2,9),(2,11),(3,35),(4,33),(5,42),(6,32),(7,31),(8,15),(8,34),(9,36),(10,37),(11,16),(11,36),(12,17),(12,18),(12,37),(13,21),(13,23),(14,24),(14,38),(15,22),(15,28),(16,14),(16,40),(16,41),(17,30),(17,41),(18,26),(18,30),(20,44),(21,44),(22,43),(23,4),(23,44),(24,25),(25,23),(26,34),(27,20),(27,43),(28,35),(28,43),(29,31),(30,5),(30,39),(31,19),(32,13),(32,25),(33,19),(34,3),(34,28),(35,7),(35,29),(36,6),(36,40),(37,8),(37,26),(38,22),(38,27),(39,27),(39,42),(40,24),(40,32),(41,38),(41,39),(42,20),(42,21),(43,29),(44,33)],45)
=> [11,9,7,7,5,3,3]
=> [7,7,7,5,5,4,4,2,2,1,1]
=> ?
=> ? = 11 - 1
([(0,2),(1,8),(2,5),(2,6),(2,7),(3,17),(4,16),(5,12),(5,13),(6,12),(6,14),(7,13),(7,14),(8,10),(8,11),(9,18),(10,18),(11,18),(12,1),(13,4),(13,15),(14,3),(14,15),(15,16),(15,17),(16,9),(16,10),(17,9),(17,11)],19)
=> [8,5,5,1]
=> [4,3,3,3,3,1,1,1]
=> ?
=> ? = 8 - 1
([(0,9),(1,10),(1,18),(2,10),(2,17),(3,17),(3,18),(5,14),(6,15),(7,12),(7,13),(8,7),(9,1),(9,2),(9,3),(10,8),(11,14),(11,15),(12,19),(13,19),(14,12),(14,16),(15,13),(15,16),(16,19),(17,5),(17,11),(18,6),(18,11),(19,4)],20)
=> [9,5,5,1]
=> [4,3,3,3,3,1,1,1,1]
=> ?
=> ? = 9 - 1
([(0,10),(0,11),(1,12),(2,17),(3,13),(4,14),(5,9),(5,12),(6,5),(7,3),(8,1),(8,17),(9,4),(9,15),(10,6),(11,2),(11,8),(12,15),(13,16),(14,16),(15,13),(15,14),(17,7)],18)
=> [8,6,4]
=> [3,3,3,3,2,2,1,1]
=> ?
=> ? = 8 - 1
([(0,13),(0,14),(1,16),(2,15),(3,17),(4,19),(5,18),(6,12),(6,16),(7,6),(8,2),(8,22),(9,1),(9,22),(10,4),(11,3),(11,23),(12,5),(12,20),(13,7),(14,8),(14,9),(15,23),(16,20),(17,21),(18,21),(20,17),(20,18),(21,19),(22,11),(22,15),(23,10)],24)
=> [9,7,5,3]
=> [4,4,4,3,3,2,2,1,1]
=> ?
=> ? = 9 - 1
Description
The length of the partition.
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 69% values known / values provided: 98%distinct values known / distinct values provided: 69%
Values
([],1)
=> [1]
=> 1
([],2)
=> [1,1]
=> 1
([(0,1)],2)
=> [2]
=> 2
([],3)
=> [1,1,1]
=> 1
([(1,2)],3)
=> [2,1]
=> 2
([(0,1),(0,2)],3)
=> [2,1]
=> 2
([(0,2),(2,1)],3)
=> [3]
=> 3
([(0,2),(1,2)],3)
=> [2,1]
=> 2
([],4)
=> [1,1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> 2
([(1,2),(1,3)],4)
=> [2,1,1]
=> 2
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> 2
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 3
([(1,2),(2,3)],4)
=> [3,1]
=> 3
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> 3
([(1,3),(2,3)],4)
=> [2,1,1]
=> 2
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 2
([(0,3),(1,2)],4)
=> [2,2]
=> 2
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
([],5)
=> [1,1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> 2
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> 2
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> 3
([(2,3),(3,4)],5)
=> [3,1,1]
=> 3
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> 3
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> 2
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 2
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> 2
([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> ? = 11
([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> ? = 9
([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [7,5,4,3,1]
=> ? = 7
([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [6,5,4,3,2,1]
=> ? = 6
([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> ? = 11
([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> [9,7,5,5,3,1]
=> ? = 9
([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> [11,8,7,5,4,1]
=> ? = 11
([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> [9,6,4]
=> ? = 9
([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> [10,6,4]
=> ? = 10
([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> [8,6,4,2]
=> ? = 8
([(0,1),(1,4),(1,5),(2,13),(3,12),(4,14),(5,7),(5,14),(6,10),(7,8),(7,15),(8,6),(8,17),(10,11),(11,9),(12,9),(13,3),(13,16),(14,2),(14,15),(15,13),(15,17),(16,11),(16,12),(17,10),(17,16)],18)
=> [9,6,3]
=> ? = 9
([(0,1),(1,5),(1,6),(2,15),(3,14),(4,10),(5,16),(6,8),(6,16),(7,12),(8,9),(8,17),(9,7),(9,19),(11,13),(12,11),(13,10),(14,4),(14,13),(15,3),(15,18),(16,2),(16,17),(17,15),(17,19),(18,11),(18,14),(19,12),(19,18)],20)
=> [10,7,3]
=> ? = 10
([(0,10),(1,20),(2,19),(4,18),(5,17),(6,13),(7,8),(7,17),(8,9),(8,11),(9,6),(9,15),(10,5),(10,7),(11,15),(11,18),(12,16),(12,20),(13,16),(14,19),(15,12),(15,13),(16,14),(17,4),(17,11),(18,1),(18,12),(19,3),(20,2),(20,14)],21)
=> [11,7,3]
=> ? = 11
([(0,1),(1,2),(1,3),(2,4),(2,13),(3,6),(3,13),(4,15),(5,14),(6,5),(6,16),(7,10),(7,12),(8,18),(9,18),(10,17),(11,9),(11,17),(12,8),(12,17),(13,7),(13,15),(13,16),(14,8),(14,9),(15,10),(15,11),(16,11),(16,12),(16,14),(17,18)],19)
=> [8,5,4,2]
=> ? = 8
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> [9,6,5,3]
=> ? = 9
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> [10,7,5,3]
=> ? = 10
([(0,1),(1,3),(1,4),(2,15),(3,6),(3,18),(4,5),(4,18),(5,17),(6,7),(6,19),(7,16),(8,12),(8,14),(10,21),(11,21),(12,2),(12,20),(13,11),(13,20),(14,10),(14,20),(15,9),(16,10),(16,11),(17,12),(17,13),(18,8),(18,17),(18,19),(19,13),(19,14),(19,16),(20,15),(20,21),(21,9)],22)
=> [9,6,4,3]
=> ? = 9
([(0,1),(1,3),(1,4),(2,21),(3,6),(3,22),(4,5),(4,22),(5,20),(6,7),(6,23),(7,19),(8,13),(8,18),(9,14),(9,17),(10,26),(11,26),(12,27),(13,24),(14,2),(14,25),(15,13),(15,27),(16,12),(16,25),(17,8),(17,15),(17,25),(18,10),(18,24),(19,12),(19,15),(20,14),(20,16),(21,10),(21,11),(22,9),(22,20),(22,23),(23,16),(23,17),(23,19),(24,26),(25,18),(25,21),(25,27),(27,11),(27,24)],28)
=> [10,7,6,4,1]
=> ? = 10
([(0,1),(1,4),(1,5),(2,24),(3,21),(4,7),(4,25),(5,6),(5,25),(6,23),(7,8),(7,26),(8,22),(9,16),(9,20),(10,15),(10,19),(11,29),(12,29),(14,30),(15,2),(15,28),(16,3),(16,27),(17,16),(17,30),(18,14),(18,28),(19,9),(19,17),(19,28),(20,12),(20,27),(21,13),(22,14),(22,17),(23,15),(23,18),(24,11),(24,12),(25,10),(25,23),(25,26),(26,18),(26,19),(26,22),(27,21),(27,29),(28,20),(28,24),(28,30),(29,13),(30,11),(30,27)],31)
=> [11,8,6,5,1]
=> ? = 11
([(0,1),(1,4),(1,5),(2,23),(3,16),(4,7),(4,24),(5,6),(5,24),(6,22),(7,8),(7,25),(8,21),(9,13),(9,20),(10,15),(10,19),(11,28),(12,29),(13,26),(14,3),(14,28),(15,2),(15,27),(17,13),(17,29),(18,12),(18,27),(19,9),(19,17),(19,27),(20,14),(20,26),(21,12),(21,17),(22,15),(22,18),(23,11),(23,14),(24,10),(24,22),(24,25),(25,18),(25,19),(25,21),(26,28),(27,20),(27,23),(27,29),(28,16),(29,11),(29,26)],30)
=> [11,8,6,4,1]
=> ? = 11
([(0,1),(1,5),(1,6),(2,24),(3,27),(4,23),(5,8),(5,28),(6,9),(6,28),(7,26),(8,7),(8,29),(9,25),(10,16),(10,22),(11,17),(11,21),(13,30),(14,33),(15,4),(15,33),(16,2),(16,32),(17,3),(17,31),(18,16),(18,30),(19,12),(20,13),(20,31),(21,10),(21,18),(21,31),(22,15),(22,32),(23,12),(24,19),(25,17),(25,20),(26,13),(26,18),(27,14),(27,15),(28,11),(28,25),(28,29),(29,20),(29,21),(29,26),(30,14),(30,32),(31,22),(31,27),(31,30),(32,24),(32,33),(33,19),(33,23)],34)
=> [12,9,7,5,1]
=> ? = 12
([(0,2),(2,6),(2,7),(3,25),(4,28),(5,24),(6,9),(6,29),(7,10),(7,29),(8,27),(9,8),(9,30),(10,26),(11,17),(11,23),(12,18),(12,22),(13,31),(14,34),(15,1),(16,5),(16,34),(17,3),(17,33),(18,4),(18,32),(19,15),(20,17),(20,31),(21,13),(21,32),(22,11),(22,20),(22,32),(23,16),(23,33),(24,15),(25,19),(26,18),(26,21),(27,13),(27,20),(28,14),(28,16),(29,12),(29,26),(29,30),(30,21),(30,22),(30,27),(31,14),(31,33),(32,23),(32,28),(32,31),(33,25),(33,34),(34,19),(34,24)],35)
=> [13,9,7,5,1]
=> ? = 13
([(0,7),(0,8),(1,10),(1,16),(2,11),(3,10),(4,12),(4,13),(5,3),(6,2),(6,16),(7,9),(8,5),(9,1),(9,6),(10,14),(11,12),(11,15),(12,17),(13,17),(14,13),(14,15),(15,17),(16,4),(16,11),(16,14)],18)
=> [8,6,4]
=> ? = 8
([(0,8),(0,9),(1,15),(1,18),(2,13),(3,11),(3,17),(4,11),(5,12),(6,4),(7,5),(7,17),(8,10),(9,6),(10,3),(10,7),(11,14),(12,16),(12,18),(14,15),(14,16),(15,19),(16,19),(17,1),(17,12),(17,14),(18,2),(18,19),(19,13)],20)
=> [9,7,4]
=> ? = 9
([(0,10),(0,12),(1,23),(2,22),(3,14),(3,24),(4,15),(5,13),(5,14),(6,18),(7,16),(7,20),(8,5),(8,23),(9,4),(9,24),(10,11),(11,3),(11,9),(12,1),(12,8),(13,22),(14,19),(15,16),(15,21),(16,25),(18,17),(19,20),(19,21),(20,18),(20,25),(21,25),(22,6),(23,2),(23,13),(24,7),(24,15),(24,19),(25,17)],26)
=> [9,7,5,4,1]
=> ? = 9
([(0,2),(0,3),(1,9),(1,12),(2,1),(3,5),(3,8),(4,23),(5,24),(6,17),(7,22),(8,13),(8,24),(9,10),(9,27),(10,26),(11,16),(11,20),(12,19),(12,27),(13,18),(13,19),(15,28),(16,4),(16,28),(17,7),(18,17),(19,25),(20,22),(20,28),(21,14),(22,21),(23,14),(24,6),(24,18),(25,15),(25,20),(26,15),(26,16),(27,11),(27,25),(27,26),(28,21),(28,23)],29)
=> [10,8,6,4,1]
=> ? = 10
([(0,2),(0,3),(1,9),(1,15),(2,1),(3,7),(3,8),(4,30),(5,31),(6,23),(7,16),(7,37),(8,10),(8,37),(9,11),(9,36),(10,34),(11,35),(12,25),(12,29),(13,19),(13,22),(14,21),(14,27),(15,26),(15,36),(16,26),(16,33),(17,39),(18,38),(19,12),(19,38),(20,6),(21,4),(21,39),(22,5),(22,38),(24,23),(25,28),(26,32),(27,25),(27,39),(28,24),(29,20),(30,24),(31,20),(32,17),(32,27),(33,18),(33,19),(34,18),(34,22),(35,17),(35,21),(36,14),(36,32),(36,35),(37,13),(37,33),(37,34),(38,29),(38,31),(39,28),(39,30)],40)
=> [11,9,7,5,5,3]
=> ? = 11
([(0,9),(0,11),(1,14),(2,12),(2,13),(3,12),(3,17),(4,18),(5,15),(5,16),(6,7),(7,4),(7,13),(8,5),(8,19),(9,6),(10,2),(10,3),(10,14),(11,1),(11,10),(12,20),(13,18),(13,20),(14,8),(14,17),(15,22),(16,22),(17,19),(18,15),(18,21),(19,16),(20,21),(21,22)],23)
=> [8,6,5,3,1]
=> ? = 8
([(0,2),(0,3),(1,8),(1,10),(2,1),(3,5),(3,7),(4,26),(5,22),(6,20),(7,12),(7,22),(8,21),(9,18),(9,19),(10,21),(10,25),(11,14),(11,15),(12,9),(12,24),(12,25),(13,27),(14,27),(15,27),(16,13),(17,14),(18,16),(19,17),(20,11),(20,17),(21,4),(21,23),(22,6),(22,24),(23,16),(23,26),(24,19),(24,20),(25,18),(25,23),(26,13),(26,15)],28)
=> [9,7,6,4,2]
=> ? = 9
([(0,10),(0,12),(1,15),(2,13),(2,14),(3,16),(3,18),(4,20),(5,13),(5,17),(6,21),(7,8),(8,6),(8,14),(9,3),(9,24),(10,7),(11,2),(11,5),(11,15),(12,1),(12,11),(13,22),(14,21),(14,22),(15,9),(15,17),(16,20),(16,25),(17,24),(18,25),(20,19),(21,18),(21,23),(22,23),(23,25),(24,4),(24,16),(25,19)],26)
=> [9,7,5,4,1]
=> ? = 9
([(0,11),(0,13),(1,19),(2,20),(3,26),(4,17),(4,22),(5,16),(6,14),(6,21),(7,14),(7,15),(8,9),(9,1),(9,15),(10,4),(10,25),(11,8),(12,6),(12,7),(12,16),(13,5),(13,12),(14,23),(15,19),(15,23),(16,10),(16,21),(17,26),(17,27),(18,20),(19,22),(19,24),(21,25),(22,27),(23,24),(24,27),(25,3),(25,17),(26,2),(26,18),(27,18)],28)
=> [10,8,5,4,1]
=> ? = 10
([(0,2),(0,3),(1,9),(1,12),(2,1),(3,5),(3,8),(4,28),(5,24),(6,22),(7,17),(8,13),(8,24),(9,23),(10,15),(10,16),(11,20),(11,21),(12,23),(12,27),(13,11),(13,26),(13,27),(14,29),(15,29),(16,7),(16,29),(18,16),(19,14),(20,19),(21,18),(22,10),(22,18),(23,4),(23,25),(24,6),(24,26),(25,19),(25,28),(26,21),(26,22),(27,20),(27,25),(28,14),(28,15),(29,17)],30)
=> [10,8,6,4,2]
=> ? = 10
([(0,1),(0,2),(1,10),(1,12),(2,9),(2,11),(3,35),(4,33),(5,42),(6,32),(7,31),(8,15),(8,34),(9,36),(10,37),(11,16),(11,36),(12,17),(12,18),(12,37),(13,21),(13,23),(14,24),(14,38),(15,22),(15,28),(16,14),(16,40),(16,41),(17,30),(17,41),(18,26),(18,30),(20,44),(21,44),(22,43),(23,4),(23,44),(24,25),(25,23),(26,34),(27,20),(27,43),(28,35),(28,43),(29,31),(30,5),(30,39),(31,19),(32,13),(32,25),(33,19),(34,3),(34,28),(35,7),(35,29),(36,6),(36,40),(37,8),(37,26),(38,22),(38,27),(39,27),(39,42),(40,24),(40,32),(41,38),(41,39),(42,20),(42,21),(43,29),(44,33)],45)
=> [11,9,7,7,5,3,3]
=> ? = 11
([(0,2),(1,8),(2,5),(2,6),(2,7),(3,17),(4,16),(5,12),(5,13),(6,12),(6,14),(7,13),(7,14),(8,10),(8,11),(9,18),(10,18),(11,18),(12,1),(13,4),(13,15),(14,3),(14,15),(15,16),(15,17),(16,9),(16,10),(17,9),(17,11)],19)
=> [8,5,5,1]
=> ? = 8
([(0,9),(1,10),(1,18),(2,10),(2,17),(3,17),(3,18),(5,14),(6,15),(7,12),(7,13),(8,7),(9,1),(9,2),(9,3),(10,8),(11,14),(11,15),(12,19),(13,19),(14,12),(14,16),(15,13),(15,16),(16,19),(17,5),(17,11),(18,6),(18,11),(19,4)],20)
=> [9,5,5,1]
=> ? = 9
([(0,10),(0,11),(1,12),(2,17),(3,13),(4,14),(5,9),(5,12),(6,5),(7,3),(8,1),(8,17),(9,4),(9,15),(10,6),(11,2),(11,8),(12,15),(13,16),(14,16),(15,13),(15,14),(17,7)],18)
=> [8,6,4]
=> ? = 8
([(0,13),(0,14),(1,16),(2,15),(3,17),(4,19),(5,18),(6,12),(6,16),(7,6),(8,2),(8,22),(9,1),(9,22),(10,4),(11,3),(11,23),(12,5),(12,20),(13,7),(14,8),(14,9),(15,23),(16,20),(17,21),(18,21),(20,17),(20,18),(21,19),(22,11),(22,15),(23,10)],24)
=> [9,7,5,3]
=> ? = 9
Description
The largest part of an integer partition.
Matching statistic: St000378
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00322: Integer partitions Loehr-WarringtonInteger partitions
St000378: Integer partitions ⟶ ℤResult quality: 69% values known / values provided: 97%distinct values known / distinct values provided: 69%
Values
([],1)
=> [1]
=> [1]
=> [1]
=> 1
([],2)
=> [1,1]
=> [2]
=> [1,1]
=> 1
([(0,1)],2)
=> [2]
=> [1,1]
=> [2]
=> 2
([],3)
=> [1,1,1]
=> [3]
=> [1,1,1]
=> 1
([(1,2)],3)
=> [2,1]
=> [2,1]
=> [3]
=> 2
([(0,1),(0,2)],3)
=> [2,1]
=> [2,1]
=> [3]
=> 2
([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> [2,1]
=> 3
([(0,2),(1,2)],3)
=> [2,1]
=> [2,1]
=> [3]
=> 2
([],4)
=> [1,1,1,1]
=> [4]
=> [1,1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [2,1,1]
=> 2
([(1,2),(1,3)],4)
=> [2,1,1]
=> [3,1]
=> [2,1,1]
=> 2
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [3,1]
=> [2,1,1]
=> 2
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [2,1,1]
=> [2,2]
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [2,2]
=> 3
([(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [2,2]
=> 3
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> [2,2]
=> 3
([(1,3),(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [2,1,1]
=> 2
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> [2,2]
=> 3
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [2,1,1]
=> 2
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> [4]
=> 2
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2,2]
=> [4]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2,2]
=> [4]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> [3,1]
=> 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [2,2]
=> 3
([],5)
=> [1,1,1,1,1]
=> [5]
=> [1,1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [2,1,1,1]
=> 2
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [2,1,1,1]
=> 2
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [2,1,1,1]
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [2,1,1,1]
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [3,1,1]
=> [4,1]
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [4,1]
=> 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [4,1]
=> 3
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [3,1,1]
=> [4,1]
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [3,1,1]
=> [4,1]
=> 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [4,1]
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [2,1,1,1]
=> [3,1,1]
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [2,2,1]
=> [2,2,1]
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> [2,2,1]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [2,2,1]
=> [2,2,1]
=> 3
([(2,3),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [4,1]
=> 3
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> [4,1]
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> [4,1]
=> 3
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [2,1,1,1]
=> 2
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> [4,1]
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [2,2,1]
=> [2,2,1]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [2,1,1,1]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> [4,1]
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [2,1,1,1]
=> 2
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> [5]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [3,2]
=> [5]
=> 2
([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> [4,3,3,3,3,2,2,1,1,1,1]
=> ?
=> ? = 11
([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [5,4,4,3,3,2,2,1,1]
=> ?
=> ? = 9
([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [7,5,4,3,1]
=> [5,4,4,3,2,1,1]
=> ?
=> ? = 7
([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> [6,5,5,4,4,3,3,2,2,1,1]
=> ?
=> ? = 11
([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> [9,7,5,5,3,1]
=> [6,5,5,4,4,2,2,1,1]
=> ?
=> ? = 9
([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> [11,8,7,5,4,1]
=> [6,5,5,5,4,3,3,2,1,1,1]
=> ?
=> ? = 11
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> [5,5,2,1,1]
=> [10,2,2]
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> [5,3,2,2,2]
=> [5,5,2,1,1]
=> [10,2,2]
=> ? = 5
([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> [9,5,1]
=> [3,2,2,2,2,1,1,1,1]
=> [4,4,3,3,1]
=> ? = 9
([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> [7,4,3]
=> [3,3,3,2,1,1,1]
=> [4,4,2,2,2]
=> ? = 7
([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> [8,5,3]
=> [3,3,3,2,2,1,1,1]
=> [7,6,2,1]
=> ? = 8
([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> [9,6,4]
=> [3,3,3,3,2,2,1,1,1]
=> ?
=> ? = 9
([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> [10,6,4]
=> [3,3,3,3,2,2,1,1,1,1]
=> ?
=> ? = 10
([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> [8,6,4,2]
=> [4,4,3,3,2,2,1,1]
=> ?
=> ? = 8
([(0,9),(0,10),(1,11),(2,14),(3,12),(4,13),(5,4),(5,11),(6,5),(7,3),(8,1),(8,14),(9,6),(10,2),(10,8),(11,13),(13,12),(14,7)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> [7,6,2]
=> ? = 7
([(0,7),(1,14),(2,9),(3,10),(4,5),(4,14),(5,6),(5,8),(6,2),(6,11),(7,1),(7,4),(8,10),(8,11),(9,13),(10,12),(11,9),(11,12),(12,13),(14,3),(14,8)],15)
=> [8,5,2]
=> [3,3,2,2,2,1,1,1]
=> [6,3,3,1,1,1]
=> ? = 8
([(0,1),(1,4),(1,5),(2,13),(3,12),(4,14),(5,7),(5,14),(6,10),(7,8),(7,15),(8,6),(8,17),(10,11),(11,9),(12,9),(13,3),(13,16),(14,2),(14,15),(15,13),(15,17),(16,11),(16,12),(17,10),(17,16)],18)
=> [9,6,3]
=> [3,3,3,2,2,2,1,1,1]
=> ?
=> ? = 9
([(0,1),(1,5),(1,6),(2,15),(3,14),(4,10),(5,16),(6,8),(6,16),(7,12),(8,9),(8,17),(9,7),(9,19),(11,13),(12,11),(13,10),(14,4),(14,13),(15,3),(15,18),(16,2),(16,17),(17,15),(17,19),(18,11),(18,14),(19,12),(19,18)],20)
=> [10,7,3]
=> [3,3,3,2,2,2,2,1,1,1]
=> ?
=> ? = 10
([(0,10),(1,20),(2,19),(4,18),(5,17),(6,13),(7,8),(7,17),(8,9),(8,11),(9,6),(9,15),(10,5),(10,7),(11,15),(11,18),(12,16),(12,20),(13,16),(14,19),(15,12),(15,13),(16,14),(17,4),(17,11),(18,1),(18,12),(19,3),(20,2),(20,14)],21)
=> [11,7,3]
=> [3,3,3,2,2,2,2,1,1,1,1]
=> ?
=> ? = 11
([(0,1),(1,2),(1,3),(2,4),(2,13),(3,6),(3,13),(4,15),(5,14),(6,5),(6,16),(7,10),(7,12),(8,18),(9,18),(10,17),(11,9),(11,17),(12,8),(12,17),(13,7),(13,15),(13,16),(14,8),(14,9),(15,10),(15,11),(16,11),(16,12),(16,14),(17,18)],19)
=> [8,5,4,2]
=> [4,4,3,3,2,1,1,1]
=> ?
=> ? = 8
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> [9,6,5,3]
=> [4,4,4,3,3,2,1,1,1]
=> ?
=> ? = 9
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> [10,7,5,3]
=> [4,4,4,3,3,2,2,1,1,1]
=> ?
=> ? = 10
([(0,1),(1,3),(1,4),(2,15),(3,6),(3,18),(4,5),(4,18),(5,17),(6,7),(6,19),(7,16),(8,12),(8,14),(10,21),(11,21),(12,2),(12,20),(13,11),(13,20),(14,10),(14,20),(15,9),(16,10),(16,11),(17,12),(17,13),(18,8),(18,17),(18,19),(19,13),(19,14),(19,16),(20,15),(20,21),(21,9)],22)
=> [9,6,4,3]
=> [4,4,4,3,2,2,1,1,1]
=> ?
=> ? = 9
([(0,1),(1,3),(1,4),(2,21),(3,6),(3,22),(4,5),(4,22),(5,20),(6,7),(6,23),(7,19),(8,13),(8,18),(9,14),(9,17),(10,26),(11,26),(12,27),(13,24),(14,2),(14,25),(15,13),(15,27),(16,12),(16,25),(17,8),(17,15),(17,25),(18,10),(18,24),(19,12),(19,15),(20,14),(20,16),(21,10),(21,11),(22,9),(22,20),(22,23),(23,16),(23,17),(23,19),(24,26),(25,18),(25,21),(25,27),(27,11),(27,24)],28)
=> [10,7,6,4,1]
=> [5,4,4,4,3,3,2,1,1,1]
=> ?
=> ? = 10
([(0,1),(1,4),(1,5),(2,24),(3,21),(4,7),(4,25),(5,6),(5,25),(6,23),(7,8),(7,26),(8,22),(9,16),(9,20),(10,15),(10,19),(11,29),(12,29),(14,30),(15,2),(15,28),(16,3),(16,27),(17,16),(17,30),(18,14),(18,28),(19,9),(19,17),(19,28),(20,12),(20,27),(21,13),(22,14),(22,17),(23,15),(23,18),(24,11),(24,12),(25,10),(25,23),(25,26),(26,18),(26,19),(26,22),(27,21),(27,29),(28,20),(28,24),(28,30),(29,13),(30,11),(30,27)],31)
=> [11,8,6,5,1]
=> [5,4,4,4,4,3,2,2,1,1,1]
=> ?
=> ? = 11
([(0,1),(1,4),(1,5),(2,23),(3,16),(4,7),(4,24),(5,6),(5,24),(6,22),(7,8),(7,25),(8,21),(9,13),(9,20),(10,15),(10,19),(11,28),(12,29),(13,26),(14,3),(14,28),(15,2),(15,27),(17,13),(17,29),(18,12),(18,27),(19,9),(19,17),(19,27),(20,14),(20,26),(21,12),(21,17),(22,15),(22,18),(23,11),(23,14),(24,10),(24,22),(24,25),(25,18),(25,19),(25,21),(26,28),(27,20),(27,23),(27,29),(28,16),(29,11),(29,26)],30)
=> [11,8,6,4,1]
=> [5,4,4,4,3,3,2,2,1,1,1]
=> ?
=> ? = 11
([(0,1),(1,5),(1,6),(2,24),(3,27),(4,23),(5,8),(5,28),(6,9),(6,28),(7,26),(8,7),(8,29),(9,25),(10,16),(10,22),(11,17),(11,21),(13,30),(14,33),(15,4),(15,33),(16,2),(16,32),(17,3),(17,31),(18,16),(18,30),(19,12),(20,13),(20,31),(21,10),(21,18),(21,31),(22,15),(22,32),(23,12),(24,19),(25,17),(25,20),(26,13),(26,18),(27,14),(27,15),(28,11),(28,25),(28,29),(29,20),(29,21),(29,26),(30,14),(30,32),(31,22),(31,27),(31,30),(32,24),(32,33),(33,19),(33,23)],34)
=> [12,9,7,5,1]
=> [5,4,4,4,4,3,3,2,2,1,1,1]
=> ?
=> ? = 12
([(0,2),(2,6),(2,7),(3,25),(4,28),(5,24),(6,9),(6,29),(7,10),(7,29),(8,27),(9,8),(9,30),(10,26),(11,17),(11,23),(12,18),(12,22),(13,31),(14,34),(15,1),(16,5),(16,34),(17,3),(17,33),(18,4),(18,32),(19,15),(20,17),(20,31),(21,13),(21,32),(22,11),(22,20),(22,32),(23,16),(23,33),(24,15),(25,19),(26,18),(26,21),(27,13),(27,20),(28,14),(28,16),(29,12),(29,26),(29,30),(30,21),(30,22),(30,27),(31,14),(31,33),(32,23),(32,28),(32,31),(33,25),(33,34),(34,19),(34,24)],35)
=> [13,9,7,5,1]
=> [5,4,4,4,4,3,3,2,2,1,1,1,1]
=> ?
=> ? = 13
([(0,7),(0,8),(1,10),(1,16),(2,11),(3,10),(4,12),(4,13),(5,3),(6,2),(6,16),(7,9),(8,5),(9,1),(9,6),(10,14),(11,12),(11,15),(12,17),(13,17),(14,13),(14,15),(15,17),(16,4),(16,11),(16,14)],18)
=> [8,6,4]
=> [3,3,3,3,2,2,1,1]
=> ?
=> ? = 8
([(0,8),(0,9),(1,15),(1,18),(2,13),(3,11),(3,17),(4,11),(5,12),(6,4),(7,5),(7,17),(8,10),(9,6),(10,3),(10,7),(11,14),(12,16),(12,18),(14,15),(14,16),(15,19),(16,19),(17,1),(17,12),(17,14),(18,2),(18,19),(19,13)],20)
=> [9,7,4]
=> [3,3,3,3,2,2,2,1,1]
=> ?
=> ? = 9
([(0,10),(0,12),(1,23),(2,22),(3,14),(3,24),(4,15),(5,13),(5,14),(6,18),(7,16),(7,20),(8,5),(8,23),(9,4),(9,24),(10,11),(11,3),(11,9),(12,1),(12,8),(13,22),(14,19),(15,16),(15,21),(16,25),(18,17),(19,20),(19,21),(20,18),(20,25),(21,25),(22,6),(23,2),(23,13),(24,7),(24,15),(24,19),(25,17)],26)
=> [9,7,5,4,1]
=> [5,4,4,4,3,2,2,1,1]
=> ?
=> ? = 9
([(0,2),(0,3),(1,9),(1,12),(2,1),(3,5),(3,8),(4,23),(5,24),(6,17),(7,22),(8,13),(8,24),(9,10),(9,27),(10,26),(11,16),(11,20),(12,19),(12,27),(13,18),(13,19),(15,28),(16,4),(16,28),(17,7),(18,17),(19,25),(20,22),(20,28),(21,14),(22,21),(23,14),(24,6),(24,18),(25,15),(25,20),(26,15),(26,16),(27,11),(27,25),(27,26),(28,21),(28,23)],29)
=> [10,8,6,4,1]
=> [5,4,4,4,3,3,2,2,1,1]
=> ?
=> ? = 10
([(0,2),(0,3),(1,9),(1,15),(2,1),(3,7),(3,8),(4,30),(5,31),(6,23),(7,16),(7,37),(8,10),(8,37),(9,11),(9,36),(10,34),(11,35),(12,25),(12,29),(13,19),(13,22),(14,21),(14,27),(15,26),(15,36),(16,26),(16,33),(17,39),(18,38),(19,12),(19,38),(20,6),(21,4),(21,39),(22,5),(22,38),(24,23),(25,28),(26,32),(27,25),(27,39),(28,24),(29,20),(30,24),(31,20),(32,17),(32,27),(33,18),(33,19),(34,18),(34,22),(35,17),(35,21),(36,14),(36,32),(36,35),(37,13),(37,33),(37,34),(38,29),(38,31),(39,28),(39,30)],40)
=> [11,9,7,5,5,3]
=> [6,6,6,5,5,3,3,2,2,1,1]
=> ?
=> ? = 11
([(0,7),(1,10),(2,11),(3,8),(4,9),(5,2),(5,9),(6,3),(6,12),(7,4),(7,5),(8,10),(9,6),(9,11),(11,12),(12,1),(12,8)],13)
=> [8,5]
=> [2,2,2,2,2,1,1,1]
=> [6,4,1,1,1]
=> ? = 8
([(0,9),(0,11),(1,14),(2,12),(2,13),(3,12),(3,17),(4,18),(5,15),(5,16),(6,7),(7,4),(7,13),(8,5),(8,19),(9,6),(10,2),(10,3),(10,14),(11,1),(11,10),(12,20),(13,18),(13,20),(14,8),(14,17),(15,22),(16,22),(17,19),(18,15),(18,21),(19,16),(20,21),(21,22)],23)
=> [8,6,5,3,1]
=> [5,4,4,3,3,2,1,1]
=> ?
=> ? = 8
([(0,2),(0,3),(1,8),(1,10),(2,1),(3,5),(3,7),(4,26),(5,22),(6,20),(7,12),(7,22),(8,21),(9,18),(9,19),(10,21),(10,25),(11,14),(11,15),(12,9),(12,24),(12,25),(13,27),(14,27),(15,27),(16,13),(17,14),(18,16),(19,17),(20,11),(20,17),(21,4),(21,23),(22,6),(22,24),(23,16),(23,26),(24,19),(24,20),(25,18),(25,23),(26,13),(26,15)],28)
=> [9,7,6,4,2]
=> [5,5,4,4,3,3,2,1,1]
=> ?
=> ? = 9
([(0,10),(0,12),(1,15),(2,13),(2,14),(3,16),(3,18),(4,20),(5,13),(5,17),(6,21),(7,8),(8,6),(8,14),(9,3),(9,24),(10,7),(11,2),(11,5),(11,15),(12,1),(12,11),(13,22),(14,21),(14,22),(15,9),(15,17),(16,20),(16,25),(17,24),(18,25),(20,19),(21,18),(21,23),(22,23),(23,25),(24,4),(24,16),(25,19)],26)
=> [9,7,5,4,1]
=> [5,4,4,4,3,2,2,1,1]
=> ?
=> ? = 9
([(0,11),(0,13),(1,19),(2,20),(3,26),(4,17),(4,22),(5,16),(6,14),(6,21),(7,14),(7,15),(8,9),(9,1),(9,15),(10,4),(10,25),(11,8),(12,6),(12,7),(12,16),(13,5),(13,12),(14,23),(15,19),(15,23),(16,10),(16,21),(17,26),(17,27),(18,20),(19,22),(19,24),(21,25),(22,27),(23,24),(24,27),(25,3),(25,17),(26,2),(26,18),(27,18)],28)
=> [10,8,5,4,1]
=> [5,4,4,4,3,2,2,2,1,1]
=> ?
=> ? = 10
([(0,2),(0,3),(1,9),(1,12),(2,1),(3,5),(3,8),(4,28),(5,24),(6,22),(7,17),(8,13),(8,24),(9,23),(10,15),(10,16),(11,20),(11,21),(12,23),(12,27),(13,11),(13,26),(13,27),(14,29),(15,29),(16,7),(16,29),(18,16),(19,14),(20,19),(21,18),(22,10),(22,18),(23,4),(23,25),(24,6),(24,26),(25,19),(25,28),(26,21),(26,22),(27,20),(27,25),(28,14),(28,15),(29,17)],30)
=> [10,8,6,4,2]
=> [5,5,4,4,3,3,2,2,1,1]
=> ?
=> ? = 10
([(0,1),(0,2),(1,10),(1,12),(2,9),(2,11),(3,35),(4,33),(5,42),(6,32),(7,31),(8,15),(8,34),(9,36),(10,37),(11,16),(11,36),(12,17),(12,18),(12,37),(13,21),(13,23),(14,24),(14,38),(15,22),(15,28),(16,14),(16,40),(16,41),(17,30),(17,41),(18,26),(18,30),(20,44),(21,44),(22,43),(23,4),(23,44),(24,25),(25,23),(26,34),(27,20),(27,43),(28,35),(28,43),(29,31),(30,5),(30,39),(31,19),(32,13),(32,25),(33,19),(34,3),(34,28),(35,7),(35,29),(36,6),(36,40),(37,8),(37,26),(38,22),(38,27),(39,27),(39,42),(40,24),(40,32),(41,38),(41,39),(42,20),(42,21),(43,29),(44,33)],45)
=> [11,9,7,7,5,3,3]
=> [7,7,7,5,5,4,4,2,2,1,1]
=> ?
=> ? = 11
([(0,7),(1,8),(1,9),(2,9),(2,13),(3,8),(3,13),(4,11),(5,10),(6,5),(7,1),(7,2),(7,3),(8,6),(9,12),(11,10),(12,11),(13,4),(13,12)],14)
=> [7,4,3]
=> [3,3,3,2,1,1,1]
=> [4,4,2,2,2]
=> ? = 7
([(0,2),(1,8),(2,5),(2,6),(2,7),(3,17),(4,16),(5,12),(5,13),(6,12),(6,14),(7,13),(7,14),(8,10),(8,11),(9,18),(10,18),(11,18),(12,1),(13,4),(13,15),(14,3),(14,15),(15,16),(15,17),(16,9),(16,10),(17,9),(17,11)],19)
=> [8,5,5,1]
=> [4,3,3,3,3,1,1,1]
=> ?
=> ? = 8
([(0,9),(1,10),(1,18),(2,10),(2,17),(3,17),(3,18),(5,14),(6,15),(7,12),(7,13),(8,7),(9,1),(9,2),(9,3),(10,8),(11,14),(11,15),(12,19),(13,19),(14,12),(14,16),(15,13),(15,16),(16,19),(17,5),(17,11),(18,6),(18,11),(19,4)],20)
=> [9,5,5,1]
=> [4,3,3,3,3,1,1,1,1]
=> ?
=> ? = 9
([(0,9),(0,10),(1,12),(2,11),(3,11),(3,12),(4,7),(5,8),(6,3),(7,2),(8,1),(9,4),(9,14),(10,5),(10,14),(11,13),(12,13),(14,6)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> [7,6,2]
=> ? = 7
([(0,10),(0,11),(1,12),(2,17),(3,13),(4,14),(5,9),(5,12),(6,5),(7,3),(8,1),(8,17),(9,4),(9,15),(10,6),(11,2),(11,8),(12,15),(13,16),(14,16),(15,13),(15,14),(17,7)],18)
=> [8,6,4]
=> [3,3,3,3,2,2,1,1]
=> ?
=> ? = 8
([(0,13),(0,14),(1,16),(2,15),(3,17),(4,19),(5,18),(6,12),(6,16),(7,6),(8,2),(8,22),(9,1),(9,22),(10,4),(11,3),(11,23),(12,5),(12,20),(13,7),(14,8),(14,9),(15,23),(16,20),(17,21),(18,21),(20,17),(20,18),(21,19),(22,11),(22,15),(23,10)],24)
=> [9,7,5,3]
=> [4,4,4,3,3,2,2,1,1]
=> ?
=> ? = 9
Description
The diagonal inversion number of an integer partition. The dinv of a partition is the number of cells $c$ in the diagram of an integer partition $\lambda$ for which $\operatorname{arm}(c)-\operatorname{leg}(c) \in \{0,1\}$. See also exercise 3.19 of [2]. This statistic is equidistributed with the length of the partition, see [3].
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000288: Binary words ⟶ ℤResult quality: 62% values known / values provided: 96%distinct values known / distinct values provided: 62%
Values
([],1)
=> [1]
=> [1]
=> 10 => 1
([],2)
=> [1,1]
=> [2]
=> 100 => 1
([(0,1)],2)
=> [2]
=> [1,1]
=> 110 => 2
([],3)
=> [1,1,1]
=> [3]
=> 1000 => 1
([(1,2)],3)
=> [2,1]
=> [2,1]
=> 1010 => 2
([(0,1),(0,2)],3)
=> [2,1]
=> [2,1]
=> 1010 => 2
([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 1110 => 3
([(0,2),(1,2)],3)
=> [2,1]
=> [2,1]
=> 1010 => 2
([],4)
=> [1,1,1,1]
=> [4]
=> 10000 => 1
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 10010 => 2
([(1,2),(1,3)],4)
=> [2,1,1]
=> [3,1]
=> 10010 => 2
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [3,1]
=> 10010 => 2
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [2,1,1]
=> 10110 => 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 10110 => 3
([(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 10110 => 3
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 10110 => 3
([(1,3),(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 10010 => 2
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 10110 => 3
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 10010 => 2
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> 1100 => 2
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2,2]
=> 1100 => 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2,2]
=> 1100 => 2
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 11110 => 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 10110 => 3
([],5)
=> [1,1,1,1,1]
=> [5]
=> 100000 => 1
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 100010 => 2
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 100010 => 2
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 100010 => 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 100010 => 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [3,1,1]
=> 100110 => 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 100110 => 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 100110 => 3
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [3,1,1]
=> 100110 => 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [3,1,1]
=> 100110 => 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 100110 => 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [2,1,1,1]
=> 101110 => 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [2,2,1]
=> 11010 => 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 11010 => 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [2,2,1]
=> 11010 => 3
([(2,3),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 100110 => 3
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> 100110 => 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> 100110 => 3
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 100010 => 2
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> 100110 => 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [2,2,1]
=> 11010 => 3
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 100010 => 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> 100110 => 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 100010 => 2
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 10100 => 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [3,2]
=> 10100 => 2
([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> [4,3,3,2,2,1,1]
=> 10110110110 => ? = 7
([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> [4,3,3,3,3,2,2,1,1,1,1]
=> 101111011011110 => ? = 11
([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [5,4,4,3,3,2,2,1,1]
=> 10110110110110 => ? = 9
([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [7,5,4,3,1]
=> [5,4,4,3,2,1,1]
=> 101101010110 => ? = 7
([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> [6,5,5,4,4,3,3,2,2,1,1]
=> 10110110110110110 => ? = 11
([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> [9,7,5,5,3,1]
=> [6,5,5,4,4,2,2,1,1]
=> 101101100110110 => ? = 9
([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> [11,8,7,5,4,1]
=> [6,5,5,5,4,3,3,2,1,1,1]
=> 10111010110101110 => ? = 11
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> [5,5,2,1,1]
=> 1100010110 => ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> [5,3,2,2,2]
=> [5,5,2,1,1]
=> 1100010110 => ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> [5,3,2,2,2,1]
=> [6,5,2,1,1]
=> 10100010110 => ? = 5
([(0,6),(1,11),(2,8),(3,9),(4,5),(4,11),(5,3),(5,7),(6,1),(6,4),(7,8),(7,9),(8,10),(9,10),(11,2),(11,7)],12)
=> [7,4,1]
=> [3,2,2,2,1,1,1]
=> 1011101110 => ? = 7
([(0,7),(1,13),(2,12),(3,9),(4,11),(5,6),(5,12),(6,4),(6,8),(7,2),(7,5),(8,11),(8,13),(10,9),(11,10),(12,1),(12,8),(13,3),(13,10)],14)
=> [8,5,1]
=> [3,2,2,2,2,1,1,1]
=> 10111101110 => ? = 8
([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> [9,5,1]
=> [3,2,2,2,2,1,1,1,1]
=> 101111011110 => ? = 9
([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> [7,4,3]
=> [3,3,3,2,1,1,1]
=> 1110101110 => ? = 7
([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> [8,5,3]
=> [3,3,3,2,2,1,1,1]
=> 11101101110 => ? = 8
([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> [9,6,4]
=> [3,3,3,3,2,2,1,1,1]
=> ? => ? = 9
([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> [10,6,4]
=> [3,3,3,3,2,2,1,1,1,1]
=> ? => ? = 10
([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> [6,4,1]
=> [3,2,2,2,1,1]
=> 101110110 => ? = 6
([(0,6),(0,7),(1,9),(2,12),(3,9),(3,12),(4,10),(5,1),(6,5),(7,8),(8,2),(8,3),(9,11),(11,10),(12,4),(12,11)],13)
=> [7,5,1]
=> [3,2,2,2,2,1,1]
=> 1011110110 => ? = 7
([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> [8,6,4,2]
=> [4,4,3,3,2,2,1,1]
=> ? => ? = 8
([(0,9),(0,10),(1,11),(2,14),(3,12),(4,13),(5,4),(5,11),(6,5),(7,3),(8,1),(8,14),(9,6),(10,2),(10,8),(11,13),(13,12),(14,7)],15)
=> [7,5,3]
=> [3,3,3,2,2,1,1]
=> 1110110110 => ? = 7
([(0,7),(1,14),(2,9),(3,10),(4,5),(4,14),(5,6),(5,8),(6,2),(6,11),(7,1),(7,4),(8,10),(8,11),(9,13),(10,12),(11,9),(11,12),(12,13),(14,3),(14,8)],15)
=> [8,5,2]
=> [3,3,2,2,2,1,1,1]
=> 11011101110 => ? = 8
([(0,1),(1,4),(1,5),(2,13),(3,12),(4,14),(5,7),(5,14),(6,10),(7,8),(7,15),(8,6),(8,17),(10,11),(11,9),(12,9),(13,3),(13,16),(14,2),(14,15),(15,13),(15,17),(16,11),(16,12),(17,10),(17,16)],18)
=> [9,6,3]
=> [3,3,3,2,2,2,1,1,1]
=> ? => ? = 9
([(0,1),(1,5),(1,6),(2,15),(3,14),(4,10),(5,16),(6,8),(6,16),(7,12),(8,9),(8,17),(9,7),(9,19),(11,13),(12,11),(13,10),(14,4),(14,13),(15,3),(15,18),(16,2),(16,17),(17,15),(17,19),(18,11),(18,14),(19,12),(19,18)],20)
=> [10,7,3]
=> [3,3,3,2,2,2,2,1,1,1]
=> ? => ? = 10
([(0,10),(1,20),(2,19),(4,18),(5,17),(6,13),(7,8),(7,17),(8,9),(8,11),(9,6),(9,15),(10,5),(10,7),(11,15),(11,18),(12,16),(12,20),(13,16),(14,19),(15,12),(15,13),(16,14),(17,4),(17,11),(18,1),(18,12),(19,3),(20,2),(20,14)],21)
=> [11,7,3]
=> [3,3,3,2,2,2,2,1,1,1,1]
=> ? => ? = 11
([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> [7,4,2]
=> [3,3,2,2,1,1,1]
=> 1101101110 => ? = 7
([(0,1),(1,2),(1,3),(2,4),(2,13),(3,6),(3,13),(4,15),(5,14),(6,5),(6,16),(7,10),(7,12),(8,18),(9,18),(10,17),(11,9),(11,17),(12,8),(12,17),(13,7),(13,15),(13,16),(14,8),(14,9),(15,10),(15,11),(16,11),(16,12),(16,14),(17,18)],19)
=> [8,5,4,2]
=> [4,4,3,3,2,1,1,1]
=> ? => ? = 8
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> [9,6,5,3]
=> [4,4,4,3,3,2,1,1,1]
=> ? => ? = 9
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> [10,7,5,3]
=> [4,4,4,3,3,2,2,1,1,1]
=> ? => ? = 10
([(0,1),(1,3),(1,4),(2,15),(3,6),(3,18),(4,5),(4,18),(5,17),(6,7),(6,19),(7,16),(8,12),(8,14),(10,21),(11,21),(12,2),(12,20),(13,11),(13,20),(14,10),(14,20),(15,9),(16,10),(16,11),(17,12),(17,13),(18,8),(18,17),(18,19),(19,13),(19,14),(19,16),(20,15),(20,21),(21,9)],22)
=> [9,6,4,3]
=> [4,4,4,3,2,2,1,1,1]
=> ? => ? = 9
([(0,1),(1,3),(1,4),(2,21),(3,6),(3,22),(4,5),(4,22),(5,20),(6,7),(6,23),(7,19),(8,13),(8,18),(9,14),(9,17),(10,26),(11,26),(12,27),(13,24),(14,2),(14,25),(15,13),(15,27),(16,12),(16,25),(17,8),(17,15),(17,25),(18,10),(18,24),(19,12),(19,15),(20,14),(20,16),(21,10),(21,11),(22,9),(22,20),(22,23),(23,16),(23,17),(23,19),(24,26),(25,18),(25,21),(25,27),(27,11),(27,24)],28)
=> [10,7,6,4,1]
=> [5,4,4,4,3,3,2,1,1,1]
=> ? => ? = 10
([(0,1),(1,4),(1,5),(2,24),(3,21),(4,7),(4,25),(5,6),(5,25),(6,23),(7,8),(7,26),(8,22),(9,16),(9,20),(10,15),(10,19),(11,29),(12,29),(14,30),(15,2),(15,28),(16,3),(16,27),(17,16),(17,30),(18,14),(18,28),(19,9),(19,17),(19,28),(20,12),(20,27),(21,13),(22,14),(22,17),(23,15),(23,18),(24,11),(24,12),(25,10),(25,23),(25,26),(26,18),(26,19),(26,22),(27,21),(27,29),(28,20),(28,24),(28,30),(29,13),(30,11),(30,27)],31)
=> [11,8,6,5,1]
=> [5,4,4,4,4,3,2,2,1,1,1]
=> ? => ? = 11
([(0,1),(1,4),(1,5),(2,23),(3,16),(4,7),(4,24),(5,6),(5,24),(6,22),(7,8),(7,25),(8,21),(9,13),(9,20),(10,15),(10,19),(11,28),(12,29),(13,26),(14,3),(14,28),(15,2),(15,27),(17,13),(17,29),(18,12),(18,27),(19,9),(19,17),(19,27),(20,14),(20,26),(21,12),(21,17),(22,15),(22,18),(23,11),(23,14),(24,10),(24,22),(24,25),(25,18),(25,19),(25,21),(26,28),(27,20),(27,23),(27,29),(28,16),(29,11),(29,26)],30)
=> [11,8,6,4,1]
=> [5,4,4,4,3,3,2,2,1,1,1]
=> ? => ? = 11
([(0,1),(1,5),(1,6),(2,24),(3,27),(4,23),(5,8),(5,28),(6,9),(6,28),(7,26),(8,7),(8,29),(9,25),(10,16),(10,22),(11,17),(11,21),(13,30),(14,33),(15,4),(15,33),(16,2),(16,32),(17,3),(17,31),(18,16),(18,30),(19,12),(20,13),(20,31),(21,10),(21,18),(21,31),(22,15),(22,32),(23,12),(24,19),(25,17),(25,20),(26,13),(26,18),(27,14),(27,15),(28,11),(28,25),(28,29),(29,20),(29,21),(29,26),(30,14),(30,32),(31,22),(31,27),(31,30),(32,24),(32,33),(33,19),(33,23)],34)
=> [12,9,7,5,1]
=> [5,4,4,4,4,3,3,2,2,1,1,1]
=> ? => ? = 12
([(0,2),(2,6),(2,7),(3,25),(4,28),(5,24),(6,9),(6,29),(7,10),(7,29),(8,27),(9,8),(9,30),(10,26),(11,17),(11,23),(12,18),(12,22),(13,31),(14,34),(15,1),(16,5),(16,34),(17,3),(17,33),(18,4),(18,32),(19,15),(20,17),(20,31),(21,13),(21,32),(22,11),(22,20),(22,32),(23,16),(23,33),(24,15),(25,19),(26,18),(26,21),(27,13),(27,20),(28,14),(28,16),(29,12),(29,26),(29,30),(30,21),(30,22),(30,27),(31,14),(31,33),(32,23),(32,28),(32,31),(33,25),(33,34),(34,19),(34,24)],35)
=> [13,9,7,5,1]
=> [5,4,4,4,4,3,3,2,2,1,1,1,1]
=> ? => ? = 13
([(0,6),(0,7),(1,11),(2,9),(3,9),(3,10),(4,2),(5,1),(5,10),(6,4),(7,8),(8,3),(8,5),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [7,5,2]
=> [3,3,2,2,2,1,1]
=> 1101110110 => ? = 7
([(0,7),(0,8),(1,10),(1,16),(2,11),(3,10),(4,12),(4,13),(5,3),(6,2),(6,16),(7,9),(8,5),(9,1),(9,6),(10,14),(11,12),(11,15),(12,17),(13,17),(14,13),(14,15),(15,17),(16,4),(16,11),(16,14)],18)
=> [8,6,4]
=> [3,3,3,3,2,2,1,1]
=> ? => ? = 8
([(0,8),(0,9),(1,15),(1,18),(2,13),(3,11),(3,17),(4,11),(5,12),(6,4),(7,5),(7,17),(8,10),(9,6),(10,3),(10,7),(11,14),(12,16),(12,18),(14,15),(14,16),(15,19),(16,19),(17,1),(17,12),(17,14),(18,2),(18,19),(19,13)],20)
=> [9,7,4]
=> [3,3,3,3,2,2,2,1,1]
=> ? => ? = 9
([(0,10),(0,12),(1,23),(2,22),(3,14),(3,24),(4,15),(5,13),(5,14),(6,18),(7,16),(7,20),(8,5),(8,23),(9,4),(9,24),(10,11),(11,3),(11,9),(12,1),(12,8),(13,22),(14,19),(15,16),(15,21),(16,25),(18,17),(19,20),(19,21),(20,18),(20,25),(21,25),(22,6),(23,2),(23,13),(24,7),(24,15),(24,19),(25,17)],26)
=> [9,7,5,4,1]
=> [5,4,4,4,3,2,2,1,1]
=> ? => ? = 9
([(0,2),(0,3),(1,9),(1,12),(2,1),(3,5),(3,8),(4,23),(5,24),(6,17),(7,22),(8,13),(8,24),(9,10),(9,27),(10,26),(11,16),(11,20),(12,19),(12,27),(13,18),(13,19),(15,28),(16,4),(16,28),(17,7),(18,17),(19,25),(20,22),(20,28),(21,14),(22,21),(23,14),(24,6),(24,18),(25,15),(25,20),(26,15),(26,16),(27,11),(27,25),(27,26),(28,21),(28,23)],29)
=> [10,8,6,4,1]
=> [5,4,4,4,3,3,2,2,1,1]
=> ? => ? = 10
([(0,2),(0,3),(1,9),(1,15),(2,1),(3,7),(3,8),(4,30),(5,31),(6,23),(7,16),(7,37),(8,10),(8,37),(9,11),(9,36),(10,34),(11,35),(12,25),(12,29),(13,19),(13,22),(14,21),(14,27),(15,26),(15,36),(16,26),(16,33),(17,39),(18,38),(19,12),(19,38),(20,6),(21,4),(21,39),(22,5),(22,38),(24,23),(25,28),(26,32),(27,25),(27,39),(28,24),(29,20),(30,24),(31,20),(32,17),(32,27),(33,18),(33,19),(34,18),(34,22),(35,17),(35,21),(36,14),(36,32),(36,35),(37,13),(37,33),(37,34),(38,29),(38,31),(39,28),(39,30)],40)
=> [11,9,7,5,5,3]
=> [6,6,6,5,5,3,3,2,2,1,1]
=> ? => ? = 11
([(0,7),(1,10),(2,11),(3,8),(4,9),(5,2),(5,9),(6,3),(6,12),(7,4),(7,5),(8,10),(9,6),(9,11),(11,12),(12,1),(12,8)],13)
=> [8,5]
=> [2,2,2,2,2,1,1,1]
=> 1111101110 => ? = 8
([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> [9,5]
=> [2,2,2,2,2,1,1,1,1]
=> 11111011110 => ? = 9
([(0,6),(0,7),(1,11),(2,9),(3,9),(3,10),(4,5),(5,1),(5,10),(6,4),(7,8),(8,2),(8,3),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [7,5,2]
=> [3,3,2,2,2,1,1]
=> 1101110110 => ? = 7
([(0,7),(0,8),(1,16),(2,10),(2,16),(3,11),(4,12),(5,6),(6,4),(6,10),(7,9),(8,5),(9,1),(9,2),(10,12),(10,13),(11,15),(12,14),(13,11),(13,14),(14,15),(16,3),(16,13)],17)
=> [8,6,3]
=> [3,3,3,2,2,2,1,1]
=> 11101110110 => ? = 8
([(0,9),(0,11),(1,14),(2,12),(2,13),(3,12),(3,17),(4,18),(5,15),(5,16),(6,7),(7,4),(7,13),(8,5),(8,19),(9,6),(10,2),(10,3),(10,14),(11,1),(11,10),(12,20),(13,18),(13,20),(14,8),(14,17),(15,22),(16,22),(17,19),(18,15),(18,21),(19,16),(20,21),(21,22)],23)
=> [8,6,5,3,1]
=> [5,4,4,3,3,2,1,1]
=> ? => ? = 8
([(0,2),(0,3),(1,8),(1,10),(2,1),(3,5),(3,7),(4,26),(5,22),(6,20),(7,12),(7,22),(8,21),(9,18),(9,19),(10,21),(10,25),(11,14),(11,15),(12,9),(12,24),(12,25),(13,27),(14,27),(15,27),(16,13),(17,14),(18,16),(19,17),(20,11),(20,17),(21,4),(21,23),(22,6),(22,24),(23,16),(23,26),(24,19),(24,20),(25,18),(25,23),(26,13),(26,15)],28)
=> [9,7,6,4,2]
=> [5,5,4,4,3,3,2,1,1]
=> ? => ? = 9
([(0,10),(0,12),(1,15),(2,13),(2,14),(3,16),(3,18),(4,20),(5,13),(5,17),(6,21),(7,8),(8,6),(8,14),(9,3),(9,24),(10,7),(11,2),(11,5),(11,15),(12,1),(12,11),(13,22),(14,21),(14,22),(15,9),(15,17),(16,20),(16,25),(17,24),(18,25),(20,19),(21,18),(21,23),(22,23),(23,25),(24,4),(24,16),(25,19)],26)
=> [9,7,5,4,1]
=> [5,4,4,4,3,2,2,1,1]
=> ? => ? = 9
([(0,11),(0,13),(1,19),(2,20),(3,26),(4,17),(4,22),(5,16),(6,14),(6,21),(7,14),(7,15),(8,9),(9,1),(9,15),(10,4),(10,25),(11,8),(12,6),(12,7),(12,16),(13,5),(13,12),(14,23),(15,19),(15,23),(16,10),(16,21),(17,26),(17,27),(18,20),(19,22),(19,24),(21,25),(22,27),(23,24),(24,27),(25,3),(25,17),(26,2),(26,18),(27,18)],28)
=> [10,8,5,4,1]
=> [5,4,4,4,3,2,2,2,1,1]
=> ? => ? = 10
([(0,2),(0,3),(1,9),(1,12),(2,1),(3,5),(3,8),(4,28),(5,24),(6,22),(7,17),(8,13),(8,24),(9,23),(10,15),(10,16),(11,20),(11,21),(12,23),(12,27),(13,11),(13,26),(13,27),(14,29),(15,29),(16,7),(16,29),(18,16),(19,14),(20,19),(21,18),(22,10),(22,18),(23,4),(23,25),(24,6),(24,26),(25,19),(25,28),(26,21),(26,22),(27,20),(27,25),(28,14),(28,15),(29,17)],30)
=> [10,8,6,4,2]
=> [5,5,4,4,3,3,2,2,1,1]
=> ? => ? = 10
Description
The number of ones in a binary word. This is also known as the Hamming weight of the word.
Matching statistic: St000476
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00099: Dyck paths bounce pathDyck paths
St000476: Dyck paths ⟶ ℤResult quality: 54% values known / values provided: 96%distinct values known / distinct values provided: 54%
Values
([],1)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
([(0,1),(0,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(1,2),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([],5)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 7
([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0]
=> ?
=> ? = 11
([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 9
([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [7,5,4,3,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 7
([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 11
([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> [9,7,5,5,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,1,1,0,0,1,0,0,1,0]
=> ?
=> ? = 9
([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> [11,8,7,5,4,1]
=> [1,1,1,1,1,1,0,1,0,0,0,1,0,1,0,0,1,0,1,0,0,0,1,0]
=> ?
=> ? = 11
([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 7
([(0,6),(1,11),(2,8),(3,9),(4,5),(4,11),(5,3),(5,7),(6,1),(6,4),(7,8),(7,9),(8,10),(9,10),(11,2),(11,7)],12)
=> [7,4,1]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 7
([(0,7),(1,13),(2,12),(3,9),(4,11),(5,6),(5,12),(6,4),(6,8),(7,2),(7,5),(8,11),(8,13),(10,9),(11,10),(12,1),(12,8),(13,3),(13,10)],14)
=> [8,5,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,0,1,0]
=> ?
=> ? = 8
([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> [9,5,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,0,0,1,0]
=> ?
=> ? = 9
([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> [7,4,3]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 7
([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> [8,5,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 8
([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> [9,6,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0,0,1,0]
=> ?
=> ? = 9
([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> [10,6,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0]
=> ?
=> ? = 10
([(0,6),(0,7),(1,9),(2,12),(3,9),(3,12),(4,10),(5,1),(6,5),(7,8),(8,2),(8,3),(9,11),(11,10),(12,4),(12,11)],13)
=> [7,5,1]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 7
([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> [8,6,4,2]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 8
([(0,9),(0,10),(1,11),(2,14),(3,12),(4,13),(5,4),(5,11),(6,5),(7,3),(8,1),(8,14),(9,6),(10,2),(10,8),(11,13),(13,12),(14,7)],15)
=> [7,5,3]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 7
([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> [7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 7
([(0,7),(1,14),(2,9),(3,10),(4,5),(4,14),(5,6),(5,8),(6,2),(6,11),(7,1),(7,4),(8,10),(8,11),(9,13),(10,12),(11,9),(11,12),(12,13),(14,3),(14,8)],15)
=> [8,5,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,1,0,0,0,1,0]
=> ?
=> ? = 8
([(0,1),(1,4),(1,5),(2,13),(3,12),(4,14),(5,7),(5,14),(6,10),(7,8),(7,15),(8,6),(8,17),(10,11),(11,9),(12,9),(13,3),(13,16),(14,2),(14,15),(15,13),(15,17),(16,11),(16,12),(17,10),(17,16)],18)
=> [9,6,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0,0,1,0]
=> ?
=> ? = 9
([(0,1),(1,5),(1,6),(2,15),(3,14),(4,10),(5,16),(6,8),(6,16),(7,12),(8,9),(8,17),(9,7),(9,19),(11,13),(12,11),(13,10),(14,4),(14,13),(15,3),(15,18),(16,2),(16,17),(17,15),(17,19),(18,11),(18,14),(19,12),(19,18)],20)
=> [10,7,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0]
=> ?
=> ? = 10
([(0,10),(1,20),(2,19),(4,18),(5,17),(6,13),(7,8),(7,17),(8,9),(8,11),(9,6),(9,15),(10,5),(10,7),(11,15),(11,18),(12,16),(12,20),(13,16),(14,19),(15,12),(15,13),(16,14),(17,4),(17,11),(18,1),(18,12),(19,3),(20,2),(20,14)],21)
=> [11,7,3]
=> [1,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0]
=> ?
=> ? = 11
([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> [7,4,2]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 7
([(0,1),(1,2),(1,3),(2,4),(2,13),(3,6),(3,13),(4,15),(5,14),(6,5),(6,16),(7,10),(7,12),(8,18),(9,18),(10,17),(11,9),(11,17),(12,8),(12,17),(13,7),(13,15),(13,16),(14,8),(14,9),(15,10),(15,11),(16,11),(16,12),(16,14),(17,18)],19)
=> [8,5,4,2]
=> [1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,1,0]
=> ?
=> ? = 8
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> [9,6,5,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0,0,1,0]
=> ?
=> ? = 9
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> [10,7,5,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0]
=> ?
=> ? = 10
([(0,1),(1,3),(1,4),(2,15),(3,6),(3,18),(4,5),(4,18),(5,17),(6,7),(6,19),(7,16),(8,12),(8,14),(10,21),(11,21),(12,2),(12,20),(13,11),(13,20),(14,10),(14,20),(15,9),(16,10),(16,11),(17,12),(17,13),(18,8),(18,17),(18,19),(19,13),(19,14),(19,16),(20,15),(20,21),(21,9)],22)
=> [9,6,4,3]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,1,0,0,0,1,0]
=> ?
=> ? = 9
([(0,1),(1,3),(1,4),(2,21),(3,6),(3,22),(4,5),(4,22),(5,20),(6,7),(6,23),(7,19),(8,13),(8,18),(9,14),(9,17),(10,26),(11,26),(12,27),(13,24),(14,2),(14,25),(15,13),(15,27),(16,12),(16,25),(17,8),(17,15),(17,25),(18,10),(18,24),(19,12),(19,15),(20,14),(20,16),(21,10),(21,11),(22,9),(22,20),(22,23),(23,16),(23,17),(23,19),(24,26),(25,18),(25,21),(25,27),(27,11),(27,24)],28)
=> [10,7,6,4,1]
=> [1,1,1,1,1,1,0,1,0,0,0,1,0,0,1,0,1,0,0,0,1,0]
=> ?
=> ? = 10
([(0,1),(1,4),(1,5),(2,24),(3,21),(4,7),(4,25),(5,6),(5,25),(6,23),(7,8),(7,26),(8,22),(9,16),(9,20),(10,15),(10,19),(11,29),(12,29),(14,30),(15,2),(15,28),(16,3),(16,27),(17,16),(17,30),(18,14),(18,28),(19,9),(19,17),(19,28),(20,12),(20,27),(21,13),(22,14),(22,17),(23,15),(23,18),(24,11),(24,12),(25,10),(25,23),(25,26),(26,18),(26,19),(26,22),(27,21),(27,29),(28,20),(28,24),(28,30),(29,13),(30,11),(30,27)],31)
=> [11,8,6,5,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,1,0,1,0,0,1,0,0,0,1,0]
=> ?
=> ? = 11
([(0,1),(1,4),(1,5),(2,23),(3,16),(4,7),(4,24),(5,6),(5,24),(6,22),(7,8),(7,25),(8,21),(9,13),(9,20),(10,15),(10,19),(11,28),(12,29),(13,26),(14,3),(14,28),(15,2),(15,27),(17,13),(17,29),(18,12),(18,27),(19,9),(19,17),(19,27),(20,14),(20,26),(21,12),(21,17),(22,15),(22,18),(23,11),(23,14),(24,10),(24,22),(24,25),(25,18),(25,19),(25,21),(26,28),(27,20),(27,23),(27,29),(28,16),(29,11),(29,26)],30)
=> [11,8,6,4,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0]
=> ?
=> ? = 11
([(0,1),(1,5),(1,6),(2,24),(3,27),(4,23),(5,8),(5,28),(6,9),(6,28),(7,26),(8,7),(8,29),(9,25),(10,16),(10,22),(11,17),(11,21),(13,30),(14,33),(15,4),(15,33),(16,2),(16,32),(17,3),(17,31),(18,16),(18,30),(19,12),(20,13),(20,31),(21,10),(21,18),(21,31),(22,15),(22,32),(23,12),(24,19),(25,17),(25,20),(26,13),(26,18),(27,14),(27,15),(28,11),(28,25),(28,29),(29,20),(29,21),(29,26),(30,14),(30,32),(31,22),(31,27),(31,30),(32,24),(32,33),(33,19),(33,23)],34)
=> [12,9,7,5,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0]
=> ?
=> ? = 12
([(0,2),(2,6),(2,7),(3,25),(4,28),(5,24),(6,9),(6,29),(7,10),(7,29),(8,27),(9,8),(9,30),(10,26),(11,17),(11,23),(12,18),(12,22),(13,31),(14,34),(15,1),(16,5),(16,34),(17,3),(17,33),(18,4),(18,32),(19,15),(20,17),(20,31),(21,13),(21,32),(22,11),(22,20),(22,32),(23,16),(23,33),(24,15),(25,19),(26,18),(26,21),(27,13),(27,20),(28,14),(28,16),(29,12),(29,26),(29,30),(30,21),(30,22),(30,27),(31,14),(31,33),(32,23),(32,28),(32,31),(33,25),(33,34),(34,19),(34,24)],35)
=> [13,9,7,5,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,1,0]
=> ?
=> ? = 13
([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> [7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 7
([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> [8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 8
([(0,6),(0,7),(1,11),(2,9),(3,9),(3,10),(4,2),(5,1),(5,10),(6,4),(7,8),(8,3),(8,5),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [7,5,2]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 7
([(0,7),(0,8),(1,10),(1,16),(2,11),(3,10),(4,12),(4,13),(5,3),(6,2),(6,16),(7,9),(8,5),(9,1),(9,6),(10,14),(11,12),(11,15),(12,17),(13,17),(14,13),(14,15),(15,17),(16,4),(16,11),(16,14)],18)
=> [8,6,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0,1,0]
=> ?
=> ? = 8
([(0,8),(0,9),(1,15),(1,18),(2,13),(3,11),(3,17),(4,11),(5,12),(6,4),(7,5),(7,17),(8,10),(9,6),(10,3),(10,7),(11,14),(12,16),(12,18),(14,15),(14,16),(15,19),(16,19),(17,1),(17,12),(17,14),(18,2),(18,19),(19,13)],20)
=> [9,7,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0,0,1,0]
=> ?
=> ? = 9
([(0,10),(0,12),(1,23),(2,22),(3,14),(3,24),(4,15),(5,13),(5,14),(6,18),(7,16),(7,20),(8,5),(8,23),(9,4),(9,24),(10,11),(11,3),(11,9),(12,1),(12,8),(13,22),(14,19),(15,16),(15,21),(16,25),(18,17),(19,20),(19,21),(20,18),(20,25),(21,25),(22,6),(23,2),(23,13),(24,7),(24,15),(24,19),(25,17)],26)
=> [9,7,5,4,1]
=> [1,1,1,1,1,0,1,0,0,0,1,0,1,0,0,1,0,0,1,0]
=> ?
=> ? = 9
([(0,2),(0,3),(1,9),(1,12),(2,1),(3,5),(3,8),(4,23),(5,24),(6,17),(7,22),(8,13),(8,24),(9,10),(9,27),(10,26),(11,16),(11,20),(12,19),(12,27),(13,18),(13,19),(15,28),(16,4),(16,28),(17,7),(18,17),(19,25),(20,22),(20,28),(21,14),(22,21),(23,14),(24,6),(24,18),(25,15),(25,20),(26,15),(26,16),(27,11),(27,25),(27,26),(28,21),(28,23)],29)
=> [10,8,6,4,1]
=> [1,1,1,1,1,1,0,1,0,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> ?
=> ? = 10
([(0,2),(0,3),(1,9),(1,15),(2,1),(3,7),(3,8),(4,30),(5,31),(6,23),(7,16),(7,37),(8,10),(8,37),(9,11),(9,36),(10,34),(11,35),(12,25),(12,29),(13,19),(13,22),(14,21),(14,27),(15,26),(15,36),(16,26),(16,33),(17,39),(18,38),(19,12),(19,38),(20,6),(21,4),(21,39),(22,5),(22,38),(24,23),(25,28),(26,32),(27,25),(27,39),(28,24),(29,20),(30,24),(31,20),(32,17),(32,27),(33,18),(33,19),(34,18),(34,22),(35,17),(35,21),(36,14),(36,32),(36,35),(37,13),(37,33),(37,34),(38,29),(38,31),(39,28),(39,30)],40)
=> [11,9,7,5,5,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,1,1,0,0,1,0,0,1,0,0,1,0]
=> ?
=> ? = 11
([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> [7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 7
([(0,7),(1,10),(2,11),(3,8),(4,9),(5,2),(5,9),(6,3),(6,12),(7,4),(7,5),(8,10),(9,6),(9,11),(11,12),(12,1),(12,8)],13)
=> [8,5]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 8
([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> [9,5]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 9
([(0,6),(0,7),(1,11),(2,9),(3,9),(3,10),(4,5),(5,1),(5,10),(6,4),(7,8),(8,2),(8,3),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [7,5,2]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 7
([(0,7),(0,8),(1,16),(2,10),(2,16),(3,11),(4,12),(5,6),(6,4),(6,10),(7,9),(8,5),(9,1),(9,2),(10,12),(10,13),(11,15),(12,14),(13,11),(13,14),(14,15),(16,3),(16,13)],17)
=> [8,6,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0,1,0]
=> ?
=> ? = 8
([(0,9),(0,11),(1,14),(2,12),(2,13),(3,12),(3,17),(4,18),(5,15),(5,16),(6,7),(7,4),(7,13),(8,5),(8,19),(9,6),(10,2),(10,3),(10,14),(11,1),(11,10),(12,20),(13,18),(13,20),(14,8),(14,17),(15,22),(16,22),(17,19),(18,15),(18,21),(19,16),(20,21),(21,22)],23)
=> [8,6,5,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,1,0,0,1,0]
=> ?
=> ? = 8
([(0,2),(0,3),(1,8),(1,10),(2,1),(3,5),(3,7),(4,26),(5,22),(6,20),(7,12),(7,22),(8,21),(9,18),(9,19),(10,21),(10,25),(11,14),(11,15),(12,9),(12,24),(12,25),(13,27),(14,27),(15,27),(16,13),(17,14),(18,16),(19,17),(20,11),(20,17),(21,4),(21,23),(22,6),(22,24),(23,16),(23,26),(24,19),(24,20),(25,18),(25,23),(26,13),(26,15)],28)
=> [9,7,6,4,2]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,1,0,0,1,0]
=> ?
=> ? = 9
([(0,10),(0,12),(1,15),(2,13),(2,14),(3,16),(3,18),(4,20),(5,13),(5,17),(6,21),(7,8),(8,6),(8,14),(9,3),(9,24),(10,7),(11,2),(11,5),(11,15),(12,1),(12,11),(13,22),(14,21),(14,22),(15,9),(15,17),(16,20),(16,25),(17,24),(18,25),(20,19),(21,18),(21,23),(22,23),(23,25),(24,4),(24,16),(25,19)],26)
=> [9,7,5,4,1]
=> [1,1,1,1,1,0,1,0,0,0,1,0,1,0,0,1,0,0,1,0]
=> ?
=> ? = 9
([(0,11),(0,13),(1,19),(2,20),(3,26),(4,17),(4,22),(5,16),(6,14),(6,21),(7,14),(7,15),(8,9),(9,1),(9,15),(10,4),(10,25),(11,8),(12,6),(12,7),(12,16),(13,5),(13,12),(14,23),(15,19),(15,23),(16,10),(16,21),(17,26),(17,27),(18,20),(19,22),(19,24),(21,25),(22,27),(23,24),(24,27),(25,3),(25,17),(26,2),(26,18),(27,18)],28)
=> [10,8,5,4,1]
=> [1,1,1,1,1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,1,0]
=> ?
=> ? = 10
Description
The sum of the semi-lengths of tunnels before a valley of a Dyck path. For each valley $v$ in a Dyck path $D$ there is a corresponding tunnel, which is the factor $T_v = s_i\dots s_j$ of $D$ where $s_i$ is the step after the first intersection of $D$ with the line $y = ht(v)$ to the left of $s_j$. This statistic is $$ \sum_v (j_v-i_v)/2. $$
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St000676: Dyck paths ⟶ ℤResult quality: 54% values known / values provided: 96%distinct values known / distinct values provided: 54%
Values
([],1)
=> [1]
=> [1,0]
=> 1
([],2)
=> [1,1]
=> [1,1,0,0]
=> 1
([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 2
([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
([(0,1),(0,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
([(0,2),(2,1)],3)
=> [3]
=> [1,0,1,0,1,0]
=> 3
([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3
([(1,2),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3
([],5)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 3
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? = 7
([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ? = 11
([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? = 5
([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 9
([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [7,5,4,3,1]
=> [1,0,1,0,1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 7
([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [6,5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0,0]
=> ? = 6
([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0,0]
=> ? = 11
([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> [9,7,5,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0,0]
=> ? = 9
([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> [11,8,7,5,4,1]
=> [1,0,1,0,1,0,1,1,1,0,1,1,1,0,1,0,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0,0]
=> ? = 11
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? = 5
([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> [5,3,2,2,2]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 5
([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> [5,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,1,0,0,0,1,0,0]
=> ? = 5
([(0,6),(1,11),(2,8),(3,9),(4,5),(4,11),(5,3),(5,7),(6,1),(6,4),(7,8),(7,9),(8,10),(9,10),(11,2),(11,7)],12)
=> [7,4,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> ? = 7
([(0,7),(1,13),(2,12),(3,9),(4,11),(5,6),(5,12),(6,4),(6,8),(7,2),(7,5),(8,11),(8,13),(10,9),(11,10),(12,1),(12,8),(13,3),(13,10)],14)
=> [8,5,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 8
([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> [9,5,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 9
([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> [7,4,3]
=> [1,0,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 7
([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> [8,5,3]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 8
([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> [9,6,4]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0]
=> ? = 9
([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> [10,6,4]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0]
=> ? = 10
([(0,6),(0,7),(1,9),(2,12),(3,9),(3,12),(4,10),(5,1),(6,5),(7,8),(8,2),(8,3),(9,11),(11,10),(12,4),(12,11)],13)
=> [7,5,1]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 7
([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> [8,6,4,2]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,1,0,0,0,0]
=> ? = 8
([(0,9),(0,10),(1,11),(2,14),(3,12),(4,13),(5,4),(5,11),(6,5),(7,3),(8,1),(8,14),(9,6),(10,2),(10,8),(11,13),(13,12),(14,7)],15)
=> [7,5,3]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 7
([(0,7),(1,14),(2,9),(3,10),(4,5),(4,14),(5,6),(5,8),(6,2),(6,11),(7,1),(7,4),(8,10),(8,11),(9,13),(10,12),(11,9),(11,12),(12,13),(14,3),(14,8)],15)
=> [8,5,2]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 8
([(0,1),(1,4),(1,5),(2,13),(3,12),(4,14),(5,7),(5,14),(6,10),(7,8),(7,15),(8,6),(8,17),(10,11),(11,9),(12,9),(13,3),(13,16),(14,2),(14,15),(15,13),(15,17),(16,11),(16,12),(17,10),(17,16)],18)
=> [9,6,3]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 9
([(0,1),(1,5),(1,6),(2,15),(3,14),(4,10),(5,16),(6,8),(6,16),(7,12),(8,9),(8,17),(9,7),(9,19),(11,13),(12,11),(13,10),(14,4),(14,13),(15,3),(15,18),(16,2),(16,17),(17,15),(17,19),(18,11),(18,14),(19,12),(19,18)],20)
=> [10,7,3]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 10
([(0,10),(1,20),(2,19),(4,18),(5,17),(6,13),(7,8),(7,17),(8,9),(8,11),(9,6),(9,15),(10,5),(10,7),(11,15),(11,18),(12,16),(12,20),(13,16),(14,19),(15,12),(15,13),(16,14),(17,4),(17,11),(18,1),(18,12),(19,3),(20,2),(20,14)],21)
=> [11,7,3]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 11
([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> [7,4,2]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 7
([(0,1),(1,2),(1,3),(2,4),(2,13),(3,6),(3,13),(4,15),(5,14),(6,5),(6,16),(7,10),(7,12),(8,18),(9,18),(10,17),(11,9),(11,17),(12,8),(12,17),(13,7),(13,15),(13,16),(14,8),(14,9),(15,10),(15,11),(16,11),(16,12),(16,14),(17,18)],19)
=> [8,5,4,2]
=> [1,0,1,0,1,0,1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0]
=> ? = 8
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> [9,6,5,3]
=> [1,0,1,0,1,0,1,1,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> ? = 9
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> [10,7,5,3]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> ? = 10
([(0,1),(1,3),(1,4),(2,15),(3,6),(3,18),(4,5),(4,18),(5,17),(6,7),(6,19),(7,16),(8,12),(8,14),(10,21),(11,21),(12,2),(12,20),(13,11),(13,20),(14,10),(14,20),(15,9),(16,10),(16,11),(17,12),(17,13),(18,8),(18,17),(18,19),(19,13),(19,14),(19,16),(20,15),(20,21),(21,9)],22)
=> [9,6,4,3]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 9
([(0,1),(1,3),(1,4),(2,21),(3,6),(3,22),(4,5),(4,22),(5,20),(6,7),(6,23),(7,19),(8,13),(8,18),(9,14),(9,17),(10,26),(11,26),(12,27),(13,24),(14,2),(14,25),(15,13),(15,27),(16,12),(16,25),(17,8),(17,15),(17,25),(18,10),(18,24),(19,12),(19,15),(20,14),(20,16),(21,10),(21,11),(22,9),(22,20),(22,23),(23,16),(23,17),(23,19),(24,26),(25,18),(25,21),(25,27),(27,11),(27,24)],28)
=> [10,7,6,4,1]
=> [1,0,1,0,1,0,1,1,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 10
([(0,1),(1,4),(1,5),(2,24),(3,21),(4,7),(4,25),(5,6),(5,25),(6,23),(7,8),(7,26),(8,22),(9,16),(9,20),(10,15),(10,19),(11,29),(12,29),(14,30),(15,2),(15,28),(16,3),(16,27),(17,16),(17,30),(18,14),(18,28),(19,9),(19,17),(19,28),(20,12),(20,27),(21,13),(22,14),(22,17),(23,15),(23,18),(24,11),(24,12),(25,10),(25,23),(25,26),(26,18),(26,19),(26,22),(27,21),(27,29),(28,20),(28,24),(28,30),(29,13),(30,11),(30,27)],31)
=> [11,8,6,5,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0,0]
=> ? = 11
([(0,1),(1,4),(1,5),(2,23),(3,16),(4,7),(4,24),(5,6),(5,24),(6,22),(7,8),(7,25),(8,21),(9,13),(9,20),(10,15),(10,19),(11,28),(12,29),(13,26),(14,3),(14,28),(15,2),(15,27),(17,13),(17,29),(18,12),(18,27),(19,9),(19,17),(19,27),(20,14),(20,26),(21,12),(21,17),(22,15),(22,18),(23,11),(23,14),(24,10),(24,22),(24,25),(25,18),(25,19),(25,21),(26,28),(27,20),(27,23),(27,29),(28,16),(29,11),(29,26)],30)
=> [11,8,6,4,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 11
([(0,1),(1,5),(1,6),(2,24),(3,27),(4,23),(5,8),(5,28),(6,9),(6,28),(7,26),(8,7),(8,29),(9,25),(10,16),(10,22),(11,17),(11,21),(13,30),(14,33),(15,4),(15,33),(16,2),(16,32),(17,3),(17,31),(18,16),(18,30),(19,12),(20,13),(20,31),(21,10),(21,18),(21,31),(22,15),(22,32),(23,12),(24,19),(25,17),(25,20),(26,13),(26,18),(27,14),(27,15),(28,11),(28,25),(28,29),(29,20),(29,21),(29,26),(30,14),(30,32),(31,22),(31,27),(31,30),(32,24),(32,33),(33,19),(33,23)],34)
=> [12,9,7,5,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0,0]
=> ? = 12
([(0,2),(2,6),(2,7),(3,25),(4,28),(5,24),(6,9),(6,29),(7,10),(7,29),(8,27),(9,8),(9,30),(10,26),(11,17),(11,23),(12,18),(12,22),(13,31),(14,34),(15,1),(16,5),(16,34),(17,3),(17,33),(18,4),(18,32),(19,15),(20,17),(20,31),(21,13),(21,32),(22,11),(22,20),(22,32),(23,16),(23,33),(24,15),(25,19),(26,18),(26,21),(27,13),(27,20),(28,14),(28,16),(29,12),(29,26),(29,30),(30,21),(30,22),(30,27),(31,14),(31,33),(32,23),(32,28),(32,31),(33,25),(33,34),(34,19),(34,24)],35)
=> [13,9,7,5,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0,0]
=> ? = 13
([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> [8,3]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 8
([(0,6),(0,7),(1,11),(2,9),(3,9),(3,10),(4,2),(5,1),(5,10),(6,4),(7,8),(8,3),(8,5),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [7,5,2]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 7
([(0,7),(0,8),(1,10),(1,16),(2,11),(3,10),(4,12),(4,13),(5,3),(6,2),(6,16),(7,9),(8,5),(9,1),(9,6),(10,14),(11,12),(11,15),(12,17),(13,17),(14,13),(14,15),(15,17),(16,4),(16,11),(16,14)],18)
=> [8,6,4]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0]
=> ? = 8
([(0,8),(0,9),(1,15),(1,18),(2,13),(3,11),(3,17),(4,11),(5,12),(6,4),(7,5),(7,17),(8,10),(9,6),(10,3),(10,7),(11,14),(12,16),(12,18),(14,15),(14,16),(15,19),(16,19),(17,1),(17,12),(17,14),(18,2),(18,19),(19,13)],20)
=> [9,7,4]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0,0]
=> ? = 9
([(0,10),(0,12),(1,23),(2,22),(3,14),(3,24),(4,15),(5,13),(5,14),(6,18),(7,16),(7,20),(8,5),(8,23),(9,4),(9,24),(10,11),(11,3),(11,9),(12,1),(12,8),(13,22),(14,19),(15,16),(15,21),(16,25),(18,17),(19,20),(19,21),(20,18),(20,25),(21,25),(22,6),(23,2),(23,13),(24,7),(24,15),(24,19),(25,17)],26)
=> [9,7,5,4,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 9
([(0,2),(0,3),(1,9),(1,12),(2,1),(3,5),(3,8),(4,23),(5,24),(6,17),(7,22),(8,13),(8,24),(9,10),(9,27),(10,26),(11,16),(11,20),(12,19),(12,27),(13,18),(13,19),(15,28),(16,4),(16,28),(17,7),(18,17),(19,25),(20,22),(20,28),(21,14),(22,21),(23,14),(24,6),(24,18),(25,15),(25,20),(26,15),(26,16),(27,11),(27,25),(27,26),(28,21),(28,23)],29)
=> [10,8,6,4,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 10
([(0,2),(0,3),(1,9),(1,15),(2,1),(3,7),(3,8),(4,30),(5,31),(6,23),(7,16),(7,37),(8,10),(8,37),(9,11),(9,36),(10,34),(11,35),(12,25),(12,29),(13,19),(13,22),(14,21),(14,27),(15,26),(15,36),(16,26),(16,33),(17,39),(18,38),(19,12),(19,38),(20,6),(21,4),(21,39),(22,5),(22,38),(24,23),(25,28),(26,32),(27,25),(27,39),(28,24),(29,20),(30,24),(31,20),(32,17),(32,27),(33,18),(33,19),(34,18),(34,22),(35,17),(35,21),(36,14),(36,32),(36,35),(37,13),(37,33),(37,34),(38,29),(38,31),(39,28),(39,30)],40)
=> [11,9,7,5,5,3]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,0]
=> ? = 11
([(0,7),(1,10),(2,11),(3,8),(4,9),(5,2),(5,9),(6,3),(6,12),(7,4),(7,5),(8,10),(9,6),(9,11),(11,12),(12,1),(12,8)],13)
=> [8,5]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 8
([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> [9,5]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 9
([(0,6),(0,7),(1,11),(2,9),(3,9),(3,10),(4,5),(5,1),(5,10),(6,4),(7,8),(8,2),(8,3),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [7,5,2]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 7
([(0,7),(0,8),(1,16),(2,10),(2,16),(3,11),(4,12),(5,6),(6,4),(6,10),(7,9),(8,5),(9,1),(9,2),(10,12),(10,13),(11,15),(12,14),(13,11),(13,14),(14,15),(16,3),(16,13)],17)
=> [8,6,3]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 8
Description
The number of odd rises of a Dyck path. This is the number of ones at an odd position, with the initial position equal to 1. The number of Dyck paths of semilength $n$ with $k$ up steps in odd positions and $k$ returns to the main diagonal are counted by the binomial coefficient $\binom{n-1}{k-1}$ [3,4].
Matching statistic: St000013
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
St000013: Dyck paths ⟶ ℤResult quality: 69% values known / values provided: 96%distinct values known / distinct values provided: 69%
Values
([],1)
=> [1]
=> [1,0]
=> [1,0]
=> 1
([],2)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 1
([(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
([(0,1),(0,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
([(0,2),(2,1)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3
([(1,2),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3
([],5)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0,0,1,0]
=> ? = 7
([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [5,3,3,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0]
=> ? = 5
([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0]
=> ? = 11
([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> ? = 5
([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0]
=> ? = 9
([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [7,5,4,3,1]
=> [1,0,1,0,1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0]
=> ? = 7
([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [6,5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> ? = 6
([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0]
=> ? = 11
([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> [9,7,5,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,1,0]
=> ? = 9
([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> [11,8,7,5,4,1]
=> [1,0,1,0,1,0,1,1,1,0,1,1,1,0,1,0,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0]
=> ? = 11
([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> [5,3,2,2]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ?
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> [5,3,2,2]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
=> ? = 5
([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0,1,0]
=> ? = 5
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> [5,3,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> ? = 5
([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> ? = 5
([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0,1,0]
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> [5,3,2,2,2]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ?
=> ? = 5
([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0,1,0]
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> [5,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 5
([(0,6),(1,11),(2,8),(3,9),(4,5),(4,11),(5,3),(5,7),(6,1),(6,4),(7,8),(7,9),(8,10),(9,10),(11,2),(11,7)],12)
=> [7,4,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> ? = 7
([(0,7),(1,13),(2,12),(3,9),(4,11),(5,6),(5,12),(6,4),(6,8),(7,2),(7,5),(8,11),(8,13),(10,9),(11,10),(12,1),(12,8),(13,3),(13,10)],14)
=> [8,5,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> ?
=> ? = 8
([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> [9,5,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> ?
=> ? = 9
([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> [7,4,3]
=> [1,0,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0,0]
=> ? = 7
([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> [8,5,3]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> ?
=> ? = 8
([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> [9,6,4]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0]
=> ?
=> ? = 9
([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> [10,6,4]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0]
=> ?
=> ? = 10
([(0,6),(0,7),(1,9),(2,12),(3,9),(3,12),(4,10),(5,1),(6,5),(7,8),(8,2),(8,3),(9,11),(11,10),(12,4),(12,11)],13)
=> [7,5,1]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> ?
=> ? = 7
([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> [8,6,4,2]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,1,0,0,0,0]
=> ?
=> ? = 8
([(0,9),(0,10),(1,11),(2,14),(3,12),(4,13),(5,4),(5,11),(6,5),(7,3),(8,1),(8,14),(9,6),(10,2),(10,8),(11,13),(13,12),(14,7)],15)
=> [7,5,3]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> ?
=> ? = 7
([(0,7),(1,14),(2,9),(3,10),(4,5),(4,14),(5,6),(5,8),(6,2),(6,11),(7,1),(7,4),(8,10),(8,11),(9,13),(10,12),(11,9),(11,12),(12,13),(14,3),(14,8)],15)
=> [8,5,2]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0,0]
=> ? = 8
([(0,1),(1,4),(1,5),(2,13),(3,12),(4,14),(5,7),(5,14),(6,10),(7,8),(7,15),(8,6),(8,17),(10,11),(11,9),(12,9),(13,3),(13,16),(14,2),(14,15),(15,13),(15,17),(16,11),(16,12),(17,10),(17,16)],18)
=> [9,6,3]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> ?
=> ? = 9
([(0,1),(1,5),(1,6),(2,15),(3,14),(4,10),(5,16),(6,8),(6,16),(7,12),(8,9),(8,17),(9,7),(9,19),(11,13),(12,11),(13,10),(14,4),(14,13),(15,3),(15,18),(16,2),(16,17),(17,15),(17,19),(18,11),(18,14),(19,12),(19,18)],20)
=> [10,7,3]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> ?
=> ? = 10
([(0,10),(1,20),(2,19),(4,18),(5,17),(6,13),(7,8),(7,17),(8,9),(8,11),(9,6),(9,15),(10,5),(10,7),(11,15),(11,18),(12,16),(12,20),(13,16),(14,19),(15,12),(15,13),(16,14),(17,4),(17,11),(18,1),(18,12),(19,3),(20,2),(20,14)],21)
=> [11,7,3]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> ?
=> ? = 11
([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> [7,4,2]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0,0]
=> ? = 7
([(0,1),(1,2),(1,3),(2,4),(2,13),(3,6),(3,13),(4,15),(5,14),(6,5),(6,16),(7,10),(7,12),(8,18),(9,18),(10,17),(11,9),(11,17),(12,8),(12,17),(13,7),(13,15),(13,16),(14,8),(14,9),(15,10),(15,11),(16,11),(16,12),(16,14),(17,18)],19)
=> [8,5,4,2]
=> [1,0,1,0,1,0,1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0]
=> ?
=> ? = 8
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> [9,6,5,3]
=> [1,0,1,0,1,0,1,1,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> ?
=> ? = 9
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> [10,7,5,3]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> ?
=> ? = 10
([(0,1),(1,3),(1,4),(2,15),(3,6),(3,18),(4,5),(4,18),(5,17),(6,7),(6,19),(7,16),(8,12),(8,14),(10,21),(11,21),(12,2),(12,20),(13,11),(13,20),(14,10),(14,20),(15,9),(16,10),(16,11),(17,12),(17,13),(18,8),(18,17),(18,19),(19,13),(19,14),(19,16),(20,15),(20,21),(21,9)],22)
=> [9,6,4,3]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,1,0,0,0,0,0,0]
=> ?
=> ? = 9
([(0,1),(1,3),(1,4),(2,21),(3,6),(3,22),(4,5),(4,22),(5,20),(6,7),(6,23),(7,19),(8,13),(8,18),(9,14),(9,17),(10,26),(11,26),(12,27),(13,24),(14,2),(14,25),(15,13),(15,27),(16,12),(16,25),(17,8),(17,15),(17,25),(18,10),(18,24),(19,12),(19,15),(20,14),(20,16),(21,10),(21,11),(22,9),(22,20),(22,23),(23,16),(23,17),(23,19),(24,26),(25,18),(25,21),(25,27),(27,11),(27,24)],28)
=> [10,7,6,4,1]
=> [1,0,1,0,1,0,1,1,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0,1,0,0]
=> ?
=> ? = 10
([(0,1),(1,4),(1,5),(2,24),(3,21),(4,7),(4,25),(5,6),(5,25),(6,23),(7,8),(7,26),(8,22),(9,16),(9,20),(10,15),(10,19),(11,29),(12,29),(14,30),(15,2),(15,28),(16,3),(16,27),(17,16),(17,30),(18,14),(18,28),(19,9),(19,17),(19,28),(20,12),(20,27),(21,13),(22,14),(22,17),(23,15),(23,18),(24,11),(24,12),(25,10),(25,23),(25,26),(26,18),(26,19),(26,22),(27,21),(27,29),(28,20),(28,24),(28,30),(29,13),(30,11),(30,27)],31)
=> [11,8,6,5,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0,0]
=> ?
=> ? = 11
([(0,1),(1,4),(1,5),(2,23),(3,16),(4,7),(4,24),(5,6),(5,24),(6,22),(7,8),(7,25),(8,21),(9,13),(9,20),(10,15),(10,19),(11,28),(12,29),(13,26),(14,3),(14,28),(15,2),(15,27),(17,13),(17,29),(18,12),(18,27),(19,9),(19,17),(19,27),(20,14),(20,26),(21,12),(21,17),(22,15),(22,18),(23,11),(23,14),(24,10),(24,22),(24,25),(25,18),(25,19),(25,21),(26,28),(27,20),(27,23),(27,29),(28,16),(29,11),(29,26)],30)
=> [11,8,6,4,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0,1,0,0]
=> ?
=> ? = 11
([(0,1),(1,5),(1,6),(2,24),(3,27),(4,23),(5,8),(5,28),(6,9),(6,28),(7,26),(8,7),(8,29),(9,25),(10,16),(10,22),(11,17),(11,21),(13,30),(14,33),(15,4),(15,33),(16,2),(16,32),(17,3),(17,31),(18,16),(18,30),(19,12),(20,13),(20,31),(21,10),(21,18),(21,31),(22,15),(22,32),(23,12),(24,19),(25,17),(25,20),(26,13),(26,18),(27,14),(27,15),(28,11),(28,25),(28,29),(29,20),(29,21),(29,26),(30,14),(30,32),(31,22),(31,27),(31,30),(32,24),(32,33),(33,19),(33,23)],34)
=> [12,9,7,5,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0,0]
=> ?
=> ? = 12
([(0,2),(2,6),(2,7),(3,25),(4,28),(5,24),(6,9),(6,29),(7,10),(7,29),(8,27),(9,8),(9,30),(10,26),(11,17),(11,23),(12,18),(12,22),(13,31),(14,34),(15,1),(16,5),(16,34),(17,3),(17,33),(18,4),(18,32),(19,15),(20,17),(20,31),(21,13),(21,32),(22,11),(22,20),(22,32),(23,16),(23,33),(24,15),(25,19),(26,18),(26,21),(27,13),(27,20),(28,14),(28,16),(29,12),(29,26),(29,30),(30,21),(30,22),(30,27),(31,14),(31,33),(32,23),(32,28),(32,31),(33,25),(33,34),(34,19),(34,24)],35)
=> [13,9,7,5,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0,0]
=> ?
=> ? = 13
([(0,7),(0,8),(1,10),(1,16),(2,11),(3,10),(4,12),(4,13),(5,3),(6,2),(6,16),(7,9),(8,5),(9,1),(9,6),(10,14),(11,12),(11,15),(12,17),(13,17),(14,13),(14,15),(15,17),(16,4),(16,11),(16,14)],18)
=> [8,6,4]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0]
=> ?
=> ? = 8
([(0,8),(0,9),(1,15),(1,18),(2,13),(3,11),(3,17),(4,11),(5,12),(6,4),(7,5),(7,17),(8,10),(9,6),(10,3),(10,7),(11,14),(12,16),(12,18),(14,15),(14,16),(15,19),(16,19),(17,1),(17,12),(17,14),(18,2),(18,19),(19,13)],20)
=> [9,7,4]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0,0]
=> ?
=> ? = 9
([(0,10),(0,12),(1,23),(2,22),(3,14),(3,24),(4,15),(5,13),(5,14),(6,18),(7,16),(7,20),(8,5),(8,23),(9,4),(9,24),(10,11),(11,3),(11,9),(12,1),(12,8),(13,22),(14,19),(15,16),(15,21),(16,25),(18,17),(19,20),(19,21),(20,18),(20,25),(21,25),(22,6),(23,2),(23,13),(24,7),(24,15),(24,19),(25,17)],26)
=> [9,7,5,4,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0,0]
=> ?
=> ? = 9
([(0,2),(0,3),(1,9),(1,12),(2,1),(3,5),(3,8),(4,23),(5,24),(6,17),(7,22),(8,13),(8,24),(9,10),(9,27),(10,26),(11,16),(11,20),(12,19),(12,27),(13,18),(13,19),(15,28),(16,4),(16,28),(17,7),(18,17),(19,25),(20,22),(20,28),(21,14),(22,21),(23,14),(24,6),(24,18),(25,15),(25,20),(26,15),(26,16),(27,11),(27,25),(27,26),(28,21),(28,23)],29)
=> [10,8,6,4,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0,1,0,0]
=> ?
=> ? = 10
([(0,2),(0,3),(1,9),(1,15),(2,1),(3,7),(3,8),(4,30),(5,31),(6,23),(7,16),(7,37),(8,10),(8,37),(9,11),(9,36),(10,34),(11,35),(12,25),(12,29),(13,19),(13,22),(14,21),(14,27),(15,26),(15,36),(16,26),(16,33),(17,39),(18,38),(19,12),(19,38),(20,6),(21,4),(21,39),(22,5),(22,38),(24,23),(25,28),(26,32),(27,25),(27,39),(28,24),(29,20),(30,24),(31,20),(32,17),(32,27),(33,18),(33,19),(34,18),(34,22),(35,17),(35,21),(36,14),(36,32),(36,35),(37,13),(37,33),(37,34),(38,29),(38,31),(39,28),(39,30)],40)
=> [11,9,7,5,5,3]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,0]
=> ?
=> ? = 11
Description
The height of a Dyck path. The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Matching statistic: St000141
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000141: Permutations ⟶ ℤResult quality: 54% values known / values provided: 96%distinct values known / distinct values provided: 54%
Values
([],1)
=> [1]
=> [1,0,1,0]
=> [2,1] => 1
([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 1
([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> [3,1,2] => 2
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 1
([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 2
([(0,1),(0,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 2
([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 3
([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 2
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 3
([(1,2),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 3
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 3
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 3
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 3
([],5)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 2
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 2
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 3
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 2
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 3
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 2
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 2
([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0]
=> ? => ? = 11
([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [10,8,6,4,2,1,3,5,7,9] => ? = 9
([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> ? => ? = 11
([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> [9,7,5,5,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,1,1,0,0,1,0,0,1,0]
=> ? => ? = 9
([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> [11,8,7,5,4,1]
=> [1,1,1,1,1,1,0,1,0,0,0,1,0,1,0,0,1,0,1,0,0,0,1,0]
=> ? => ? = 11
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [6,4,3,5,7,1,2] => ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> [5,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [6,4,3,5,7,1,2] => ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> [5,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [6,4,3,5,7,2,1] => ? = 5
([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [7,5,3,1,2,4,6] => ? = 6
([(0,6),(1,11),(2,8),(3,9),(4,5),(4,11),(5,3),(5,7),(6,1),(6,4),(7,8),(7,9),(8,10),(9,10),(11,2),(11,7)],12)
=> [7,4,1]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0,1,0]
=> [8,5,2,1,3,4,6,7] => ? = 7
([(0,7),(1,13),(2,12),(3,9),(4,11),(5,6),(5,12),(6,4),(6,8),(7,2),(7,5),(8,11),(8,13),(10,9),(11,10),(12,1),(12,8),(13,3),(13,10)],14)
=> [8,5,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,0,1,0]
=> ? => ? = 8
([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> [9,5,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,0,0,1,0]
=> ? => ? = 9
([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> [7,4,3]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0]
=> [8,5,4,1,2,3,6,7] => ? = 7
([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> [8,5,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0,1,0]
=> [9,6,4,1,2,3,5,7,8] => ? = 8
([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> [9,6,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0,0,1,0]
=> ? => ? = 9
([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> [10,6,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0]
=> ? => ? = 10
([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> [6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [7,5,2,1,3,4,6] => ? = 6
([(0,6),(0,7),(1,9),(2,12),(3,9),(3,12),(4,10),(5,1),(6,5),(7,8),(8,2),(8,3),(9,11),(11,10),(12,4),(12,11)],13)
=> [7,5,1]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0]
=> [8,6,2,1,3,4,5,7] => ? = 7
([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> [8,6,4,2]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [9,7,5,3,1,2,4,6,8] => ? = 8
([(0,9),(0,10),(1,11),(2,14),(3,12),(4,13),(5,4),(5,11),(6,5),(7,3),(8,1),(8,14),(9,6),(10,2),(10,8),(11,13),(13,12),(14,7)],15)
=> [7,5,3]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> [8,6,4,1,2,3,5,7] => ? = 7
([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> [7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [8,5,1,2,3,4,6,7] => ? = 7
([(0,7),(1,14),(2,9),(3,10),(4,5),(4,14),(5,6),(5,8),(6,2),(6,11),(7,1),(7,4),(8,10),(8,11),(9,13),(10,12),(11,9),(11,12),(12,13),(14,3),(14,8)],15)
=> [8,5,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,1,0,0,0,1,0]
=> ? => ? = 8
([(0,1),(1,4),(1,5),(2,13),(3,12),(4,14),(5,7),(5,14),(6,10),(7,8),(7,15),(8,6),(8,17),(10,11),(11,9),(12,9),(13,3),(13,16),(14,2),(14,15),(15,13),(15,17),(16,11),(16,12),(17,10),(17,16)],18)
=> [9,6,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0,0,1,0]
=> ? => ? = 9
([(0,1),(1,5),(1,6),(2,15),(3,14),(4,10),(5,16),(6,8),(6,16),(7,12),(8,9),(8,17),(9,7),(9,19),(11,13),(12,11),(13,10),(14,4),(14,13),(15,3),(15,18),(16,2),(16,17),(17,15),(17,19),(18,11),(18,14),(19,12),(19,18)],20)
=> [10,7,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0]
=> ? => ? = 10
([(0,10),(1,20),(2,19),(4,18),(5,17),(6,13),(7,8),(7,17),(8,9),(8,11),(9,6),(9,15),(10,5),(10,7),(11,15),(11,18),(12,16),(12,20),(13,16),(14,19),(15,12),(15,13),(16,14),(17,4),(17,11),(18,1),(18,12),(19,3),(20,2),(20,14)],21)
=> [11,7,3]
=> [1,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0]
=> ? => ? = 11
([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> [7,4,2]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0,1,0]
=> [8,5,3,1,2,4,6,7] => ? = 7
([(0,1),(1,2),(1,3),(2,4),(2,13),(3,6),(3,13),(4,15),(5,14),(6,5),(6,16),(7,10),(7,12),(8,18),(9,18),(10,17),(11,9),(11,17),(12,8),(12,17),(13,7),(13,15),(13,16),(14,8),(14,9),(15,10),(15,11),(16,11),(16,12),(16,14),(17,18)],19)
=> [8,5,4,2]
=> [1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,1,0]
=> ? => ? = 8
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> [9,6,5,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0,0,1,0]
=> ? => ? = 9
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> [10,7,5,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0]
=> ? => ? = 10
([(0,1),(1,3),(1,4),(2,15),(3,6),(3,18),(4,5),(4,18),(5,17),(6,7),(6,19),(7,16),(8,12),(8,14),(10,21),(11,21),(12,2),(12,20),(13,11),(13,20),(14,10),(14,20),(15,9),(16,10),(16,11),(17,12),(17,13),(18,8),(18,17),(18,19),(19,13),(19,14),(19,16),(20,15),(20,21),(21,9)],22)
=> [9,6,4,3]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,1,0,0,0,1,0]
=> ? => ? = 9
([(0,1),(1,3),(1,4),(2,21),(3,6),(3,22),(4,5),(4,22),(5,20),(6,7),(6,23),(7,19),(8,13),(8,18),(9,14),(9,17),(10,26),(11,26),(12,27),(13,24),(14,2),(14,25),(15,13),(15,27),(16,12),(16,25),(17,8),(17,15),(17,25),(18,10),(18,24),(19,12),(19,15),(20,14),(20,16),(21,10),(21,11),(22,9),(22,20),(22,23),(23,16),(23,17),(23,19),(24,26),(25,18),(25,21),(25,27),(27,11),(27,24)],28)
=> [10,7,6,4,1]
=> [1,1,1,1,1,1,0,1,0,0,0,1,0,0,1,0,1,0,0,0,1,0]
=> ? => ? = 10
([(0,1),(1,4),(1,5),(2,24),(3,21),(4,7),(4,25),(5,6),(5,25),(6,23),(7,8),(7,26),(8,22),(9,16),(9,20),(10,15),(10,19),(11,29),(12,29),(14,30),(15,2),(15,28),(16,3),(16,27),(17,16),(17,30),(18,14),(18,28),(19,9),(19,17),(19,28),(20,12),(20,27),(21,13),(22,14),(22,17),(23,15),(23,18),(24,11),(24,12),(25,10),(25,23),(25,26),(26,18),(26,19),(26,22),(27,21),(27,29),(28,20),(28,24),(28,30),(29,13),(30,11),(30,27)],31)
=> [11,8,6,5,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,1,0,1,0,0,1,0,0,0,1,0]
=> ? => ? = 11
([(0,1),(1,4),(1,5),(2,23),(3,16),(4,7),(4,24),(5,6),(5,24),(6,22),(7,8),(7,25),(8,21),(9,13),(9,20),(10,15),(10,19),(11,28),(12,29),(13,26),(14,3),(14,28),(15,2),(15,27),(17,13),(17,29),(18,12),(18,27),(19,9),(19,17),(19,27),(20,14),(20,26),(21,12),(21,17),(22,15),(22,18),(23,11),(23,14),(24,10),(24,22),(24,25),(25,18),(25,19),(25,21),(26,28),(27,20),(27,23),(27,29),(28,16),(29,11),(29,26)],30)
=> [11,8,6,4,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0]
=> ? => ? = 11
([(0,1),(1,5),(1,6),(2,24),(3,27),(4,23),(5,8),(5,28),(6,9),(6,28),(7,26),(8,7),(8,29),(9,25),(10,16),(10,22),(11,17),(11,21),(13,30),(14,33),(15,4),(15,33),(16,2),(16,32),(17,3),(17,31),(18,16),(18,30),(19,12),(20,13),(20,31),(21,10),(21,18),(21,31),(22,15),(22,32),(23,12),(24,19),(25,17),(25,20),(26,13),(26,18),(27,14),(27,15),(28,11),(28,25),(28,29),(29,20),(29,21),(29,26),(30,14),(30,32),(31,22),(31,27),(31,30),(32,24),(32,33),(33,19),(33,23)],34)
=> [12,9,7,5,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0]
=> ? => ? = 12
([(0,2),(2,6),(2,7),(3,25),(4,28),(5,24),(6,9),(6,29),(7,10),(7,29),(8,27),(9,8),(9,30),(10,26),(11,17),(11,23),(12,18),(12,22),(13,31),(14,34),(15,1),(16,5),(16,34),(17,3),(17,33),(18,4),(18,32),(19,15),(20,17),(20,31),(21,13),(21,32),(22,11),(22,20),(22,32),(23,16),(23,33),(24,15),(25,19),(26,18),(26,21),(27,13),(27,20),(28,14),(28,16),(29,12),(29,26),(29,30),(30,21),(30,22),(30,27),(31,14),(31,33),(32,23),(32,28),(32,31),(33,25),(33,34),(34,19),(34,24)],35)
=> [13,9,7,5,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,1,0]
=> ? => ? = 13
([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> [8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [9,4,1,2,3,5,6,7,8] => ? = 8
([(0,6),(0,7),(1,11),(2,9),(3,9),(3,10),(4,2),(5,1),(5,10),(6,4),(7,8),(8,3),(8,5),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [7,5,2]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0,1,0]
=> [8,6,3,1,2,4,5,7] => ? = 7
([(0,7),(0,8),(1,10),(1,16),(2,11),(3,10),(4,12),(4,13),(5,3),(6,2),(6,16),(7,9),(8,5),(9,1),(9,6),(10,14),(11,12),(11,15),(12,17),(13,17),(14,13),(14,15),(15,17),(16,4),(16,11),(16,14)],18)
=> [8,6,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0,1,0]
=> ? => ? = 8
([(0,8),(0,9),(1,15),(1,18),(2,13),(3,11),(3,17),(4,11),(5,12),(6,4),(7,5),(7,17),(8,10),(9,6),(10,3),(10,7),(11,14),(12,16),(12,18),(14,15),(14,16),(15,19),(16,19),(17,1),(17,12),(17,14),(18,2),(18,19),(19,13)],20)
=> [9,7,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0,0,1,0]
=> ? => ? = 9
([(0,10),(0,12),(1,23),(2,22),(3,14),(3,24),(4,15),(5,13),(5,14),(6,18),(7,16),(7,20),(8,5),(8,23),(9,4),(9,24),(10,11),(11,3),(11,9),(12,1),(12,8),(13,22),(14,19),(15,16),(15,21),(16,25),(18,17),(19,20),(19,21),(20,18),(20,25),(21,25),(22,6),(23,2),(23,13),(24,7),(24,15),(24,19),(25,17)],26)
=> [9,7,5,4,1]
=> [1,1,1,1,1,0,1,0,0,0,1,0,1,0,0,1,0,0,1,0]
=> ? => ? = 9
([(0,2),(0,3),(1,9),(1,12),(2,1),(3,5),(3,8),(4,23),(5,24),(6,17),(7,22),(8,13),(8,24),(9,10),(9,27),(10,26),(11,16),(11,20),(12,19),(12,27),(13,18),(13,19),(15,28),(16,4),(16,28),(17,7),(18,17),(19,25),(20,22),(20,28),(21,14),(22,21),(23,14),(24,6),(24,18),(25,15),(25,20),(26,15),(26,16),(27,11),(27,25),(27,26),(28,21),(28,23)],29)
=> [10,8,6,4,1]
=> [1,1,1,1,1,1,0,1,0,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> ? => ? = 10
([(0,2),(0,3),(1,9),(1,15),(2,1),(3,7),(3,8),(4,30),(5,31),(6,23),(7,16),(7,37),(8,10),(8,37),(9,11),(9,36),(10,34),(11,35),(12,25),(12,29),(13,19),(13,22),(14,21),(14,27),(15,26),(15,36),(16,26),(16,33),(17,39),(18,38),(19,12),(19,38),(20,6),(21,4),(21,39),(22,5),(22,38),(24,23),(25,28),(26,32),(27,25),(27,39),(28,24),(29,20),(30,24),(31,20),(32,17),(32,27),(33,18),(33,19),(34,18),(34,22),(35,17),(35,21),(36,14),(36,32),(36,35),(37,13),(37,33),(37,34),(38,29),(38,31),(39,28),(39,30)],40)
=> [11,9,7,5,5,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,1,1,0,0,1,0,0,1,0,0,1,0]
=> ? => ? = 11
([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> [7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [8,5,1,2,3,4,6,7] => ? = 7
([(0,7),(1,10),(2,11),(3,8),(4,9),(5,2),(5,9),(6,3),(6,12),(7,4),(7,5),(8,10),(9,6),(9,11),(11,12),(12,1),(12,8)],13)
=> [8,5]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,1,0]
=> [9,6,1,2,3,4,5,7,8] => ? = 8
([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> [9,5]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,1,0]
=> [10,6,1,2,3,4,5,7,8,9] => ? = 9
([(0,6),(0,7),(1,11),(2,9),(3,9),(3,10),(4,5),(5,1),(5,10),(6,4),(7,8),(8,2),(8,3),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [7,5,2]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0,1,0]
=> [8,6,3,1,2,4,5,7] => ? = 7
([(0,7),(0,8),(1,16),(2,10),(2,16),(3,11),(4,12),(5,6),(6,4),(6,10),(7,9),(8,5),(9,1),(9,2),(10,12),(10,13),(11,15),(12,14),(13,11),(13,14),(14,15),(16,3),(16,13)],17)
=> [8,6,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0,1,0]
=> ? => ? = 8
([(0,9),(0,11),(1,14),(2,12),(2,13),(3,12),(3,17),(4,18),(5,15),(5,16),(6,7),(7,4),(7,13),(8,5),(8,19),(9,6),(10,2),(10,3),(10,14),(11,1),(11,10),(12,20),(13,18),(13,20),(14,8),(14,17),(15,22),(16,22),(17,19),(18,15),(18,21),(19,16),(20,21),(21,22)],23)
=> [8,6,5,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,1,0,0,1,0]
=> ? => ? = 8
([(0,2),(0,3),(1,8),(1,10),(2,1),(3,5),(3,7),(4,26),(5,22),(6,20),(7,12),(7,22),(8,21),(9,18),(9,19),(10,21),(10,25),(11,14),(11,15),(12,9),(12,24),(12,25),(13,27),(14,27),(15,27),(16,13),(17,14),(18,16),(19,17),(20,11),(20,17),(21,4),(21,23),(22,6),(22,24),(23,16),(23,26),(24,19),(24,20),(25,18),(25,23),(26,13),(26,15)],28)
=> [9,7,6,4,2]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,1,0,0,1,0]
=> ? => ? = 9
([(0,10),(0,12),(1,15),(2,13),(2,14),(3,16),(3,18),(4,20),(5,13),(5,17),(6,21),(7,8),(8,6),(8,14),(9,3),(9,24),(10,7),(11,2),(11,5),(11,15),(12,1),(12,11),(13,22),(14,21),(14,22),(15,9),(15,17),(16,20),(16,25),(17,24),(18,25),(20,19),(21,18),(21,23),(22,23),(23,25),(24,4),(24,16),(25,19)],26)
=> [9,7,5,4,1]
=> [1,1,1,1,1,0,1,0,0,0,1,0,1,0,0,1,0,0,1,0]
=> ? => ? = 9
Description
The maximum drop size of a permutation. The maximum drop size of a permutation $\pi$ of $[n]=\{1,2,\ldots, n\}$ is defined to be the maximum value of $i-\pi(i)$.
Matching statistic: St000691
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00268: Binary words zeros to flag zerosBinary words
St000691: Binary words ⟶ ℤResult quality: 54% values known / values provided: 96%distinct values known / distinct values provided: 54%
Values
([],1)
=> [1]
=> 10 => 01 => 1
([],2)
=> [1,1]
=> 110 => 011 => 1
([(0,1)],2)
=> [2]
=> 100 => 101 => 2
([],3)
=> [1,1,1]
=> 1110 => 0111 => 1
([(1,2)],3)
=> [2,1]
=> 1010 => 1001 => 2
([(0,1),(0,2)],3)
=> [2,1]
=> 1010 => 1001 => 2
([(0,2),(2,1)],3)
=> [3]
=> 1000 => 0101 => 3
([(0,2),(1,2)],3)
=> [2,1]
=> 1010 => 1001 => 2
([],4)
=> [1,1,1,1]
=> 11110 => 01111 => 1
([(2,3)],4)
=> [2,1,1]
=> 10110 => 10001 => 2
([(1,2),(1,3)],4)
=> [2,1,1]
=> 10110 => 10001 => 2
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> 10110 => 10001 => 2
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> 10010 => 01101 => 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 01101 => 3
([(1,2),(2,3)],4)
=> [3,1]
=> 10010 => 01101 => 3
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> 10010 => 01101 => 3
([(1,3),(2,3)],4)
=> [2,1,1]
=> 10110 => 10001 => 2
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 10010 => 01101 => 3
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 10110 => 10001 => 2
([(0,3),(1,2)],4)
=> [2,2]
=> 1100 => 1011 => 2
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 1100 => 1011 => 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 1100 => 1011 => 2
([(0,3),(2,1),(3,2)],4)
=> [4]
=> 10000 => 10101 => 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 10010 => 01101 => 3
([],5)
=> [1,1,1,1,1]
=> 111110 => 011111 => 1
([(3,4)],5)
=> [2,1,1,1]
=> 101110 => 100001 => 2
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> 101110 => 100001 => 2
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> 101110 => 100001 => 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> 101110 => 100001 => 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> 100110 => 011101 => 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 011101 => 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 011101 => 3
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> 100110 => 011101 => 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> 100110 => 011101 => 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 011101 => 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 100010 => 100101 => 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> 10100 => 01001 => 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 10100 => 01001 => 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> 10100 => 01001 => 3
([(2,3),(3,4)],5)
=> [3,1,1]
=> 100110 => 011101 => 3
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> 100110 => 011101 => 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> 100110 => 011101 => 3
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> 101110 => 100001 => 2
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 100110 => 011101 => 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> 10100 => 01001 => 3
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 101110 => 100001 => 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 100110 => 011101 => 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 101110 => 100001 => 2
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> 11010 => 10011 => 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> 11010 => 10011 => 2
([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> 10010010010 => 01101101101 => ? = 7
([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> 100001001000010 => ? => ? = 11
([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [5,4,3,2,1]
=> 1010101010 => 0110011001 => ? = 5
([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> 10010010010010 => ? => ? = 9
([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [7,5,4,3,1]
=> 100101010010 => ? => ? = 7
([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [6,5,4,3,2,1]
=> 101010101010 => 100110011001 => ? = 6
([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> 10010010010010010 => ? => ? = 11
([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> [9,7,5,5,3,1]
=> 100100110010010 => ? => ? = 9
([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> [11,8,7,5,4,1]
=> 10001010010100010 => ? => ? = 11
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> 1001011100 => ? => ? = 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> [5,3,2,2,1]
=> 1001011010 => 0110001101 => ? = 5
([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> [5,3,2,2,1]
=> 1001011010 => 0110001101 => ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> [5,3,2,2,2]
=> 1001011100 => ? => ? = 5
([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> [5,3,2,2,1]
=> 1001011010 => 0110001101 => ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> [5,3,2,2,2,1]
=> 10010111010 => ? => ? = 5
([(0,6),(1,11),(2,8),(3,9),(4,5),(4,11),(5,3),(5,7),(6,1),(6,4),(7,8),(7,9),(8,10),(9,10),(11,2),(11,7)],12)
=> [7,4,1]
=> 1000100010 => ? => ? = 7
([(0,7),(1,13),(2,12),(3,9),(4,11),(5,6),(5,12),(6,4),(6,8),(7,2),(7,5),(8,11),(8,13),(10,9),(11,10),(12,1),(12,8),(13,3),(13,10)],14)
=> [8,5,1]
=> 10001000010 => 10010100101 => ? = 8
([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> [9,5,1]
=> 100001000010 => ? => ? = 9
([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> [7,4,3]
=> 1000101000 => ? => ? = 7
([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> [8,5,3]
=> 10001001000 => 10100100101 => ? = 8
([(0,1),(1,4),(1,5),(2,14),(3,13),(4,6),(4,17),(5,7),(5,17),(6,15),(7,16),(8,11),(8,12),(10,18),(11,3),(11,18),(12,2),(12,18),(13,9),(14,9),(15,10),(15,11),(16,10),(16,12),(17,8),(17,15),(17,16),(18,13),(18,14)],19)
=> [9,6,4]
=> 100010010000 => ? => ? = 9
([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> [10,6,4]
=> 1000010010000 => ? => ? = 10
([(0,6),(0,7),(1,9),(2,12),(3,9),(3,12),(4,10),(5,1),(6,5),(7,8),(8,2),(8,3),(9,11),(11,10),(12,4),(12,11)],13)
=> [7,5,1]
=> 1001000010 => ? => ? = 7
([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> [8,6,4,2]
=> 100100100100 => ? => ? = 8
([(0,9),(0,10),(1,11),(2,14),(3,12),(4,13),(5,4),(5,11),(6,5),(7,3),(8,1),(8,14),(9,6),(10,2),(10,8),(11,13),(13,12),(14,7)],15)
=> [7,5,3]
=> 1001001000 => ? => ? = 7
([(0,7),(1,14),(2,9),(3,10),(4,5),(4,14),(5,6),(5,8),(6,2),(6,11),(7,1),(7,4),(8,10),(8,11),(9,13),(10,12),(11,9),(11,12),(12,13),(14,3),(14,8)],15)
=> [8,5,2]
=> 10001000100 => 10110100101 => ? = 8
([(0,1),(1,4),(1,5),(2,13),(3,12),(4,14),(5,7),(5,14),(6,10),(7,8),(7,15),(8,6),(8,17),(10,11),(11,9),(12,9),(13,3),(13,16),(14,2),(14,15),(15,13),(15,17),(16,11),(16,12),(17,10),(17,16)],18)
=> [9,6,3]
=> 100010001000 => ? => ? = 9
([(0,1),(1,5),(1,6),(2,15),(3,14),(4,10),(5,16),(6,8),(6,16),(7,12),(8,9),(8,17),(9,7),(9,19),(11,13),(12,11),(13,10),(14,4),(14,13),(15,3),(15,18),(16,2),(16,17),(17,15),(17,19),(18,11),(18,14),(19,12),(19,18)],20)
=> [10,7,3]
=> 1000100001000 => ? => ? = 10
([(0,10),(1,20),(2,19),(4,18),(5,17),(6,13),(7,8),(7,17),(8,9),(8,11),(9,6),(9,15),(10,5),(10,7),(11,15),(11,18),(12,16),(12,20),(13,16),(14,19),(15,12),(15,13),(16,14),(17,4),(17,11),(18,1),(18,12),(19,3),(20,2),(20,14)],21)
=> [11,7,3]
=> 10000100001000 => ? => ? = 11
([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> [7,4,2]
=> 1000100100 => ? => ? = 7
([(0,1),(1,2),(1,3),(2,4),(2,13),(3,6),(3,13),(4,15),(5,14),(6,5),(6,16),(7,10),(7,12),(8,18),(9,18),(10,17),(11,9),(11,17),(12,8),(12,17),(13,7),(13,15),(13,16),(14,8),(14,9),(15,10),(15,11),(16,11),(16,12),(16,14),(17,18)],19)
=> [8,5,4,2]
=> 100010100100 => ? => ? = 8
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> [9,6,5,3]
=> 1000101001000 => ? => ? = 9
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> [10,7,5,3]
=> 10001001001000 => ? => ? = 10
([(0,1),(1,3),(1,4),(2,15),(3,6),(3,18),(4,5),(4,18),(5,17),(6,7),(6,19),(7,16),(8,12),(8,14),(10,21),(11,21),(12,2),(12,20),(13,11),(13,20),(14,10),(14,20),(15,9),(16,10),(16,11),(17,12),(17,13),(18,8),(18,17),(18,19),(19,13),(19,14),(19,16),(20,15),(20,21),(21,9)],22)
=> [9,6,4,3]
=> 1000100101000 => ? => ? = 9
([(0,1),(1,3),(1,4),(2,21),(3,6),(3,22),(4,5),(4,22),(5,20),(6,7),(6,23),(7,19),(8,13),(8,18),(9,14),(9,17),(10,26),(11,26),(12,27),(13,24),(14,2),(14,25),(15,13),(15,27),(16,12),(16,25),(17,8),(17,15),(17,25),(18,10),(18,24),(19,12),(19,15),(20,14),(20,16),(21,10),(21,11),(22,9),(22,20),(22,23),(23,16),(23,17),(23,19),(24,26),(25,18),(25,21),(25,27),(27,11),(27,24)],28)
=> [10,7,6,4,1]
=> 100010100100010 => ? => ? = 10
([(0,1),(1,4),(1,5),(2,24),(3,21),(4,7),(4,25),(5,6),(5,25),(6,23),(7,8),(7,26),(8,22),(9,16),(9,20),(10,15),(10,19),(11,29),(12,29),(14,30),(15,2),(15,28),(16,3),(16,27),(17,16),(17,30),(18,14),(18,28),(19,9),(19,17),(19,28),(20,12),(20,27),(21,13),(22,14),(22,17),(23,15),(23,18),(24,11),(24,12),(25,10),(25,23),(25,26),(26,18),(26,19),(26,22),(27,21),(27,29),(28,20),(28,24),(28,30),(29,13),(30,11),(30,27)],31)
=> [11,8,6,5,1]
=> 1000100101000010 => ? => ? = 11
([(0,1),(1,4),(1,5),(2,23),(3,16),(4,7),(4,24),(5,6),(5,24),(6,22),(7,8),(7,25),(8,21),(9,13),(9,20),(10,15),(10,19),(11,28),(12,29),(13,26),(14,3),(14,28),(15,2),(15,27),(17,13),(17,29),(18,12),(18,27),(19,9),(19,17),(19,27),(20,14),(20,26),(21,12),(21,17),(22,15),(22,18),(23,11),(23,14),(24,10),(24,22),(24,25),(25,18),(25,19),(25,21),(26,28),(27,20),(27,23),(27,29),(28,16),(29,11),(29,26)],30)
=> [11,8,6,4,1]
=> 1000100100100010 => ? => ? = 11
([(0,1),(1,5),(1,6),(2,24),(3,27),(4,23),(5,8),(5,28),(6,9),(6,28),(7,26),(8,7),(8,29),(9,25),(10,16),(10,22),(11,17),(11,21),(13,30),(14,33),(15,4),(15,33),(16,2),(16,32),(17,3),(17,31),(18,16),(18,30),(19,12),(20,13),(20,31),(21,10),(21,18),(21,31),(22,15),(22,32),(23,12),(24,19),(25,17),(25,20),(26,13),(26,18),(27,14),(27,15),(28,11),(28,25),(28,29),(29,20),(29,21),(29,26),(30,14),(30,32),(31,22),(31,27),(31,30),(32,24),(32,33),(33,19),(33,23)],34)
=> [12,9,7,5,1]
=> 10001001001000010 => ? => ? = 12
([(0,2),(2,6),(2,7),(3,25),(4,28),(5,24),(6,9),(6,29),(7,10),(7,29),(8,27),(9,8),(9,30),(10,26),(11,17),(11,23),(12,18),(12,22),(13,31),(14,34),(15,1),(16,5),(16,34),(17,3),(17,33),(18,4),(18,32),(19,15),(20,17),(20,31),(21,13),(21,32),(22,11),(22,20),(22,32),(23,16),(23,33),(24,15),(25,19),(26,18),(26,21),(27,13),(27,20),(28,14),(28,16),(29,12),(29,26),(29,30),(30,21),(30,22),(30,27),(31,14),(31,33),(32,23),(32,28),(32,31),(33,25),(33,34),(34,19),(34,24)],35)
=> [13,9,7,5,1]
=> 100001001001000010 => ? => ? = 13
([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> [8,3]
=> 1000001000 => ? => ? = 8
([(0,6),(0,7),(1,11),(2,9),(3,9),(3,10),(4,2),(5,1),(5,10),(6,4),(7,8),(8,3),(8,5),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [7,5,2]
=> 1001000100 => ? => ? = 7
([(0,7),(0,8),(1,10),(1,16),(2,11),(3,10),(4,12),(4,13),(5,3),(6,2),(6,16),(7,9),(8,5),(9,1),(9,6),(10,14),(11,12),(11,15),(12,17),(13,17),(14,13),(14,15),(15,17),(16,4),(16,11),(16,14)],18)
=> [8,6,4]
=> 10010010000 => ? => ? = 8
([(0,8),(0,9),(1,15),(1,18),(2,13),(3,11),(3,17),(4,11),(5,12),(6,4),(7,5),(7,17),(8,10),(9,6),(10,3),(10,7),(11,14),(12,16),(12,18),(14,15),(14,16),(15,19),(16,19),(17,1),(17,12),(17,14),(18,2),(18,19),(19,13)],20)
=> [9,7,4]
=> 100100010000 => ? => ? = 9
([(0,10),(0,12),(1,23),(2,22),(3,14),(3,24),(4,15),(5,13),(5,14),(6,18),(7,16),(7,20),(8,5),(8,23),(9,4),(9,24),(10,11),(11,3),(11,9),(12,1),(12,8),(13,22),(14,19),(15,16),(15,21),(16,25),(18,17),(19,20),(19,21),(20,18),(20,25),(21,25),(22,6),(23,2),(23,13),(24,7),(24,15),(24,19),(25,17)],26)
=> [9,7,5,4,1]
=> 10010010100010 => ? => ? = 9
([(0,2),(0,3),(1,9),(1,12),(2,1),(3,5),(3,8),(4,23),(5,24),(6,17),(7,22),(8,13),(8,24),(9,10),(9,27),(10,26),(11,16),(11,20),(12,19),(12,27),(13,18),(13,19),(15,28),(16,4),(16,28),(17,7),(18,17),(19,25),(20,22),(20,28),(21,14),(22,21),(23,14),(24,6),(24,18),(25,15),(25,20),(26,15),(26,16),(27,11),(27,25),(27,26),(28,21),(28,23)],29)
=> [10,8,6,4,1]
=> 100100100100010 => ? => ? = 10
([(0,2),(0,3),(1,9),(1,15),(2,1),(3,7),(3,8),(4,30),(5,31),(6,23),(7,16),(7,37),(8,10),(8,37),(9,11),(9,36),(10,34),(11,35),(12,25),(12,29),(13,19),(13,22),(14,21),(14,27),(15,26),(15,36),(16,26),(16,33),(17,39),(18,38),(19,12),(19,38),(20,6),(21,4),(21,39),(22,5),(22,38),(24,23),(25,28),(26,32),(27,25),(27,39),(28,24),(29,20),(30,24),(31,20),(32,17),(32,27),(33,18),(33,19),(34,18),(34,22),(35,17),(35,21),(36,14),(36,32),(36,35),(37,13),(37,33),(37,34),(38,29),(38,31),(39,28),(39,30)],40)
=> [11,9,7,5,5,3]
=> 10010010011001000 => ? => ? = 11
([(0,7),(1,10),(2,11),(3,8),(4,9),(5,2),(5,9),(6,3),(6,12),(7,4),(7,5),(8,10),(9,6),(9,11),(11,12),(12,1),(12,8)],13)
=> [8,5]
=> 1000100000 => ? => ? = 8
([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> [9,5]
=> 10000100000 => ? => ? = 9
([(0,6),(0,7),(1,11),(2,9),(3,9),(3,10),(4,5),(5,1),(5,10),(6,4),(7,8),(8,2),(8,3),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [7,5,2]
=> 1001000100 => ? => ? = 7
([(0,7),(0,8),(1,16),(2,10),(2,16),(3,11),(4,12),(5,6),(6,4),(6,10),(7,9),(8,5),(9,1),(9,2),(10,12),(10,13),(11,15),(12,14),(13,11),(13,14),(14,15),(16,3),(16,13)],17)
=> [8,6,3]
=> 10010001000 => 10100101101 => ? = 8
Description
The number of changes of a binary word. This is the number of indices $i$ such that $w_i \neq w_{i+1}$.
The following 131 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000054The first entry of the permutation. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St000734The last entry in the first row of a standard tableau. St000733The row containing the largest entry of a standard tableau. St000157The number of descents of a standard tableau. St000439The position of the first down step of a Dyck path. St000326The position of the first one in a binary word after appending a 1 at the end. St000745The index of the last row whose first entry is the row number in a standard Young tableau. St000025The number of initial rises of a Dyck path. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001809The index of the step at the first peak of maximal height in a Dyck path. St000024The number of double up and double down steps of a Dyck path. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St000444The length of the maximal rise of a Dyck path. St000442The maximal area to the right of an up step of a Dyck path. St000874The position of the last double rise in a Dyck path. St001461The number of topologically connected components of the chord diagram of a permutation. St000702The number of weak deficiencies of a permutation. St000738The first entry in the last row of a standard tableau. St000505The biggest entry in the block containing the 1. St000971The smallest closer of a set partition. St000504The cardinality of the first block of a set partition. St000823The number of unsplittable factors of the set partition. St001062The maximal size of a block of a set partition. St000503The maximal difference between two elements in a common block. St000653The last descent of a permutation. St000381The largest part of an integer composition. St000382The first part of an integer composition. St000808The number of up steps of the associated bargraph. St000383The last part of an integer composition. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St001777The number of weak descents in an integer composition. St001497The position of the largest weak excedence of a permutation. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000316The number of non-left-to-right-maxima of a permutation. St001029The size of the core of a graph. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001480The number of simple summands of the module J^2/J^3. St000097The order of the largest clique of the graph. St000098The chromatic number of a graph. St000031The number of cycles in the cycle decomposition of a permutation. St000443The number of long tunnels of a Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St000083The number of left oriented leafs of a binary tree except the first one. St000840The number of closers smaller than the largest opener in a perfect matching. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St000740The last entry of a permutation. St000746The number of pairs with odd minimum in a perfect matching. St000741The Colin de Verdière graph invariant. St000528The height of a poset. St000308The height of the tree associated to a permutation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St000080The rank of the poset. St000062The length of the longest increasing subsequence of the permutation. St000087The number of induced subgraphs. St000172The Grundy number of a graph. St000286The number of connected components of the complement of a graph. St000314The number of left-to-right-maxima of a permutation. St000363The number of minimal vertex covers of a graph. St000469The distinguishing number of a graph. St000636The hull number of a graph. St000722The number of different neighbourhoods in a graph. St000822The Hadwiger number of the graph. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St000926The clique-coclique number of a graph. St000991The number of right-to-left minima of a permutation. St001108The 2-dynamic chromatic number of a graph. St001110The 3-dynamic chromatic number of a graph. St001116The game chromatic number of a graph. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001302The number of minimally dominating sets of vertices of a graph. St001304The number of maximally independent sets of vertices of a graph. St001316The domatic number of a graph. St001330The hat guessing number of a graph. St001342The number of vertices in the center of a graph. St001366The maximal multiplicity of a degree of a vertex of a graph. St001368The number of vertices of maximal degree in a graph. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001581The achromatic number of a graph. St001645The pebbling number of a connected graph. St001654The monophonic hull number of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St001670The connected partition number of a graph. St001707The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. St001725The harmonious chromatic number of a graph. St001746The coalition number of a graph. St001844The maximal degree of a generator of the invariant ring of the automorphism group of a graph. St001883The mutual visibility number of a graph. St001963The tree-depth of a graph. St000171The degree of the graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000272The treewidth of a graph. St000300The number of independent sets of vertices of a graph. St000301The number of facets of the stable set polytope of a graph. St000310The minimal degree of a vertex of a graph. St000362The size of a minimal vertex cover of a graph. St000454The largest eigenvalue of a graph if it is integral. St000536The pathwidth of a graph. St000778The metric dimension of a graph. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St000989The number of final rises of a permutation. St001119The length of a shortest maximal path in a graph. St001120The length of a longest path in a graph. St001270The bandwidth of a graph. St001277The degeneracy of a graph. St001357The maximal degree of a regular spanning subgraph of a graph. St001358The largest degree of a regular subgraph of a graph. St001391The disjunction number of a graph. St001644The dimension of a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001949The rigidity index of a graph. St001962The proper pathwidth of a graph. St001812The biclique partition number of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001323The independence gap of a graph. St001651The Frankl number of a lattice. St001720The minimal length of a chain of small intervals in a lattice.